-
Notifications
You must be signed in to change notification settings - Fork 1
/
geom_cont_Lee.py
125 lines (103 loc) · 2.55 KB
/
geom_cont_Lee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
from math import pi
from functions_lee import lee_geom_cont, hat_map
from numpy.linalg import inv
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from constants import J, g, m
from scipy.spatial.transform import Rotation
def model(z, t, f, M):
x = np.array([z[0], z[1], z[2]])
v = np.array([z[3], z[4], z[5]])
R = np.reshape(z[6:15],(3,3))
Om = np.array([z[15], z[16],z[17]])
e3 = np.array([0, 0, 1])
Om_hat = hat_map(Om)
b3 = np.dot(R,e3)
J_inv = inv(J)
dxdt = v
dvdt = - g * e3 + f * b3 / m
dRdt = np.dot(R, Om_hat)
dOmdt = np.dot(J_inv, M)
dzdt = np.concatenate((dxdt, dvdt, dRdt.flatten(), dOmdt))
return dzdt
rpy = np.array([0, 0, 0])
x0 = np.array([0, 0, 0])
v0 = np.array([0, 0, 0])
Om0 = np.array([0, 0, 0])
r = Rotation.from_euler('xyz', rpy, degrees=True)
rot = r.as_matrix()
R0 = np.reshape(rot, (3, 3)).T
z0 = np.concatenate((x0, v0, R0, Om0), axis=None)
n = 2001
tf = 10.0
t = np.linspace(0, tf, n)
x = np.empty_like(t)
y = np.empty_like(t)
z = np.empty_like(t)
mat_rot = np.zeros((9, n))
for i in range(1, n):
f, M = lee_geom_cont(z0, t[i-1])
tspan = [t[i-1], t[i]]
sol = odeint(model, z0, tspan, args=(f, M,))
z0 = sol[1]
x[i] = z0[0]
y[i] = z0[1]
mat_rot[:, i - 1] = z0[6:15]
z[i] = z0[2]
x_des = 0.4 * t
y_des = 0.4 * np.sin(pi * t)
z_des = 0.6 * np.cos(pi * t)
fig1 = plt.figure()
plt.plot(t, x, label="sim")
plt.plot(t, x_des, label="ref")
plt.xlabel("time [s]")
plt.ylabel("x [m]")
plt.grid()
plt.legend()
plt.show()
fig2 = plt.figure()
plt.plot(t, y, label="sim")
plt.plot(t, y_des, label="ref")
plt.xlabel("time [s]")
plt.ylabel("y [m]")
plt.grid()
plt.legend()
plt.show()
fig3 = plt.figure()
plt.plot(t, z, label="sim")
plt.plot(t, z_des, label="ref")
plt.xlabel("time [s]")
plt.ylabel("z [m]")
plt.grid()
plt.legend()
plt.show()
roll = []
pitch = []
yaw = []
mat_rot = mat_rot.T
for jj in range(0, n):
mat = [[mat_rot[jj, 0], mat_rot[jj, 1], mat_rot[jj, 2]], [mat_rot[jj, 3], mat_rot[jj, 4], mat_rot[jj, 5]], [mat_rot[jj, 6], mat_rot[jj, 7], mat_rot[jj, 8]]]
r = Rotation.from_matrix(mat)
rpy = r.as_euler('xyz', degrees=True)
roll.append(rpy[0])
pitch.append(rpy[1])
yaw.append(rpy[2])
fig4 = plt.figure()
plt.plot(t, roll)
plt.xlabel("time [s]")
plt.ylabel("roll [deg]")
plt.grid()
plt.show()
fig5 = plt.figure()
plt.plot(t, pitch)
plt.xlabel("time [s]")
plt.ylabel("pitch [deg]")
plt.grid()
plt.show()
fig5 = plt.figure()
plt.plot(t, yaw)
plt.xlabel("time [s]")
plt.ylabel("yaw [deg]")
plt.grid()
plt.show()