-
Notifications
You must be signed in to change notification settings - Fork 73
/
describegpt.rs
793 lines (734 loc) · 28.8 KB
/
describegpt.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
static USAGE: &str = r#"
Infers extended metadata about a CSV using a large language model.
Note that this command uses LLMs for inferencing and is therefore prone to
inaccurate information being produced. Verify output results before using them.
For examples, see https://github.com/jqnatividad/qsv/blob/master/tests/test_describegpt.rs.
For more detailed info on how describegpt works and how to prepare a prompt file,
see https://github.com/jqnatividad/qsv/blob/master/docs/Describegpt.md
Usage:
qsv describegpt [options] [<input>]
qsv describegpt --help
describegpt options:
-A, --all Print all extended metadata options output.
--description Print a general description of the dataset.
--dictionary For each field, prints an inferred type, a
human-readable label, a description, and stats.
--tags Prints tags that categorize the dataset. Useful
for grouping datasets and filtering.
--api-key <key> The API key to use. If using Ollama, set the key to ollama.
If the QSV_LLM_APIKEY envvar is set, it will be used instead.
--max-tokens <value> Limits the number of generated tokens in the output.
[default: 50]
--json Return results in JSON format.
--jsonl Return results in JSON Lines format.
--prompt <prompt> Custom prompt passed as text (alternative to --description, etc.).
Replaces {stats} & {frequency} in prompt with qsv command outputs.
--prompt-file <file> The JSON file containing the prompts to use for inferencing.
If not specified, default prompts will be used.
--base-url <url> The URL of the API for interacting with LLMs. Supports APIs
compatible with the OpenAI API specification (Ollama, Jan, etc.).
[default: https://api.openai.com/v1]
--ollama Required flag when using Ollama.
--model <model> The model to use for inferencing.
[default: gpt-3.5-turbo-16k]
--timeout <secs> Timeout for completions in seconds.
[default: 60]
--user-agent <agent> Specify custom user agent. It supports the following variables -
$QSV_VERSION, $QSV_TARGET, $QSV_BIN_NAME, $QSV_KIND and $QSV_COMMAND.
Try to follow the syntax here -
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
Common options:
-h, --help Display this message
-o, --output <file> Write output to <file> instead of stdout.
-Q, --quiet Do not print status messages to stderr.
"#;
use std::{env, fs, io::Write, path::PathBuf, process::Command, time::Duration};
use log::log_enabled;
use reqwest::blocking::Client;
use serde::Deserialize;
use serde_json::json;
use crate::{util, util::process_input, CliResult};
#[derive(Deserialize)]
struct Args {
arg_input: Option<String>,
flag_all: bool,
flag_description: bool,
flag_dictionary: bool,
flag_tags: bool,
flag_api_key: Option<String>,
flag_max_tokens: u32,
flag_base_url: Option<String>,
flag_ollama: bool,
flag_model: Option<String>,
flag_json: bool,
flag_jsonl: bool,
flag_prompt: Option<String>,
flag_prompt_file: Option<String>,
flag_user_agent: Option<String>,
flag_timeout: u16,
flag_output: Option<String>,
flag_quiet: bool,
}
#[derive(Deserialize)]
#[allow(dead_code)]
struct PromptFile {
name: String,
description: String,
author: String,
version: String,
tokens: u32,
dictionary_prompt: String,
description_prompt: String,
tags_prompt: String,
prompt: String,
json: bool,
jsonl: bool,
base_url: String,
ollama: bool,
model: String,
timeout: u32,
}
const LLM_APIKEY_ERROR: &str = "Error: QSV_LLM_APIKEY environment variable not found.\nNote that \
this command uses LLMs for inferencing and is therefore prone to \
inaccurate information being produced. Verify output results \
before using them.";
const DEFAULT_DICTIONARY_PROMPT: &str =
"Here are the columns for each field in a data dictionary:\n\n- Type: the data type of this \
column\n- Label: a human-friendly label for this column\n- Description: a full description \
for this column (can be multiple sentences)\n\nGenerate a data dictionary as aforementioned \
(in JSON output) where each field has Name, Type, Label, and Description (so four columns in \
total) based on the following summary statistics and frequency data from a CSV \
file.\n\nSummary Statistics:\n\n{stats}\n\nFrequency:\n\n{frequency}";
const DEFAULT_DESCRIPTION_PROMPT: &str =
"Generate only a description that is within 8 sentences about the entire dataset{json_add} \
based on the following summary statistics and frequency data derived from the CSV file it \
came from.\n\nSummary Statistics:\n\n{stats}\n\nFrequency:\n\n{frequency}\n\nDo not output \
the summary statistics for each field. Do not output the frequency for each field. Do not \
output data about each field individually, but instead output about the dataset as a whole \
in one 1-8 sentence description.";
const DEFAULT_TAGS_PROMPT: &str =
"A tag is a keyword or label that categorizes datasets with other, similar datasets. Using \
the right tags makes it easier for others to find and use datasets.\n\nGenerate single-word \
tags{json_add} about the dataset (lowercase only and remove all whitespace) based on the \
following summary statistics and frequency data from a CSV file.\n\nSummary \
Statistics:\n\n{stats}\n\nFrequency:\n\n{frequency}";
fn print_status(args: &Args, msg: &str) {
if !args.flag_quiet {
eprintln!("{msg}");
}
}
fn create_client(args: &Args) -> CliResult<Client> {
// Create client with timeout
let timeout_duration = Duration::from_secs(args.flag_timeout.into());
let client = Client::builder()
.user_agent(util::set_user_agent(args.flag_user_agent.clone())?)
.brotli(true)
.gzip(true)
.deflate(true)
.zstd(true)
.use_rustls_tls()
.http2_adaptive_window(true)
.connection_verbose(log_enabled!(log::Level::Debug) || log_enabled!(log::Level::Trace))
.timeout(timeout_duration)
.build()?;
Ok(client)
}
// Send an HTTP request using a client to a URL
// Optionally include an API key and request data
fn send_request(
client: &Client,
api_key: Option<&str>,
request_data: Option<&serde_json::Value>,
method: &str,
url: &str,
) -> CliResult<reqwest::blocking::Response> {
// Send request to API
let mut request = match method {
"GET" => client.get(url),
"POST" => client.post(url).body(request_data.unwrap().to_string()),
other => {
let error_json = json!({"Error: Unsupported HTTP method ": other});
return fail_clierror!("{error_json}");
},
};
// If API key is provided, add it to the request header
if let Some(key) = api_key {
request = request.header("Authorization", format!("Bearer {key}"));
}
// If request data is provided, add it to the request header
if let Some(data) = request_data {
request = request
.header("Content-Type", "application/json")
.body(data.to_string());
}
// Get response
let response = request.send()?;
// If response is an error, return response
if !response.status().is_success() {
let output = response.text()?;
return fail_clierror!("Error response when making request: {output}");
}
Ok(response)
}
// Check if model is valid, including the default model
fn is_valid_model(
client: &Client,
arg_is_some: impl Fn(&str) -> bool,
api_key: Option<&str>,
args: &Args,
) -> CliResult<bool> {
// Get prompt file if --prompt-file is used, otherwise get default prompt file
let prompt_file = get_prompt_file(args)?;
let models_endpoint = if args.flag_ollama || prompt_file.ollama {
"/api/tags"
} else {
"/models"
};
let response = send_request(
client,
api_key,
None,
"GET",
format!(
"{0}{1}",
if arg_is_some("--prompt-file") {
prompt_file.base_url
} else {
args.flag_base_url.clone().unwrap()
},
models_endpoint
)
.as_str(),
);
// If response is an error, return the error with fail!
if let Err(e) = response {
return fail_clierror!("Error while requesting models: {e}",);
}
// Verify model is valid from response {"data": [{"id": "model-id", ...}, ...]
let response_json: serde_json::Value = response.unwrap().json().unwrap();
let given_model = if arg_is_some("--model") {
args.flag_model.clone().unwrap()
} else if args.flag_prompt_file.is_some() {
prompt_file.model
} else {
args.flag_model.clone().unwrap()
};
if arg_is_some("--ollama") || prompt_file.ollama {
let models = response_json["models"].as_array().unwrap();
for model in models {
if model["name"].as_str().unwrap() == given_model {
return Ok(true);
}
}
} else {
let models = response_json["data"].as_array().unwrap();
for model in models {
if model["id"].as_str().unwrap() == given_model {
return Ok(true);
}
}
}
// If model is not valid, return false
Ok(false)
}
fn get_prompt_file(args: &Args) -> CliResult<PromptFile> {
// Get prompt file if --prompt-file is used
let prompt_file = if let Some(prompt_file) = args.flag_prompt_file.clone() {
// Read prompt file
let prompt_file = fs::read_to_string(prompt_file)?;
// Try to parse prompt file as JSON, if error then show it in JSON format
let prompt_file: PromptFile = match serde_json::from_str(&prompt_file) {
Ok(val) => val,
Err(e) => {
let error_json = json!({"error": e.to_string()});
return fail_clierror!("{error_json}");
},
};
prompt_file
}
// Otherwise, get default prompt file
else {
#[allow(clippy::let_and_return)]
let default_prompt_file = PromptFile {
name: "My Prompt File".to_string(),
description: "My prompt file for qsv's describegpt command.".to_string(),
author: "My Name".to_string(),
version: "1.0.0".to_string(),
tokens: 50,
dictionary_prompt: DEFAULT_DICTIONARY_PROMPT.to_owned(),
description_prompt: DEFAULT_DESCRIPTION_PROMPT.to_owned(),
tags_prompt: DEFAULT_TAGS_PROMPT.to_owned(),
prompt: "Summary statistics: {stats}\n\nFrequency: {frequency}\n\nWhat is \
this dataset about?"
.to_owned(),
json: true,
jsonl: false,
base_url: "https://api.openai.com/v1".to_owned(),
ollama: false,
model: "gpt-3.5-turbo-16k".to_owned(),
timeout: 60,
};
default_prompt_file
};
Ok(prompt_file)
}
// Generate prompt for prompt type based on either the prompt file (if given) or default prompts
fn get_prompt(
prompt_type: &str,
stats: Option<&str>,
frequency: Option<&str>,
args: &Args,
) -> CliResult<String> {
// Get prompt file if --prompt-file is used, otherwise get default prompt file
let prompt_file = get_prompt_file(args)?;
// Get prompt from prompt file
let prompt = match prompt_type {
"dictionary_prompt" => prompt_file.dictionary_prompt,
"description_prompt" => prompt_file.description_prompt,
"tags_prompt" => prompt_file.tags_prompt,
"custom" => {
if args.flag_prompt.is_some() {
args.flag_prompt.clone().unwrap()
} else {
prompt_file.prompt
}
},
_ => {
return fail_incorrectusage_clierror!("Error: Invalid prompt type: {prompt_type}");
},
};
// Replace variable data in prompt
let prompt = prompt
.replace("{stats}", stats.unwrap_or(""))
.replace("{frequency}", frequency.unwrap_or(""))
.replace(
"{json_add}",
if prompt_file.json
|| prompt_file.jsonl
|| (args.flag_prompt_file.is_none() && (args.flag_json || args.flag_jsonl))
{
" (in JSON format)"
} else {
""
},
);
// Return prompt
Ok(prompt)
}
fn get_completion(
args: &Args,
arg_is_some: impl Fn(&str) -> bool,
api_key: &str,
messages: &serde_json::Value,
) -> CliResult<String> {
// Create client with timeout
let client = create_client(args)?;
let prompt_file = get_prompt_file(args)?;
// Verify model is valid
if !is_valid_model(&client, &arg_is_some, Some(api_key), args)? {
return fail!("Error: Invalid model.");
}
// If --max-tokens is specified, use it
let max_tokens = if arg_is_some("--max-tokens") {
args.flag_max_tokens
}
// If --prompt-file is used, use the tokens field from the prompt file
else if args.flag_prompt_file.clone().is_some() {
let prompt_file = get_prompt_file(args)?;
prompt_file.tokens
}
// Else use the default max tokens value in USAGE
else {
args.flag_max_tokens
};
let model = if arg_is_some("--model") {
args.flag_model.clone().unwrap()
} else if args.flag_prompt_file.is_some() {
let prompt_file = get_prompt_file(args)?;
prompt_file.model
} else {
args.flag_model.clone().unwrap()
};
let base_url = if arg_is_some("--base-url") {
args.flag_base_url.clone().unwrap()
} else if args.flag_prompt_file.is_some() {
prompt_file.base_url
} else {
args.flag_base_url.clone().unwrap()
};
// Create request data
let request_data = json!({
"model": model,
"max_tokens": max_tokens,
"messages": messages,
"stream": false
});
// Get response from POST request to chat completions endpoint
let completions_endpoint = if arg_is_some("--ollama") {
"/api/chat"
} else if args.flag_prompt_file.is_some() {
if prompt_file.ollama {
"/api/chat"
} else {
"/chat/completions"
}
} else {
"/chat/completions"
};
let response = send_request(
&client,
Some(api_key),
Some(&request_data),
"POST",
format!("{base_url}{completions_endpoint}").as_str(),
)?;
// Parse response as JSON
let response_json: serde_json::Value = response.json()?;
// If response is an error, print error message
if let serde_json::Value::Object(ref map) = response_json {
if map.contains_key("error") {
return fail_clierror!("API Error: {}", map["error"]);
}
}
// Get completion from response
if arg_is_some("--ollama") {
let completion = response_json["message"]["content"].as_str().unwrap();
Ok(completion.to_string())
} else if args.flag_prompt_file.is_some() {
if prompt_file.ollama {
let completion = response_json["message"]["content"].as_str().unwrap();
Ok(completion.to_string())
} else {
let completion = response_json["choices"][0]["message"]["content"]
.as_str()
.unwrap();
Ok(completion.to_string())
}
} else {
let completion = response_json["choices"][0]["message"]["content"]
.as_str()
.unwrap();
Ok(completion.to_string())
}
}
// Check if JSON output is expected
fn is_json_output(args: &Args) -> CliResult<bool> {
// By default expect plaintext output
let mut json_output = false;
// Set expect_json to true if --prompt-file is used & the "json" field is true
if args.flag_prompt_file.is_some() {
let prompt_file = get_prompt_file(args)?;
if prompt_file.json {
json_output = true;
}
}
// Set expect_json to true if --prompt-file is not used & --json is used
else if args.flag_json {
json_output = true;
}
Ok(json_output)
}
// Check if JSONL output is expected
fn is_jsonl_output(args: &Args) -> CliResult<bool> {
// By default expect plaintext output
let mut jsonl_output = false;
// Set expect_jsonl to true if --prompt-file is used & the "jsonl" field is true
if args.flag_prompt_file.is_some() {
let prompt_file = get_prompt_file(args)?;
if prompt_file.jsonl {
jsonl_output = true;
}
}
// Set expect_jsonl to true if --prompt-file is not used & --jsonl is used
else if args.flag_jsonl {
jsonl_output = true;
}
Ok(jsonl_output)
}
// Generates output for all inference options
fn run_inference_options(
args: &Args,
arg_is_some: impl Fn(&str) -> bool,
api_key: &str,
stats_str: Option<&str>,
frequency_str: Option<&str>,
) -> CliResult<()> {
// Add --dictionary output as context if it is not empty
fn get_messages(prompt: &str, dictionary_completion: &str) -> serde_json::Value {
if dictionary_completion.is_empty() {
json!([{"role": "user", "content": prompt}])
} else {
json!([{"role": "assistant", "content": dictionary_completion}, {"role": "user", "content": prompt}])
}
}
// Format output by replacing escape characters
fn format_output(str: &str) -> String {
str.replace("\\n", "\n")
.replace("\\t", "\t")
.replace("\\\"", "\"")
.replace("\\'", "'")
.replace("\\`", "`")
}
// Generate the plaintext and/or JSON output of an inference option
fn process_output(
option: &str,
output: &str,
total_json_output: &mut serde_json::Value,
args: &Args,
) -> CliResult<()> {
// Process JSON output if expected or JSONL output is expected
if is_json_output(args)? || is_jsonl_output(args)? {
// Parse the completion JSON
let completion_json: serde_json::Value = if let Ok(val) = serde_json::from_str(output) {
// Output is valid JSON
val
} else {
// Output is invalid JSON
// Default error message in JSON format
let error_message = format!("Error: Invalid JSON output for {option}.");
let error_json = json!({"error": error_message});
// Print error message in JSON format
print_status(args, format!("{error_json}").as_str());
print_status(args, format!("Output: {output}").as_str());
error_json
};
total_json_output[option] = completion_json;
}
// Process plaintext output
else {
let formatted_output = format_output(output);
println!("{formatted_output}");
// If --output is used, append plaintext to file, do not overwrite
if let Some(output) = args.flag_output.clone() {
fs::OpenOptions::new()
.create(true)
.append(true)
.open(output)?
.write_all(formatted_output.as_bytes())?;
}
}
Ok(())
}
// Get completion from API
print_status(args, "Interacting with API...\n");
let mut total_json_output: serde_json::Value = json!({});
let mut prompt: String;
let mut messages: serde_json::Value;
let mut completion: String;
let mut dictionary_completion = String::new();
// Generate custom prompt output
if args.flag_prompt.is_some() {
prompt = get_prompt("custom", stats_str, frequency_str, args)?;
print_status(args, "Generating custom prompt output from API...");
messages = get_messages(&prompt, &dictionary_completion);
dictionary_completion = get_completion(args, &arg_is_some, api_key, &messages)?;
print_status(args, "Received custom prompt completion.");
process_output(
"prompt",
&dictionary_completion,
&mut total_json_output,
args,
)?;
}
// Generate dictionary output
if args.flag_dictionary || args.flag_all {
prompt = get_prompt("dictionary_prompt", stats_str, frequency_str, args)?;
print_status(args, "Generating data dictionary from API...");
messages = get_messages(&prompt, &dictionary_completion);
dictionary_completion = get_completion(args, &arg_is_some, api_key, &messages)?;
print_status(args, "Received dictionary completion.");
process_output(
"dictionary",
&dictionary_completion,
&mut total_json_output,
args,
)?;
}
// Generate description output
if args.flag_description || args.flag_all {
prompt = if args.flag_dictionary {
get_prompt("description_prompt", None, None, args)?
} else {
get_prompt("description_prompt", stats_str, frequency_str, args)?
};
messages = get_messages(&prompt, &dictionary_completion);
print_status(args, "Generating description from API...");
completion = get_completion(args, &arg_is_some, api_key, &messages)?;
print_status(args, "Received description completion.");
process_output("description", &completion, &mut total_json_output, args)?;
}
// Generate tags output
if args.flag_tags || args.flag_all {
prompt = if args.flag_dictionary {
get_prompt("tags_prompt", None, None, args)?
} else {
get_prompt("tags_prompt", stats_str, frequency_str, args)?
};
messages = get_messages(&prompt, &dictionary_completion);
print_status(args, "Generating tags from API...");
completion = get_completion(args, &arg_is_some, api_key, &messages)?;
print_status(args, "Received tags completion.");
process_output("tags", &completion, &mut total_json_output, args)?;
}
// Expecting JSON output
if is_json_output(args)? && !is_jsonl_output(args)? {
// Format & print JSON output
let formatted_output =
format_output(&serde_json::to_string_pretty(&total_json_output).unwrap());
println!("{formatted_output}");
// Write to file if --output is used, or overwrite if already exists
if let Some(output_file_path) = args.flag_output.clone() {
fs::write(output_file_path, formatted_output)?;
}
}
// Expecting JSONL output
else if is_jsonl_output(args)? {
// If --prompt-file is used, add prompt file name and timestamp to JSONL output
if args.flag_prompt_file.clone().is_some() {
let prompt_file = get_prompt_file(args)?;
total_json_output["prompt_file"] = json!(prompt_file.name);
total_json_output["timestamp"] = json!(chrono::offset::Utc::now().to_rfc3339());
}
// Format & print JSONL output
let formatted_output = format_output(&serde_json::to_string(&total_json_output).unwrap());
println!("{formatted_output}");
// Write to file if --output is used, or append if already exists
if let Some(output_file_path) = args.flag_output.clone() {
fs::OpenOptions::new()
.create(true)
.append(true)
.open(output_file_path)?
.write_all(format!("\n{formatted_output}").as_bytes())?;
}
}
Ok(())
}
pub fn run(argv: &[&str]) -> CliResult<()> {
let args: Args = util::get_args(USAGE, argv)?;
// Closure to check if the user gives an argument
let arg_is_some = |arg: &str| -> bool { argv.contains(&arg) };
// Check for QSV_LLM_APIKEY in environment variables
let api_key = match env::var("QSV_LLM_APIKEY") {
Ok(val) => {
if val.is_empty() {
return fail!("Error: QSV_LLM_APIKEY environment variable is empty.");
}
val
},
Err(_) => {
// Check if the --api-key flag is present
if let Some(api_key) = args.flag_api_key.clone() {
if api_key.is_empty() {
return fail!(LLM_APIKEY_ERROR);
}
api_key
} else {
return fail!(LLM_APIKEY_ERROR);
}
},
};
// Check if user gives arg_input
if args.arg_input.is_none() {
return fail_incorrectusage_clierror!("Error: No input file specified.");
}
// Process input file
// support stdin and auto-decompress snappy file
// stdin/decompressed file is written to a temporary file in tmpdir
// which is automatically deleted after the command finishes
let tmpdir = tempfile::tempdir()?;
let work_input = process_input(
vec![PathBuf::from(
// if no input file is specified, read from stdin "-"
args.arg_input.clone().unwrap_or_else(|| "-".to_string()),
)],
&tmpdir,
"",
)?;
// safety: we just checked that there is at least one input file
let input_path = work_input[0]
.canonicalize()?
.into_os_string()
.into_string()
.unwrap();
// If no inference flags specified, print error message.
if !args.flag_all
&& !args.flag_dictionary
&& !args.flag_description
&& !args.flag_tags
&& args.flag_prompt.is_none()
{
return fail_incorrectusage_clierror!("Error: No inference options specified.");
// If --all flag is specified, but other inference flags are also set, print error message.
} else if args.flag_all
&& (args.flag_dictionary
|| args.flag_description
|| args.flag_tags
|| args.flag_prompt.is_some())
{
return fail_incorrectusage_clierror!(
"Error: --all option cannot be specified with other inference flags."
);
}
// If --prompt-file flag is specified but the prompt file does not exist, print error message.
if let Some(prompt_file) = args.flag_prompt_file.clone() {
if !PathBuf::from(prompt_file.clone()).exists() {
return fail_incorrectusage_clierror!(
"Error: Prompt file '{prompt_file}' does not exist."
);
}
}
// If --json and --jsonl flags are specified, print error message.
if is_json_output(&args)? && is_jsonl_output(&args)? {
return fail_incorrectusage_clierror!(
"Error: --json and --jsonl options cannot be specified together."
);
}
// Get qsv executable's path
let qsv_path = env::current_exe().unwrap();
// Get input file's name
let input_filename = args.arg_input.clone().unwrap();
// Get stats from qsv stats on input file with --everything flag
print_status(
&args,
format!("Generating stats from {input_filename} using qsv stats --everything...").as_str(),
);
let Ok(stats) = Command::new(qsv_path.clone())
.arg("stats")
.arg("--everything")
.arg(input_path.clone())
.output()
else {
return fail!("Error: Error while generating stats.");
};
// Parse the stats as &str
let Ok(stats_str) = std::str::from_utf8(&stats.stdout) else {
return fail!("Error: Unable to parse stats as &str.");
};
// Get frequency from qsv frequency on input file
print_status(
&args,
format!("Generating frequency from {input_filename} using qsv frequency...").as_str(),
);
let Ok(frequency) = Command::new(qsv_path)
.arg("frequency")
.args(["--limit", "50"])
.args(["--lmt-threshold", "10"])
.arg(input_path)
.output()
else {
return fail!("Error: Error while generating frequency.");
};
// Parse the frequency as &str
let Ok(frequency_str) = std::str::from_utf8(&frequency.stdout) else {
return fail!("Error: Unable to parse frequency as &str.");
};
// Run inference options
run_inference_options(
&args,
arg_is_some,
&api_key,
Some(stats_str),
Some(frequency_str),
)?;
Ok(())
}