Skip to content

Latest commit

 

History

History
881 lines (861 loc) · 27.8 KB

full_model_list.md

File metadata and controls

881 lines (861 loc) · 27.8 KB

Full Validated Models

The below tables are models enabled by the Intel® Low Precision Optimization Tool.

TensorFlow 2.x models

   
Framework   
   
Version   
   
Model   
   
Dataset   
Accuracy Performance speed up
   
INT8   Tuning Accuracy   
   
FP32   Accuracy Baseline   
   
Acc   Ratio [(INT8-FP32)/FP32]   
   
Realtime   Latency Ratio[FP32/INT8]   
   
tensorflow   
   
2.4.0   
   
resnet50v1.0   
   
ImageNet   
   
73.80%   
   
74.30%   
   
-0.67%   
   
3.49x   
   
tensorflow   
   
2.4.0   
   
resnet50v1.5   
   
ImageNet   
   
76.70%   
   
76.50%   
   
0.26%   
   
3.23x   
   
tensorflow   
   
2.4.0   
   
resnet101   
   
ImageNet   
   
77.20%   
   
76.40%   
   
1.05%   
   
2.42x   
   
tensorflow   
   
2.4.0   
   
inception_v1   
   
ImageNet   
   
70.10%   
   
69.70%   
   
0.57%   
   
1.88x   
   
tensorflow   
   
2.4.0   
   
inception_v2   
   
ImageNet   
   
74.10%   
   
74.00%   
   
0.14%   
   
1.96x   
   
tensorflow   
   
2.4.0   
   
inception_v3   
   
ImageNet   
   
77.20%   
   
76.70%   
   
0.65%   
   
2.36x   
   
tensorflow   
   
2.4.0   
   
inception_v4   
   
ImageNet   
   
80.00%   
   
80.30%   
   
-0.37%   
   
2.59x   
   
tensorflow   
   
2.4.0   
   
inception_resnet_v2   
   
ImageNet   
   
80.10%   
   
80.40%   
   
-0.37%   
   
1.97x   
   
tensorflow   
   
2.4.0   
   
mobilenetv1   
   
ImageNet   
   
71.10%   
   
71.00%   
   
0.14%   
   
2.88x   
   
tensorflow   
   
2.4.0   
   
mobilenetv2   
   
ImageNet   
   
70.80%   
   
71.80%   
   
-1.39%   
   
1.60x   
   
tensorflow   
   
2.4.0   
   
ssd_resnet50_v1   
   
Coco2017   
   
37.90%   
   
38.00%   
   
-0.26%   
   
2.97x   
   
tensorflow   
   
2.4.0   
   
mask_rcnn_inception_v2   
   
Coco2017   
   
28.90%   
   
29.10%   
   
-0.69%   
   
2.66x   
   
tensorflow   
   
2.4.0   
   
wide_deep_large_ds   
   
criteo-kaggle   
   
77.61%   
   
77.67%   
   
-0.08%   
   
1.42x   
   
tensorflow   
   
2.4.0   
   
vgg16   
   
ImageNet   
   
72.50%   
   
70.90%   
   
2.26%   
   
3.75x   
   
tensorflow   
   
2.4.0   
   
vgg19   
   
ImageNet   
   
72.40%   
   
71.00%   
   
1.97%   
   
3.79x   
   
tensorflow   
   
2.4.0   
   
resnetv2_50   
   
ImageNet   
   
70.30%   
   
69.60%   
   
1.01%   
   
1.38x   
   
tensorflow   
   
2.4.0   
   
resnetv2_101   
   
ImageNet   
   
72.50%   
   
71.90%   
   
0.83%   
   
1.44x   
   
tensorflow   
   
2.4.0   
   
resnetv2_152   
   
ImageNet   
   
72.60%   
   
72.40%   
   
0.28%   
   
1.53x   
   
tensorflow   
   
2.4.0   
   
densenet121   
   
ImageNet   
   
72.60%   
   
72.90%   
   
-0.41%   
   
1.49x   
   
tensorflow   
   
2.4.0   
   
densenet161   
   
ImageNet   
   
76.10%   
   
76.30%   
   
-0.26%   
   
1.64x   
   
tensorflow   
   
2.4.0   
   
densenet169   
   
ImageNet   
   
74.20%   
   
74.60%   
   
-0.54%   
   
1.47x   

TensorFlow 1.x models

   
Framework   
   
Version   
   
Model   
   
Dataset   
   
Accuracy   
   
Performance   speed up   
   
INT8   Tuning Accuracy   
   
FP32   Accuracy Baseline   
   
Acc   Ratio [(INT8-FP32)/FP32]   
   
Realtime   Latency Ratio[FP32/INT8]   
   
tensorflow   
   
1.15UP2   
   
resnet_v1_50_slim   
   
ImageNet   
   
76.30%   
   
75.20%   
   
1.46%   
   
2.89x   
   
tensorflow   
   
1.15UP2   
   
resnet_v1_101_slim   
   
ImageNet   
   
77.10%   
   
76.40%   
   
0.92%   
   
3.25x   
   
tensorflow   
   
1.15UP2   
   
resnet_v1_152_slim   
   
ImageNet   
   
77.40%   
   
76.80%   
   
0.78%   
   
3.51x   
   
tensorflow   
   
1.15UP2   
   
inception_v1_slim   
   
ImageNet   
   
70.10%   
   
69.80%   
   
0.43%   
   
1.79x   
   
tensorflow   
   
1.15UP2   
   
inception_v2_slim   
   
ImageNet   
   
74.10%   
   
74.00%   
   
0.14%   
   
1.95x   
   
tensorflow   
   
1.15UP2   
   
inception_v3_slim   
   
ImageNet   
   
78.10%   
   
78.00%   
   
0.13%   
   
2.48x   
   
tensorflow   
   
1.15UP2   
   
inception_v4_slim   
   
ImageNet   
   
79.90%   
   
80.20%   
   
-0.37%   
   
2.78x   
   
tensorflow   
   
1.15UP2   
   
vgg16_slim   
   
ImageNet   
   
72.50%   
   
70.90%   
   
2.26%   
   
3.73x   
   
tensorflow   
   
1.15UP2   
   
vgg19_slim   
   
ImageNet   
   
72.40%   
   
71.00%   
   
1.97%   
   
3.82x   
   
tensorflow   
   
1.15UP2   
   
resnetv2_50_slim   
   
ImageNet   
   
70.30%   
   
69.70%   
   
0.86%   
   
1.38x   
   
tensorflow   
   
1.15UP2   
   
resnetv2_101_slim   
   
ImageNet   
   
72.30%   
   
71.90%   
   
0.56%   
   
1.50x   
   
tensorflow   
   
1.15UP2   
   
resnetv2_152_slim   
   
ImageNet   
   
72.60%   
   
72.40%   
   
0.28%   
   
1.57x   
   
tensorflow   
   
1.15UP2   
   
bert   
   
SQUAD   
   
92.33%   
   
92.98%   
   
-0.69%   
   
2.89x   

PyTorch models

Framework Version Model Dataset Accuracy Performance speed up
INT8   Tuning Accuracy FP32 Accuracy   Baseline Acc Ratio   [(INT8-FP32)/FP32] Realtime Latency   Ratio[FP32/INT8]
pytorch 1.5.0+cpu resnet18 ImageNet 69.60% 69.76% -0.22% 1.76x
pytorch 1.5.0+cpu resnet50 ImageNet 75.96% 76.13% -0.23% 2.63x
pytorch 1.5.0+cpu resnext101_32x8d ImageNet 79.12% 79.31% -0.24% 2.61x
pytorch 1.6.0a0+24aac32 bert_base_mrpc MRPC 88.90% 88.73% 0.19% 1.98x
pytorch 1.6.0a0+24aac32 bert_base_cola COLA 59.06% 58.84% 0.37% 2.19x
pytorch 1.6.0a0+24aac32 bert_base_sts-b STS-B 88.40% 89.27% -0.97% 2.28x
pytorch 1.6.0a0+24aac32 bert_base_sst-2 SST-2 91.51% 91.86% -0.37% 2.30x
pytorch 1.6.0a0+24aac32 bert_base_rte RTE 69.31% 69.68% -0.52% 2.16x
pytorch 1.6.0a0+24aac32 bert_large_mrpc MRPC 87.45% 88.33% -0.99% 2.63x
pytorch 1.6.0a0+24aac32 bert_large_squad SQUAD 92.85% 93.05% -0.21% 2.01x
pytorch 1.6.0a0+24aac32 bert_large_qnli QNLI 91.20% 91.82% -0.68% 2.69x
pytorch 1.6.0a0+24aac32 bert_large_rte RTE 71.84% 72.56% -0.99% 1.36x
pytorch 1.6.0a0+24aac32 bert_large_cola COLA 62.74% 62.57% 0.27% 2.74x
pytorch 1.5.0+cpu dlrm CriteoTerabyte 80.27% 80.27% 0.00% 1.03x
pytorch 1.5.0+cpu inception_v3 ImageNet 69.42% 69.54% -0.17% 1.84x
pytorch 1.5.0+cpu peleenet ImageNet 71.59% 72.08% -0.68% 1.28x
pytorch 1.5.0+cpu yolo_v3 Coco2017 24.42% 24.54% -0.51% 1.64x
pytorch 1.5.0+cpu se_resnext50_32x4d ImageNet 79.04% 79.08% -0.05% 1.73x
pytorch 1.5.0+cpu mobilenet_v2 ImageNet 70.63% 71.86% -1.70% 1.60x
pytorch 1.5.0+cpu gpt_wikitext WIKI Text 60.06% 60.20% -0.23% 1.15x
pytorch 1.5.0+cpu roberta_base_mrpc MRPC 85.08% 85.51% -0.51% 2.12x
pytorch 1.5.0+cpu camembert_base_mrpc MRPC 83.57% 84.22% -0.77% 2.16x
pytorch 1.6.0+cpu blendcnn MRPC 68.40% 68.40% 0.00% 1.50x
pytorch ipex resnet50_ipex ImageNet 75.80% 76.13% -0.44% 1.66x

Quantization-aware training models

Framework version model dataset Accuracy Performance speed up
INT8 Tuning Accuracy FP32 Accuracy Baseline Acc Ratio[(INT8-FP32)/FP32] Realtime Latency Ratio[FP32/INT8]
pytorch 1.5.0+cpu resnet18_qat ImageNet 69.76% 69.76% 0.01% 1.76x
pytorch 1.5.0+cpu resnet50_qat ImageNet 76.37% 76.13% 0.32% 2.67x

MXNet models

Framework Version Model Dataset Accuracy Performance speed up
INT8   Tuning Accuracy FP32 Accuracy   Baseline Acc Ratio   [(INT8-FP32)/FP32] Realtime Latency   Ratio[FP32/INT8]
mxnet 1.7.0 resnet50v1 ImageNet 76.03% 76.33% -0.39% 3.13x
mxnet 1.7.0 inceptionv3 ImageNet 77.80% 0.21% 2.77x
mxnet 1.7.0 mobilenet1.0 ImageNet 71.71% 72.22% -0.71% 2.38x
mxnet 1.7.0 mobilenetv2_1.0 ImageNet 70.77% 70.87% -0.14% 2.67x
mxnet 1.7.0 resnet18_v1 ImageNet 70.00% 70.14% -0.21% 3.13x
mxnet 1.7.0 squeezenet1.0 ImageNet 56.89% 56.96% -0.13% 2.63x
mxnet 1.7.0 ssd-mobilenet1.0 VOC 74.94% 75.54% -0.79% 3.74x
mxnet 1.7.0 resnet152_v1 ImageNet 78.31% 78.54% -0.29% 3.14x

ONNX Models

Framework Version Model Dataset Accuracy
INT8   Tuning Accuracy FP32 Accuracy   Baseline Acc Ratio   [(INT8-FP32)/FP32]
ONNX RT 1.6.0 (opset11+) resnet50_v1_5 ImageNet 73.60% 74.00% -0.54%
ONNX RT vgg16 ImageNet 68.86% 69.44% -0.84%
ONNX RT bert_base_mrpc MRPC 85.29% 86.03% -0.85%
ONNX RT MobileBERT MRPC 0.8603 0.8627 -0.28%
ONNX RT RoBERTa MRPC 0.8873 0.8946 -0.82%
ONNX RT DistilBERT MRPC 0.8505 0.8456 0.58%