-
Notifications
You must be signed in to change notification settings - Fork 73
/
validate.rs
1162 lines (1013 loc) · 42.6 KB
/
validate.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
static USAGE: &str = r#"
Validates CSV data using two modes:
JSON SCHEMA VALIDATION MODE:
This mode is invoked if a JSON Schema file is provided.
The CSV data is validated against the JSON Schema. If the CSV data is valid, no output
files are created and the command returns an exit code of 0.
If invalid records are found, they are put into an "invalid" file, with the rest of the
records put into a "valid"" file.
A "validation-errors.tsv" report is also created with the following columns:
* row_number: the row number of the invalid record
* field: the field name of the invalid field
* error: a validation error message detailing why the field is invalid
It uses the JSON Schema Validation Specification (draft 2020-12) to validate the CSV.
It validates not only the structure of the file, but the data types and domain/range of the
fields as well. See https://json-schema.org/draft/2020-12/json-schema-validation.html
You can create a JSON Schema file from a reference CSV file using the `qsv schema` command.
Once the schema is created, you can fine-tune it to your needs and use it to validate other CSV
files that have the same structure.
Be sure to select a “training” CSV file that is representative of the data you want to validate
when creating a schema. The data types, domain/range and regular expressions inferred from the
reference CSV file should be appropriate for the data you want to validate.
Typically, after creating a schema, you should edit it to fine-tune each field's inferred
validation rules.
For example, if we created a JSON schema file called "reference.schema.json" using the `schema` command.
And want to validate "mydata.csv" which we know has validation errors, the output files from running
`qsv validate mydata.csv reference.schema.json` are:
* mydata.csv.valid
* mydata.csv.invalid
* mydata.csv.validation-errors.tsv
With an exit code of 1 to indicate a validation error.
If we validate another CSV file, "mydata2.csv", which we know is valid, there are no output files,
and the exit code is 0.
If piped from stdin, the filenames will use `stdin.csv` as the base filename. For example:
`cat mydata.csv | qsv validate reference.schema.json`
* stdin.csv.valid
* stdin.csv.invalid
* stdin.csv.validation-errors.tsv
RFC 4180 VALIDATION MODE:
If run without a JSON Schema file, the CSV is validated if it complies with qsv's interpretation of
the RFC 4180 CSV standard (see https://github.com/jqnatividad/qsv#rfc-4180-csv-standard).
It also confirms if the CSV is UTF-8 encoded.
For both modes, returns exit code 0 when the CSV file is valid, exitcode > 0 otherwise.
If all records are valid, no output files are produced.
For examples, see https://github.com/jqnatividad/qsv/blob/master/tests/test_validate.rs.
Usage:
qsv validate [options] [<input>] [<json-schema>]
qsv validate --help
Validate arguments:
<input> Input CSV file to validate. If not provided, will read from stdin.
<json-schema> JSON Schema file to validate against. If not provided, `validate`
will run in RFC 4180 validation mode. The file can be a local file
or a URL (http and https schemes supported).
Validate options:
--trim Trim leading and trailing whitespace from fields before validating.
--fail-fast Stops on first error.
--valid <suffix> Valid record output file suffix. [default: valid]
--invalid <suffix> Invalid record output file suffix. [default: invalid]
--json When validating without a schema, return the RFC 4180 check
as a JSON file instead of a message.
--pretty-json Same as --json, but pretty printed.
--valid-output <file> Change validation mode behavior so if ALL rows are valid, to pass it to
output, return exit code 1, and set stderr to the number of valid rows.
Setting this will override the default behavior of creating
a valid file only when there are invalid records.
To send valid records to stdout, use `-` as the filename.
-j, --jobs <arg> The number of jobs to run in parallel.
When not set, the number of jobs is set to the
number of CPUs detected.
-b, --batch <size> The number of rows per batch to load into memory,
before running in parallel.
[default: 50000]
--timeout <seconds> Timeout for downloading json-schemas on URLs.
[default: 30]
Common options:
-h, --help Display this message
-n, --no-headers When set, the first row will not be interpreted
as headers. Namely, it will be sorted with the rest
of the rows. Otherwise, the first row will always
appear as the header row in the output.
-d, --delimiter <arg> The field delimiter for reading CSV data.
Must be a single character. [default: ,]
-p, --progressbar Show progress bars. Not valid for stdin.
-Q, --quiet Do not display validation summary message.
"#;
use std::{
env,
fs::File,
io::{BufReader, BufWriter, Read, Write},
str,
sync::{
atomic::{AtomicU16, Ordering},
OnceLock,
},
};
use csv::ByteRecord;
use indicatif::HumanCount;
#[cfg(any(feature = "feature_capable", feature = "lite"))]
use indicatif::{ProgressBar, ProgressDrawTarget};
use itertools::Itertools;
use jsonschema::{output::BasicOutput, paths::PathChunk, JSONSchema};
use log::{debug, info, log_enabled};
use rayon::{
iter::{IndexedParallelIterator, ParallelIterator},
prelude::IntoParallelRefIterator,
};
use serde::{Deserialize, Serialize};
use serde_json::{json, value::Number, Map, Value};
use simdutf8::basic::from_utf8;
use crate::{
config::{Config, Delimiter, DEFAULT_WTR_BUFFER_CAPACITY},
util, CliResult,
};
// to save on repeated init/allocs
static NULL_TYPE: OnceLock<Value> = OnceLock::new();
static TIMEOUT_SECS: AtomicU16 = AtomicU16::new(30);
#[derive(Deserialize)]
#[allow(dead_code)]
struct Args {
flag_trim: bool,
flag_fail_fast: bool,
flag_valid: Option<String>,
flag_invalid: Option<String>,
flag_json: bool,
flag_pretty_json: bool,
flag_valid_output: Option<String>,
flag_jobs: Option<usize>,
flag_batch: u32,
flag_no_headers: bool,
flag_delimiter: Option<Delimiter>,
flag_progressbar: bool,
flag_quiet: bool,
arg_input: Option<String>,
arg_json_schema: Option<String>,
flag_timeout: u16,
}
enum JSONtypes {
String,
Number,
Integer,
Boolean,
Unsupported,
}
#[derive(Serialize, Deserialize)]
struct RFC4180Struct {
delimiter_char: char,
header_row: bool,
quote_char: char,
num_records: u64,
num_fields: u64,
fields: Vec<String>,
}
pub fn run(argv: &[&str]) -> CliResult<()> {
let args: Args = util::get_args(USAGE, argv)?;
TIMEOUT_SECS.store(
util::timeout_secs(args.flag_timeout)? as u16,
Ordering::Relaxed,
);
#[cfg(any(feature = "feature_capable", feature = "lite"))]
let mut rconfig = Config::new(&args.arg_input)
.delimiter(args.flag_delimiter)
.no_headers(args.flag_no_headers);
#[cfg(feature = "datapusher_plus")]
let rconfig = Config::new(&args.arg_input)
.delimiter(args.flag_delimiter)
.no_headers(args.flag_no_headers);
let mut rdr = rconfig.reader()?;
// if no JSON Schema supplied, only let csv reader RFC4180-validate csv file
if args.arg_json_schema.is_none() {
// just read csv file and let csv reader report problems
// since we're using csv::StringRecord, this will also detect non-utf8 sequences
let flag_json = args.flag_json || args.flag_pretty_json;
let flag_pretty_json = args.flag_pretty_json;
// first, let's validate the header row
let mut header_msg = String::new();
let mut header_len = 0_usize;
let mut field_vec: Vec<String> = Vec::new();
if !args.flag_no_headers {
let fields_result = rdr.headers();
match fields_result {
Ok(fields) => {
header_len = fields.len();
field_vec.reserve(header_len);
for field in fields {
field_vec.push(field.to_string());
}
let field_list = field_vec.join(r#"", ""#);
header_msg = format!(
"{} columns (\"{field_list}\") and ",
HumanCount(header_len as u64)
);
},
Err(e) => {
// we're returning a JSON error for the header,
// so we have more machine-friendly details
if flag_json {
// there's a UTF-8 error, so we report utf8 error metadata
if let csv::ErrorKind::Utf8 { pos, err } = e.kind() {
let header_error = json!({
"errors": [{
"title" : "Header UTF-8 validation error",
"detail" : format!("{e}"),
"meta": {
"record_position": format!("{pos:?}"),
"record_error": format!("{err}"),
}
}]
});
let json_error = if flag_pretty_json {
serde_json::to_string_pretty(&header_error).unwrap()
} else {
header_error.to_string()
};
return fail_encoding_clierror!("{json_error}");
}
// it's not a UTF-8 error, so we report a generic
// header validation error
let header_error = json!({
"errors": [{
"title" : "Header Validation error",
"detail" : format!("{e}"),
}]
});
let json_error = if flag_pretty_json {
serde_json::to_string_pretty(&header_error).unwrap()
} else {
header_error.to_string()
};
return fail_encoding_clierror!("{json_error}");
}
// we're not returning a JSON error, so we can use
// a user-friendly error message with suggestions
if let csv::ErrorKind::Utf8 { pos, err } = e.kind() {
return fail_encoding_clierror!(
"non-utf8 sequence detected in header, position {pos:?}.\n{err}\nUse \
`qsv input` to fix formatting and to handle non-utf8 sequences.\n
You may also want to transcode your data to UTF-8 first using `iconv` \
or `recode`."
);
}
// its not a UTF-8 error, report a generic header validation error
return fail_clierror!("Header Validation error: {e}.");
},
}
}
// Now, let's validate the rest of the records the fastest way possible.
// We do this by using csv::ByteRecord, which does not validate utf8
// making for higher throughput and lower memory usage compared to csv::StringRecord
// which validates each field SEPARATELY as a utf8 string.
// Combined with simdutf8::basic::from_utf8(), we utf8-validate the entire record in one go
// as a slice of bytes, this approach is much faster than csv::StringRecord's
// per-field validation.
let mut record = csv::ByteRecord::with_capacity(500, header_len);
let mut result;
let mut record_idx: u64 = 0;
'rfc4180_check: loop {
result = rdr.read_byte_record(&mut record);
if let Err(e) = result {
// read_byte_record() does not validate utf8, so we know this is not a utf8 error
if flag_json {
// we're returning a JSON error, so we have more machine-friendly details
// using the JSON API error format
let validation_error = json!({
"errors": [{
"title" : "Validation error",
"detail" : format!("{e}"),
"meta": {
"last_valid_record": format!("{record_idx}"),
}
}]
});
let json_error = if flag_pretty_json {
serde_json::to_string_pretty(&validation_error).unwrap()
} else {
validation_error.to_string()
};
return fail!(json_error);
}
// we're not returning a JSON error, so we can use a
// user-friendly error message with a fixlengths suggestion
if let csv::ErrorKind::UnequalLengths {
expected_len: _,
len: _,
pos: _,
} = e.kind()
{
return fail_clierror!(
"Validation error: {e}.\nUse `qsv fixlengths` to fix record length issues."
);
}
return fail_clierror!("Validation error: {e}.\nLast valid record: {record_idx}");
}
// use SIMD accelerated UTF-8 validation, validate the entire record in one go
if simdutf8::basic::from_utf8(record.as_slice()).is_err() {
// there's a UTF-8 error, so we report utf8 error metadata
if flag_json {
let validation_error = json!({
"errors": [{
"title" : "UTF-8 validation error",
"detail" : "Cannot parse CSV record as UTF-8",
"meta": {
"last_valid_record": format!("{record_idx}"),
}
}]
});
let json_error = if flag_pretty_json {
serde_json::to_string_pretty(&validation_error).unwrap()
} else {
validation_error.to_string()
};
return fail_encoding_clierror!("{json_error}");
}
// we're not returning a JSON error, so we can use a
// user-friendly error message with utf8 transcoding suggestions
return fail_encoding_clierror!(
"non-utf8 sequence at record {record_idx}.\nUse `qsv input` to fix formatting \
and to handle non-utf8 sequences.\nYou may also want to transcode your data \
to UTF-8 first using `iconv` or `recode`."
);
}
if result.is_ok_and(|more_data| !more_data) {
// we've read the CSV to the end, so break out of loop
break 'rfc4180_check;
}
record_idx += 1;
} // end rfc4180_check loop
// if we're here, we know the CSV is valid
let msg = if flag_json {
let rfc4180 = RFC4180Struct {
delimiter_char: rconfig.get_delimiter() as char,
header_row: !rconfig.no_headers,
quote_char: rconfig.quote as char,
num_records: record_idx,
num_fields: header_len as u64,
fields: field_vec,
};
if flag_pretty_json {
serde_json::to_string_pretty(&rfc4180).unwrap()
} else {
serde_json::to_string(&rfc4180).unwrap()
}
} else {
format!(
"Valid: {header_msg}{} records detected.",
HumanCount(record_idx)
)
};
if !args.flag_quiet {
woutinfo!("{msg}");
}
// we're done when validating without a schema
return Ok(());
}
// prep progress bar
#[cfg(any(feature = "feature_capable", feature = "lite"))]
let progress = ProgressBar::with_draw_target(None, ProgressDrawTarget::stderr_with_hz(5));
#[cfg(any(feature = "feature_capable", feature = "lite"))]
let show_progress =
(args.flag_progressbar || util::get_envvar_flag("QSV_PROGRESSBAR")) && !rconfig.is_stdin();
#[cfg(any(feature = "feature_capable", feature = "lite"))]
if show_progress {
// for full row count, prevent CSV reader from aborting on inconsistent column count
rconfig = rconfig.flexible(true);
let record_count = util::count_rows(&rconfig)?;
rconfig = rconfig.flexible(false);
util::prep_progress(&progress, record_count);
} else {
progress.set_draw_target(ProgressDrawTarget::hidden());
}
let headers = rdr.byte_headers()?.clone();
let header_len = headers.len();
// parse and compile supplied JSON Schema
let (schema_json, schema_compiled): (Value, JSONSchema) =
match load_json(&args.arg_json_schema.unwrap()) {
Ok(s) => {
// parse JSON string
match serde_json::from_str(&s) {
Ok(json) => {
// compile JSON Schema
match JSONSchema::options().compile(&json) {
Ok(schema) => (json, schema),
Err(e) => {
return fail_clierror!("Cannot compile schema json. error: {e}");
},
}
},
Err(e) => {
return fail_clierror!("Unable to parse schema json. error: {e}");
},
}
},
Err(e) => {
return fail_clierror!("Unable to retrieve json. error: {e}");
},
};
if log::log_enabled!(log::Level::Debug) {
// only log if debug is enabled
// as it can be quite large and expensive to deserialize the schema
debug!("schema json: {:?}", &schema_json);
}
// set this once, as this is used repeatedly in a hot loop
NULL_TYPE.set(Value::String("null".to_string())).unwrap();
// get JSON types for each column in CSV file
let header_types = get_json_types(&headers, &schema_json)?;
// how many rows read and processed as batches
let mut row_number: u64 = 0;
// how many invalid rows found
let mut invalid_count: u64 = 0;
// amortize memory allocation by reusing record
let mut record = csv::ByteRecord::new();
// reuse batch buffer
let batch_size = args.flag_batch as usize;
let mut batch = Vec::with_capacity(batch_size);
let mut validation_results = Vec::with_capacity(batch_size);
let mut valid_flags: Vec<bool> = Vec::with_capacity(batch_size);
let mut validation_error_messages: Vec<String> = Vec::with_capacity(50);
let flag_trim = args.flag_trim;
// set RAYON_NUM_THREADS
util::njobs(args.flag_jobs);
// main loop to read CSV and construct batches for parallel processing.
// each batch is processed via Rayon parallel iterator.
// loop exits when batch is empty.
'batch_loop: loop {
let mut buffer = itoa::Buffer::new();
for _ in 0..batch_size {
match rdr.read_byte_record(&mut record) {
Ok(has_data) => {
if has_data {
row_number += 1;
record.push_field(buffer.format(row_number).as_bytes());
if flag_trim {
record.trim();
}
batch.push(std::mem::take(&mut record));
} else {
// nothing else to add to batch
break;
}
},
Err(e) => {
return fail_clierror!("Error reading row: {row_number}: {e}");
},
}
}
if batch.is_empty() {
// break out of infinite loop when at EOF
break 'batch_loop;
}
// do actual validation via Rayon parallel iterator
// validation_results vector should have same row count and in same order as input CSV
batch
.par_iter()
.map(|record| do_json_validation(&header_types, header_len, record, &schema_compiled))
.collect_into_vec(&mut validation_results);
// write to validation error report, but keep Vec<bool> to gen valid/invalid files later
// because Rayon collect() guarantees original order, we can sequentially append results
// to vector with each batch
for result in &validation_results {
if let Some(validation_error_msg) = result {
invalid_count += 1;
valid_flags.push(false);
validation_error_messages.push(validation_error_msg.to_string());
} else {
valid_flags.push(true);
}
}
#[cfg(any(feature = "feature_capable", feature = "lite"))]
if show_progress {
progress.inc(batch.len() as u64);
}
batch.clear();
// for fail-fast, exit loop if batch has any error
if args.flag_fail_fast && invalid_count > 0 {
break 'batch_loop;
}
} // end batch loop
#[cfg(any(feature = "feature_capable", feature = "lite"))]
if show_progress {
progress.set_message(format!(
" validated {} records.",
HumanCount(progress.length().unwrap())
));
util::finish_progress(&progress);
}
if invalid_count == 0 {
// no invalid records found
// see if we need to pass all valid records to output
if let Some(valid_output) = args.flag_valid_output {
// pass all valid records to output and return exit code 1
let valid_path = if valid_output == "-" {
// write to stdout
None
} else {
Some(valid_output)
};
let mut valid_wtr = Config::new(&valid_path).writer()?;
valid_wtr.write_byte_record(&headers)?;
let mut rdr = rconfig.reader()?;
let mut record = csv::ByteRecord::new();
while rdr.read_byte_record(&mut record)? {
valid_wtr.write_byte_record(&record)?;
}
valid_wtr.flush()?;
// return 1 as an exitcode and the number of valid rows to stderr
return fail_clierror!("{row_number}");
}
} else {
// there are invalid records. write out invalid/valid/errors output files.
// if 100% invalid, valid file isn't needed, but this is rare so OK creating empty file.
woutinfo!("Writing invalid/valid/error files...");
let input_path = args
.arg_input
.clone()
.unwrap_or_else(|| "stdin.csv".to_string());
write_error_report(&input_path, validation_error_messages)?;
let valid_suffix = args.flag_valid.unwrap_or_else(|| "valid".to_string());
let invalid_suffix = args.flag_invalid.unwrap_or_else(|| "invalid".to_string());
split_invalid_records(
&rconfig,
&valid_flags[..],
&headers,
&input_path,
&valid_suffix,
&invalid_suffix,
)?;
// done with validation; print output
let fail_fast_msg = if args.flag_fail_fast {
format!(
"fail-fast enabled. stopped after row {}.\n",
HumanCount(row_number)
)
} else {
String::new()
};
return fail_clierror!(
"{fail_fast_msg}{} out of {} records invalid.",
HumanCount(invalid_count),
HumanCount(row_number)
);
}
if !args.flag_quiet {
winfo!("All {} records valid.", HumanCount(row_number));
}
Ok(())
}
fn split_invalid_records(
rconfig: &Config,
valid_flags: &[bool],
headers: &ByteRecord,
input_path: &str,
valid_suffix: &str,
invalid_suffix: &str,
) -> CliResult<()> {
// track how many rows read for splitting into valid/invalid
// should not exceed row_number when aborted early due to fail-fast
let mut split_row_num: usize = 0;
// prepare output writers
let mut valid_wtr = Config::new(&Some(input_path.to_owned() + "." + valid_suffix)).writer()?;
valid_wtr.write_byte_record(headers)?;
let mut invalid_wtr =
Config::new(&Some(input_path.to_owned() + "." + invalid_suffix)).writer()?;
invalid_wtr.write_byte_record(headers)?;
let mut rdr = rconfig.reader()?;
let mut record = csv::ByteRecord::new();
while rdr.read_byte_record(&mut record)? {
split_row_num += 1;
// length of valid_flags is max number of rows we can split
if split_row_num > valid_flags.len() {
break;
}
// vector is 0-based, row_num is 1-based
let is_valid = valid_flags[split_row_num - 1];
if is_valid {
valid_wtr.write_byte_record(&record)?;
} else {
invalid_wtr.write_byte_record(&record)?;
}
}
valid_wtr.flush()?;
invalid_wtr.flush()?;
Ok(())
}
fn write_error_report(input_path: &str, validation_error_messages: Vec<String>) -> CliResult<()> {
let wtr_capacitys = env::var("QSV_WTR_BUFFER_CAPACITY")
.unwrap_or_else(|_| DEFAULT_WTR_BUFFER_CAPACITY.to_string());
let wtr_buffer_size: usize = wtr_capacitys.parse().unwrap_or(DEFAULT_WTR_BUFFER_CAPACITY);
let output_file = File::create(input_path.to_owned() + ".validation-errors.tsv")?;
let mut output_writer = BufWriter::with_capacity(wtr_buffer_size, output_file);
output_writer.write_all(b"row_number\tfield\terror\n")?;
// write out error report
for error_msg in validation_error_messages {
output_writer.write_all(error_msg.as_bytes())?;
// since writer is buffered, it's more efficient to do additional write than append Newline
// to message
output_writer.write_all(&[b'\n'])?;
}
// flush error report; file gets closed automagically when out-of-scope
output_writer.flush()?;
Ok(())
}
/// if given record is valid, return None, otherwise, error file entry string
#[inline]
fn do_json_validation(
header_types: &[(String, JSONtypes)],
header_len: usize,
record: &ByteRecord,
schema_compiled: &JSONSchema,
) -> Option<String> {
// row number was added as last column. We use can do unwrap safely since we know its there
let row_number_string = from_utf8(record.get(header_len).unwrap()).unwrap();
validate_json_instance(
&(match to_json_instance(header_types, header_len, record) {
Ok(obj) => obj,
Err(e) => {
return Some(format!("{row_number_string}\t<RECORD>\t{e}"));
},
}),
schema_compiled,
)
.map(|validation_errors| {
// squash multiple errors into one long String with linebreaks
let combined_errors: String = validation_errors
.iter()
.map(|tuple| {
// validation error file format: row_number, field, error
format!("{row_number_string}\t{}\t{}", tuple.0, tuple.1)
})
.join("\n");
combined_errors
})
}
/// convert CSV Record into JSON instance by referencing JSON types
#[inline]
fn to_json_instance(
header_types: &[(String, JSONtypes)],
header_len: usize,
record: &ByteRecord,
) -> CliResult<Value> {
let mut json_object_map: Map<String, Value> = Map::with_capacity(header_len);
let mut key_string: String;
let mut value_string: String;
for ((key_iter, json_type), value) in header_types.iter().zip(record.iter()) {
key_string = key_iter.to_owned();
if value.is_empty() {
json_object_map.insert(key_string, Value::Null);
continue;
}
let value_str = match from_utf8(value) {
Ok(v) => v,
Err(e) => {
let s = String::from_utf8_lossy(value);
return fail_encoding_clierror!("CSV value \"{s}\" is not valid UTF-8: {e}");
},
};
match *json_type {
JSONtypes::String => {
value_string = value_str.to_owned();
json_object_map.insert(key_string, Value::String(value_string));
},
JSONtypes::Number => {
if let Ok(float) = value_str.parse::<f64>() {
json_object_map
.insert(key_string, Value::Number(Number::from_f64(float).unwrap()));
} else {
return fail_clierror!(
"Can't cast into Number. key: {key_string}, value: {value_str}"
);
}
},
JSONtypes::Integer => {
if let Ok(int) = atoi_simd::parse::<i64>(value_str.as_bytes()) {
json_object_map.insert(key_string, Value::Number(Number::from(int)));
} else {
return fail_clierror!(
"Can't cast into Integer. key: {key_string}, value: {value_str}"
);
}
},
JSONtypes::Boolean => {
if let Ok(boolean) = value_str.parse::<bool>() {
json_object_map.insert(key_string, Value::Bool(boolean));
} else {
return fail_clierror!(
"Can't cast into Boolean. key: {key_string}, value: {value_str}"
);
}
},
JSONtypes::Unsupported => {
unreachable!("we should never get an unsupported JSON type");
},
}
}
Ok(Value::Object(json_object_map))
}
/// get JSON types for each column in CSV file
/// returns a Vector of tuples of column/header name (String) & JSON type (JSONtypes enum)
#[inline]
fn get_json_types(headers: &ByteRecord, schema: &Value) -> CliResult<Vec<(String, JSONtypes)>> {
// make sure schema has expected structure
let Some(schema_properties) = schema.get("properties") else {
return fail_clierror!("JSON Schema missing 'properties' object");
};
// safety: we set NULL_TYPE in main() and it's never changed
let null_type = NULL_TYPE.get().unwrap();
let mut key_string: String;
let mut field_def: &Value;
let mut field_type_def: &Value;
let mut json_type: JSONtypes;
let mut header_types: Vec<(String, JSONtypes)> = Vec::with_capacity(headers.len());
// iterate over each CSV field and convert to JSON type
for header in headers {
// convert csv header to string. It's the key in the JSON object
key_string = if let Ok(s) = from_utf8(header) {
s.to_owned()
} else {
let s = String::from_utf8_lossy(header);
return fail_encoding_clierror!("CSV header is not valid UTF-8: {s}");
};
field_def = schema_properties
.get(key_string.clone())
.unwrap_or(&Value::Null);
field_type_def = field_def.get("type").unwrap_or(&Value::Null);
json_type = match field_type_def {
Value::String(s) => match s.as_str() {
"string" => JSONtypes::String,
"number" => JSONtypes::Number,
"integer" => JSONtypes::Integer,
"boolean" => JSONtypes::Boolean,
_ => JSONtypes::Unsupported,
},
Value::Array(vec) => {
let mut return_val = JSONtypes::String;
for val in vec {
if *val == *null_type {
continue;
}
return_val = if let Some(s) = val.as_str() {
match s {
"string" => JSONtypes::String,
"number" => JSONtypes::Number,
"integer" => JSONtypes::Integer,
"boolean" => JSONtypes::Boolean,
_ => JSONtypes::Unsupported,
}
} else {
JSONtypes::String
};
}
return_val
},
_ => JSONtypes::String,
};
header_types.push((key_string, json_type));
}
Ok(header_types)
}
#[cfg(test)]
mod tests_for_csv_to_json_conversion {
use serde_json::json;
use super::*;
/// get schema used for unit tests
fn schema_json() -> Value {
// from https://json-schema.org/learn/miscellaneous-examples.html
serde_json::json!({
"$id": "https://example.com/test.schema.json",
"$schema": "https://json-schema.org/draft/2020-12/schema",
"title": "test",
"type": "object",
"properties": {
"A": {
"type": "string",
},
"B": {
"type": "number",
},
"C": {
"type": "integer",
},
"D": {
"type": "boolean",
},
"E": {
"type": ["string", "null"],
},
"F": {
"type": ["number", "null"],
},
"G": {
"type": ["integer", "null"],
},
"H": {
"type": ["boolean", "null"],
},
"I": {
"type": ["string", "null"],
},
"J": {
"type": ["number", "null"],
},
"K": {
"type": ["null", "integer"],
},
"L": {
"type": ["boolean", "null"],
},
}
})
}
#[test]
#[allow(clippy::approx_constant)]
fn test_to_json_instance() {
let _ = NULL_TYPE.get_or_init(|| Value::String("null".to_string()));
let csv = "A,B,C,D,E,F,G,H,I,J,K,L
hello,3.1415,300000000,true,,,,,hello,3.1415,300000000,true";
let mut rdr = csv::Reader::from_reader(csv.as_bytes());
let headers = rdr.byte_headers().unwrap().clone();
let header_types = get_json_types(&headers, &schema_json()).unwrap();
let mut record = rdr.byte_records().next().unwrap().unwrap();
record.trim();
assert_eq!(
to_json_instance(&header_types, headers.len(), &record)
.expect("can't convert csv to json instance"),
json!({
"A": "hello",
"B": 3.1415,
"C": 300_000_000,
"D": true,
"E": null,
"F": null,
"G": null,
"H": null,
"I": "hello",
"J": 3.1415,
"K": 300_000_000,
"L": true,
})
);
}
#[test]
fn test_to_json_instance_cast_integer_error() {
let _ = NULL_TYPE.get_or_init(|| Value::String("null".to_string()));
let csv = "A,B,C,D,E,F,G,H
hello,3.1415,3.0e8,true,,,,";
let mut rdr = csv::Reader::from_reader(csv.as_bytes());
let headers = rdr.byte_headers().unwrap().clone();
let header_types = get_json_types(&headers, &schema_json()).unwrap();
let result = to_json_instance(
&header_types,
headers.len(),
&rdr.byte_records().next().unwrap().unwrap(),
);
assert!(&result.is_err());
let error = result.err().unwrap().to_string();
assert_eq!("Can't cast into Integer. key: C, value: 3.0e8", error);
}
}
/// Validate JSON instance against compiled JSON Schema
/// If invalid, returns Some(Vec<(String,String)>) holding the error messages
#[inline]
fn validate_json_instance(
instance: &Value,
schema_compiled: &JSONSchema,
) -> Option<Vec<(String, String)>> {
let validation_output = schema_compiled.apply(instance);
// If validation output is Invalid, then grab field names and errors
if validation_output.flag() {
None
} else {
// get validation errors as String
let validation_errors: Vec<(String, String)> = match validation_output.basic() {
BasicOutput::Invalid(errors) => errors
.iter()
.map(|e| {
if let Some(PathChunk::Property(box_str)) = e.instance_location().last() {
(box_str.to_string(), e.error_description().to_string())
} else {