-
Notifications
You must be signed in to change notification settings - Fork 73
/
frequency.rs
420 lines (380 loc) · 16.7 KB
/
frequency.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
static USAGE: &str = r#"
Compute a frequency table on CSV data.
The frequency table is formatted as CSV data:
field,value,count,percentage
By default, there is a row for the N most frequent values for each field in the data.
The order and number of values can be configured with --asc, --limit, --unq-limit
and --lmt-threshold respectively.
The unique limit (--unq-limit) is particularly useful when a column has all unique values
(e.g. an ID column) and --limit is set to 0.
Without a unique limit, the frequency table for that column will be the same as the number
of rows in the data.
With a unique limit, the frequency table will be a sample of N unique values, all with
a count of 1.
The --lmt-threshold option allows you to apply the --limit and --unq-limit options only
when the number of unique items in a column is greater than or equal to the threshold.
This is useful when you want to apply limits only to columns with a large number of unique
items and not to columns with a small number of unique items.
Since this computes an exact frequency table, memory proportional to the
cardinality of each column is required.
For examples, see https://github.com/jqnatividad/qsv/blob/master/tests/test_frequency.rs.
Usage:
qsv frequency [options] [<input>]
qsv frequency --help
frequency options:
-s, --select <arg> Select a subset of columns to compute frequencies
for. See 'qsv select --help' for the format
details. This is provided here because piping 'qsv
select' into 'qsv frequency' will disable the use
of indexing.
-l, --limit <arg> Limit the frequency table to the N most common
items. Set to '0' to disable a limit.
If negative, only return values with an occurence
count >= absolute value of the negative limit.
e.g. --limit -2 will only return values with an
occurence count >= 2.
[default: 10]
-u, --unq-limit <arg> If a column has all unique values, limit the
frequency table to a sample of N unique items.
Set to '0' to disable a unique_limit.
[default: 10]
--lmt-threshold <arg> The threshold for which --limit and --unq-limit
will be applied. If the number of unique items
in a column >= threshold, the limits will be applied.
Set to '0' to disable the threshold and always apply limits.
[default: 0]
--pct-dec-places <arg> The number of decimal places to round the percentage to.
If negative, the number of decimal places will be set
automatically to the minimum number of decimal places needed
to represent the percentage accurately, up to the absolute
value of the negative number.
[default: -5]
--other-sorted By default, the "Other" category is placed at the
end of the frequency table for a field. If this is enabled, the
"Other" category will be sorted with the rest of the
values by count.
--other-text <arg> The text to use for the "Other" category. If set to "<NONE>",
the "Other" category will not be included in the frequency table.
[default: Other]
-a, --asc Sort the frequency tables in ascending order by
count. The default is descending order.
--no-nulls Don't include NULLs in the frequency table.
-i, --ignore-case Ignore case when computing frequencies.
-j, --jobs <arg> The number of jobs to run in parallel.
This works much faster when the given CSV data has
an index already created. Note that a file handle
is opened for each job.
When not set, the number of jobs is set to the
number of CPUs detected.
Common options:
-h, --help Display this message
-o, --output <file> Write output to <file> instead of stdout.
-n, --no-headers When set, the first row will NOT be included
in the frequency table. Additionally, the 'field'
column will be 1-based indices instead of header
names.
-d, --delimiter <arg> The field delimiter for reading CSV data.
Must be a single character. (default: ,)
--memcheck Check if there is enough memory to load the entire
CSV into memory using CONSERVATIVE heuristics.
"#;
use std::{fs, io};
use indicatif::HumanCount;
use rust_decimal::prelude::*;
use serde::Deserialize;
use stats::{merge_all, Frequencies};
use threadpool::ThreadPool;
use crate::{
config::{Config, Delimiter},
index::Indexed,
select::{SelectColumns, Selection},
util,
util::ByteString,
CliResult,
};
#[allow(clippy::unsafe_derive_deserialize)]
#[derive(Clone, Deserialize)]
pub struct Args {
pub arg_input: Option<String>,
pub flag_select: SelectColumns,
pub flag_limit: isize,
pub flag_unq_limit: usize,
pub flag_lmt_threshold: usize,
pub flag_pct_dec_places: isize,
pub flag_other_sorted: bool,
pub flag_other_text: String,
pub flag_asc: bool,
pub flag_no_nulls: bool,
pub flag_ignore_case: bool,
pub flag_jobs: Option<usize>,
pub flag_output: Option<String>,
pub flag_no_headers: bool,
pub flag_delimiter: Option<Delimiter>,
pub flag_memcheck: bool,
}
pub fn run(argv: &[&str]) -> CliResult<()> {
let args: Args = util::get_args(USAGE, argv)?;
let rconfig = args.rconfig();
// we're loading the entire file into memory, we need to check avail mem
if let Some(path) = rconfig.path.clone() {
util::mem_file_check(&path, false, args.flag_memcheck)?;
}
let mut wtr = Config::new(&args.flag_output).writer()?;
let (headers, tables) = match args.rconfig().indexed()? {
Some(ref mut idx) if util::njobs(args.flag_jobs) > 1 => args.parallel_ftables(idx),
_ => args.sequential_ftables(),
}?;
#[allow(unused_assignments)]
let mut header_vec: Vec<u8> = Vec::with_capacity(tables.len());
let mut buffer = itoa::Buffer::new();
let mut pct_decimal: Decimal;
let mut final_pct_decimal: Decimal;
let mut pct_string: String;
let mut pct_scale;
let mut current_scale;
let abs_dec_places = args.flag_pct_dec_places.unsigned_abs() as u32;
let mut row;
wtr.write_record(vec!["field", "value", "count", "percentage"])?;
let head_ftables = headers.iter().zip(tables);
for (i, (header, ftab)) in head_ftables.enumerate() {
header_vec = if rconfig.no_headers {
(i + 1).to_string().into_bytes()
} else {
header.to_vec()
};
let mut sorted_counts: Vec<(Vec<u8>, u64, f64)> = args.counts(&ftab);
// if not --other_sorted and the first value is "Other (", rotate it to the end
if !args.flag_other_sorted
&& sorted_counts.first().is_some_and(|(value, _, _)| {
value.starts_with(format!("{} (", args.flag_other_text).as_bytes())
})
{
sorted_counts.rotate_left(1);
}
for (value, count, percentage) in sorted_counts {
pct_decimal = Decimal::from_f64(percentage).unwrap_or_default();
pct_scale = if args.flag_pct_dec_places < 0 {
current_scale = pct_decimal.scale();
if current_scale > abs_dec_places {
current_scale
} else {
abs_dec_places
}
} else {
abs_dec_places
};
final_pct_decimal = pct_decimal
.round_dp_with_strategy(
pct_scale,
rust_decimal::RoundingStrategy::MidpointAwayFromZero,
)
.normalize();
pct_string = if final_pct_decimal.fract().to_string().len() > abs_dec_places as usize {
final_pct_decimal
.round_dp_with_strategy(abs_dec_places, RoundingStrategy::MidpointAwayFromZero)
.normalize()
.to_string()
} else {
final_pct_decimal.to_string()
};
row = vec![
&*header_vec,
&*value,
buffer.format(count).as_bytes(),
pct_string.as_bytes(),
];
wtr.write_record(row)?;
}
}
Ok(wtr.flush()?)
}
type Headers = csv::ByteRecord;
type FTable = Frequencies<Vec<u8>>;
type FTables = Vec<Frequencies<Vec<u8>>>;
impl Args {
pub fn rconfig(&self) -> Config {
Config::new(&self.arg_input)
.delimiter(self.flag_delimiter)
.no_headers(self.flag_no_headers)
.select(self.flag_select.clone())
}
#[inline]
fn counts(&self, ftab: &FTable) -> Vec<(ByteString, u64, f64)> {
const NULL_VAL: &[u8] = b"(NULL)";
let (mut counts, total_count) = if self.flag_asc {
// parallel sort in ascending order - least frequent values first
ftab.par_frequent(true)
} else {
// parallel sort in descending order - most frequent values first
ftab.par_frequent(false)
};
// check if we need to apply limits
let unique_counts_len = counts.len();
if self.flag_lmt_threshold == 0 || self.flag_lmt_threshold >= unique_counts_len {
// check if the column has all unique values
// by checking if counts length is equal to ftable length
let pos_limit = self.flag_limit.unsigned_abs();
let unique_limited = if self.flag_limit > 0
&& self.flag_unq_limit != pos_limit
&& self.flag_unq_limit > 0
&& unique_counts_len == ftab.len()
{
counts = counts.into_iter().take(self.flag_unq_limit).collect();
true
} else {
false
};
// check if we need to limit the number of values
if self.flag_limit > 0 {
counts = counts.into_iter().take(pos_limit).collect();
} else if self.flag_limit < 0 && !unique_limited {
// if limit is negative, only return values with an occurence count >= absolute
// value of the negative limit. We only do this if we haven't
// already unique limited the values
let count_limit = pos_limit as u64;
counts.retain(|(_, c)| *c >= count_limit);
}
}
let mut pct_sum = 0.0_f64;
let mut pct = 0.0_f64;
let mut count_sum = 0_u64;
let mut counts_final: Vec<(Vec<u8>, u64, f64)> = counts
.into_iter()
.map(|(bs, c)| {
count_sum += c;
pct = (c as f64 * 100.0_f64) / total_count as f64;
pct_sum += pct;
if b"" == &**bs {
(NULL_VAL.to_vec(), c, pct)
} else {
(bs.clone(), c, pct)
}
})
.collect();
let other_count = total_count - count_sum;
if other_count > 0 && self.flag_other_text != "<NONE>" {
let other_unique_count = unique_counts_len - counts_final.len();
counts_final.push((
format!(
"{} ({})",
self.flag_other_text,
HumanCount(other_unique_count as u64)
)
.as_bytes()
.to_vec(),
other_count,
100.0_f64 - pct_sum,
));
}
counts_final
}
pub fn sequential_ftables(&self) -> CliResult<(Headers, FTables)> {
let mut rdr = self.rconfig().reader()?;
let (headers, sel) = self.sel_headers(&mut rdr)?;
Ok((headers, self.ftables(&sel, rdr.byte_records())))
}
pub fn parallel_ftables(
&self,
idx: &Indexed<fs::File, fs::File>,
) -> CliResult<(Headers, FTables)> {
let mut rdr = self.rconfig().reader()?;
let (headers, sel) = self.sel_headers(&mut rdr)?;
let idx_count = idx.count() as usize;
if idx_count == 0 {
return Ok((headers, vec![]));
}
let njobs = util::njobs(self.flag_jobs);
let chunk_size = util::chunk_size(idx_count, njobs);
let nchunks = util::num_of_chunks(idx_count, chunk_size);
let pool = ThreadPool::new(njobs);
let (send, recv) = channel::bounded(0);
for i in 0..nchunks {
let (send, args, sel) = (send.clone(), self.clone(), sel.clone());
pool.execute(move || {
// safety: we know the file is indexed and seekable
let mut idx = args.rconfig().indexed().unwrap().unwrap();
idx.seek((i * chunk_size) as u64).unwrap();
let it = idx.byte_records().take(chunk_size);
send.send(args.ftables(&sel, it)).unwrap();
});
}
drop(send);
Ok((headers, merge_all(recv.iter()).unwrap()))
}
#[inline]
fn ftables<I>(&self, sel: &Selection, it: I) -> FTables
where
I: Iterator<Item = csv::Result<csv::ByteRecord>>,
{
let null = &b""[..].to_vec();
let nsel = sel.normal();
let nsel_len = nsel.len();
let mut freq_tables: Vec<_> = (0..nsel_len).map(|_| Frequencies::new()).collect();
#[allow(unused_assignments)]
// amortize allocations
let mut field_buffer: Vec<u8> = Vec::with_capacity(nsel_len);
let mut row_buffer: csv::ByteRecord = csv::ByteRecord::with_capacity(200, nsel_len);
let flag_no_nulls = self.flag_no_nulls;
if self.flag_ignore_case {
let mut buf = String::new();
// safety: we do get_unchecked_mut on freq_tables
// as we know that nsel_len is the same as freq_tables.len()
// so we can skip the bounds check
for row in it {
// safety: we know the row is not empty
row_buffer.clone_from(&row.unwrap());
for (i, field) in nsel.select(row_buffer.into_iter()).enumerate() {
field_buffer = {
if let Ok(s) = simdutf8::basic::from_utf8(field) {
util::to_lowercase_into(s.trim(), &mut buf);
buf.as_bytes().to_vec()
} else {
field.to_vec()
}
};
if !field_buffer.is_empty() {
unsafe {
freq_tables.get_unchecked_mut(i).add(field_buffer);
}
} else if !flag_no_nulls {
unsafe {
freq_tables.get_unchecked_mut(i).add(null.clone());
}
}
}
}
} else {
for row in it {
// safety: we know the row is not empty
row_buffer.clone_from(&row.unwrap());
for (i, field) in nsel.select(row_buffer.into_iter()).enumerate() {
field_buffer = {
if let Ok(s) = simdutf8::basic::from_utf8(field) {
s.trim().as_bytes().to_vec()
} else {
field.to_vec()
}
};
if !field_buffer.is_empty() {
unsafe {
freq_tables.get_unchecked_mut(i).add(field_buffer);
}
} else if !flag_no_nulls {
unsafe {
freq_tables.get_unchecked_mut(i).add(null.clone());
}
}
}
}
}
freq_tables
}
fn sel_headers<R: io::Read>(
&self,
rdr: &mut csv::Reader<R>,
) -> CliResult<(csv::ByteRecord, Selection)> {
let headers = rdr.byte_headers()?;
let sel = self.rconfig().selection(headers)?;
Ok((sel.select(headers).map(<[u8]>::to_vec).collect(), sel))
}
}