diff --git a/notebooks/intro_data_science/Data_Commons_For_Data_Science_Tutorial.ipynb b/notebooks/intro_data_science/Data_Commons_For_Data_Science_Tutorial.ipynb
index 5f26ac2..7b65833 100644
--- a/notebooks/intro_data_science/Data_Commons_For_Data_Science_Tutorial.ipynb
+++ b/notebooks/intro_data_science/Data_Commons_For_Data_Science_Tutorial.ipynb
@@ -3,10 +3,9 @@
"nbformat_minor": 0,
"metadata": {
"colab": {
- "name": "Data Commons For Data Science Tutorial.ipynb",
"provenance": [],
- "collapsed_sections": [],
"toc_visible": true,
+ "authorship_tag": "ABX9TyNNd7nKdXr1l2/He/vsSmZZ",
"include_colab_link": true
},
"kernelspec": {
@@ -77,7 +76,7 @@
"\n",
"In the graph, [*entities*](https://en.wikipedia.org/wiki/Entity) like [Santa Clara County](https://browser.datacommons.org/kg?dcid=geoId/06085) are represented by nodes. Every node has a type corresponding to what the node represents. For example, [California](https://browser.datacommons.org/kg?dcid=geoId/06) is a [State](https://schema.org/State). *Relations* between entities are represented by edges between these nodes. For example, the statement \"Santa Clara County is contained in the State of California\" is represented in the graph as two nodes: \"Santa Clara County\" and \"California\" with an edge labeled \"[containedInPlace](https://schema.org/containedInPlace)\" pointing from Santa Clara to California. Data Commons closely follows the [Schema.org data model](https://schema.org/docs/datamodel.html) and leverages Schema.org schema to provide a common set of types and properties.\n",
"\n",
- " \n",
+ "\n",
"\n",
"\n",
"\n"
@@ -127,20 +126,20 @@
"base_uri": "https://localhost:8080/"
},
"id": "dThSMUJ96vK2",
- "outputId": "d4b7109e-1c12-4c59-af45-5f03448fdc70"
+ "outputId": "66f1aedb-7e1c-440b-f557-018220f7c132"
},
"source": [
"!pip install datacommons --upgrade --quiet\n",
"!pip install datacommons_pandas --upgrade --quiet"
],
- "execution_count": null,
+ "execution_count": 1,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
- "\u001b[K |████████████████████████████████| 46 kB 2.3 MB/s \n",
- "\u001b[K |████████████████████████████████| 45 kB 2.7 MB/s \n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.5/46.5 kB\u001b[0m \u001b[31m829.3 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.8/45.8 kB\u001b[0m \u001b[31m1.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h"
]
}
@@ -180,7 +179,7 @@
"import datacommons\n",
"import datacommons_pandas"
],
- "execution_count": null,
+ "execution_count": 2,
"outputs": []
},
{
@@ -192,7 +191,7 @@
"# Terms You Should Know\n",
"\n",
"### DCIDs\n",
- "The **`dcid`** (Data Commons identifier) is a unique identifier assigned to each entity in the knowledge graph. With this identifier, you will be able to search for and query information on the given entity in ways that we will discuss later. \n",
+ "The **`dcid`** (Data Commons identifier) is a unique identifier assigned to each entity in the knowledge graph. With this identifier, you will be able to search for and query information on the given entity in ways that we will discuss later.\n",
"\n",
"\n",
"### Statistical Variables (StatVars)\n",
@@ -232,7 +231,7 @@
" \"geoId/065300\", # Oakland\n",
" \"geoId/0644000\"] # Los Angeles"
],
- "execution_count": null,
+ "execution_count": 3,
"outputs": []
},
{
@@ -259,7 +258,7 @@
"dcid_of_california = \"geoId/06\"\n",
"dcids = datacommons.get_places_in([dcid_of_california], \"County\")[dcid_of_california]"
],
- "execution_count": null,
+ "execution_count": 4,
"outputs": []
},
{
@@ -287,7 +286,7 @@
" \"member\",\n",
" limit=500)[\"CDC500_City\"]"
],
- "execution_count": null,
+ "execution_count": 5,
"outputs": []
},
{
@@ -299,7 +298,7 @@
"## 2) Get StatVars of Interest\n",
"Similar to collecting a list of dcids, we also need a list of all the statistical variables we are interested in.\n",
"\n",
- "A complete list of Statistical Variables can be found [here](https://docs.datacommons.org/statistical_variables.html). \n",
+ "A complete list of Statistical Variables can be found [here](https://docs.datacommons.org/statistical_variables.html).\n",
"\n",
"However, note that data for statistical variables may not be available for all places/entities. To check if a statistical variable is available for an entity, look at the bottom of the graph browser page for that entity for a list of the statistical variables available for that entity.\n",
"\n",
@@ -312,14 +311,14 @@
"id": "1b-Z3IEY_DpE"
},
"source": [
- "stat_vars_to_query = [\"CumulativeCount_MedicalTest_ConditionCOVID_19_Positive\",\n",
+ "stat_vars_to_query = [\"Count_MortalityEvent_COVID19\",\n",
" \"Count_Person\",\n",
" \"Median_Income_Person\",\n",
" \"Percent_Person_Obesity\",\n",
" \"Amount_Emissions_CarbonDioxide_PerCapita\"\n",
" ]"
],
- "execution_count": null,
+ "execution_count": 14,
"outputs": []
},
{
@@ -351,22 +350,147 @@
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 450
+ "height": 1000
},
"id": "Qvmu77TI_Kia",
- "outputId": "ded73938-4e73-484c-bfba-6fa93ec2d8da"
+ "outputId": "7a306d7c-912c-4f48-8f9b-cdd125a4846d"
},
"source": [
"df = datacommons_pandas.build_multivariate_dataframe(dcids,stat_vars_to_query)\n",
"display(df)"
],
- "execution_count": null,
+ "execution_count": 15,
"outputs": [
{
"output_type": "display_data",
"data": {
+ "text/plain": [
+ " Percent_Person_Obesity Count_MortalityEvent_COVID19 \\\n",
+ "place \n",
+ "geoId/06001 25.1 635.0 \n",
+ "geoId/06003 29.1 NaN \n",
+ "geoId/06005 29.7 19.0 \n",
+ "geoId/06007 29.7 132.0 \n",
+ "geoId/06009 30.6 17.0 \n",
+ "geoId/06011 33.1 15.0 \n",
+ "geoId/06013 24.6 422.0 \n",
+ "geoId/06015 32.8 NaN \n",
+ "geoId/06017 28.4 72.0 \n",
+ "geoId/06019 36.6 937.0 \n",
+ "geoId/06021 31.5 22.0 \n",
+ "geoId/06023 32.5 23.0 \n",
+ "geoId/06025 37.5 529.0 \n",
+ "geoId/06027 29.3 28.0 \n",
+ "geoId/06029 36.4 678.0 \n",
+ "geoId/06031 34.8 113.0 \n",
+ "geoId/06033 33.7 39.0 \n",
+ "geoId/06035 32.0 16.0 \n",
+ "geoId/06037 28.5 11176.0 \n",
+ "geoId/06039 35.7 170.0 \n",
+ "geoId/06041 23.1 114.0 \n",
+ "geoId/06043 29.7 NaN \n",
+ "geoId/06045 31.4 35.0 \n",
+ "geoId/06047 32.5 260.0 \n",
+ "geoId/06049 32.7 NaN \n",
+ "geoId/06051 29.8 NaN \n",
+ "geoId/06053 27.3 256.0 \n",
+ "geoId/06055 27.8 38.0 \n",
+ "geoId/06057 27.6 63.0 \n",
+ "geoId/06059 25.4 2459.0 \n",
+ "geoId/06061 26.5 157.0 \n",
+ "geoId/06063 29.4 NaN \n",
+ "geoId/06065 36.0 2657.0 \n",
+ "geoId/06067 31.9 948.0 \n",
+ "geoId/06069 31.1 32.0 \n",
+ "geoId/06071 38.1 2747.0 \n",
+ "geoId/06073 23.7 1748.0 \n",
+ "geoId/06075 18.8 222.0 \n",
+ "geoId/06077 33.3 793.0 \n",
+ "geoId/06079 29.0 116.0 \n",
+ "geoId/06081 21.3 248.0 \n",
+ "geoId/06083 28.6 177.0 \n",
+ "geoId/06085 18.7 852.0 \n",
+ "geoId/06087 24.3 122.0 \n",
+ "geoId/06089 30.9 102.0 \n",
+ "geoId/06091 30.0 NaN \n",
+ "geoId/06093 32.6 14.0 \n",
+ "geoId/06095 29.9 171.0 \n",
+ "geoId/06097 28.6 196.0 \n",
+ "geoId/06099 34.7 634.0 \n",
+ "geoId/06101 31.4 62.0 \n",
+ "geoId/06103 34.0 44.0 \n",
+ "geoId/06105 33.2 NaN \n",
+ "geoId/06107 35.2 451.0 \n",
+ "geoId/06109 29.2 33.0 \n",
+ "geoId/06111 26.9 376.0 \n",
+ "geoId/06113 25.8 110.0 \n",
+ "geoId/06115 33.9 29.0 \n",
+ "\n",
+ " Count_Person Median_Income_Person \n",
+ "place \n",
+ "geoId/06001 1663823 54302 \n",
+ "geoId/06003 1515 31071 \n",
+ "geoId/06005 40577 38576 \n",
+ "geoId/06007 213605 31677 \n",
+ "geoId/06009 45674 34144 \n",
+ "geoId/06011 21811 34163 \n",
+ "geoId/06013 1162648 51100 \n",
+ "geoId/06015 27462 28389 \n",
+ "geoId/06017 191713 45916 \n",
+ "geoId/06019 1008280 31853 \n",
+ "geoId/06021 28657 30869 \n",
+ "geoId/06023 136132 29264 \n",
+ "geoId/06025 179578 23080 \n",
+ "geoId/06027 18829 37827 \n",
+ "geoId/06029 906883 29192 \n",
+ "geoId/06031 152515 32984 \n",
+ "geoId/06033 68024 30364 \n",
+ "geoId/06035 31873 33358 \n",
+ "geoId/06037 9936690 35869 \n",
+ "geoId/06039 157243 29150 \n",
+ "geoId/06041 260485 63765 \n",
+ "geoId/06043 17130 33425 \n",
+ "geoId/06045 91145 32446 \n",
+ "geoId/06047 282290 30037 \n",
+ "geoId/06049 8651 30115 \n",
+ "geoId/06051 13219 45331 \n",
+ "geoId/06053 437609 34979 \n",
+ "geoId/06055 137384 45288 \n",
+ "geoId/06057 102322 37964 \n",
+ "geoId/06059 3175227 44190 \n",
+ "geoId/06061 406608 50615 \n",
+ "geoId/06063 19650 39176 \n",
+ "geoId/06065 2429487 35607 \n",
+ "geoId/06067 1579211 40179 \n",
+ "geoId/06069 64753 41870 \n",
+ "geoId/06071 2180563 34107 \n",
+ "geoId/06073 3289701 42349 \n",
+ "geoId/06075 851036 65802 \n",
+ "geoId/06077 779445 36016 \n",
+ "geoId/06079 281712 38724 \n",
+ "geoId/06081 754250 59975 \n",
+ "geoId/06083 445213 36135 \n",
+ "geoId/06085 1916831 59207 \n",
+ "geoId/06087 268571 41634 \n",
+ "geoId/06089 181852 33097 \n",
+ "geoId/06091 2916 23897 \n",
+ "geoId/06093 44049 29476 \n",
+ "geoId/06095 450995 43831 \n",
+ "geoId/06097 488436 45670 \n",
+ "geoId/06099 552063 34223 \n",
+ "geoId/06101 99101 32987 \n",
+ "geoId/06103 65484 30450 \n",
+ "geoId/06105 15889 30800 \n",
+ "geoId/06107 473446 29304 \n",
+ "geoId/06109 54993 34956 \n",
+ "geoId/06111 842009 40855 \n",
+ "geoId/06113 217141 37622 \n",
+ "geoId/06115 81705 32074 "
+ ],
"text/html": [
- "
\n",
+ "\n",
+ "
\n",
+ "
\n",
"\n",
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ "
\n"
],
- "text/plain": [
- " Count_Person ... CumulativeCount_MedicalTest_ConditionCOVID_19_Positive\n",
- "place ... \n",
- "geoId/0107000 200733 ... NaN \n",
- "geoId/0135896 92606 ... NaN \n",
- "geoId/0137000 215006 ... NaN \n",
- "geoId/0150000 187041 ... NaN \n",
- "geoId/0151000 200603 ... NaN \n",
- "... ... ... ... \n",
- "geoId/5548000 269840 ... NaN \n",
- "geoId/5553000 577222 ... NaN \n",
- "geoId/5566000 77816 ... NaN \n",
- "geoId/5584250 71158 ... NaN \n",
- "geoId/5613900 65132 ... NaN \n",
- "\n",
- "[499 rows x 4 columns]"
- ]
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 58,\n \"fields\": [\n {\n \"column\": \"place\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 58,\n \"samples\": [\n \"geoId/06001\",\n \"geoId/06011\",\n \"geoId/06069\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Percent_Person_Obesity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.323152333425648,\n \"min\": 18.7,\n \"max\": 38.1,\n \"num_unique_values\": 53,\n \"samples\": [\n 23.1,\n 30.9,\n 33.2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Count_MortalityEvent_COVID19\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1658.130465436349,\n \"min\": 14.0,\n \"max\": 11176.0,\n \"num_unique_values\": 50,\n \"samples\": [\n 113.0,\n 14.0,\n 1748.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Count_Person\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1453959,\n \"min\": 1515,\n \"max\": 9936690,\n \"num_unique_values\": 58,\n \"samples\": [\n 1663823,\n 21811,\n 64753\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Median_Income_Person\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9335,\n \"min\": 23080,\n \"max\": 65802,\n \"num_unique_values\": 58,\n \"samples\": [\n 54302,\n 34163,\n 41870\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
},
"metadata": {}
}
@@ -508,7 +1212,7 @@
"id": "xza-1c15RZ-R"
},
"source": [
- "Further data cleaning or joining is usually not necessary, but you may choose to further process your data frame for better readability or to better suit your particular data science task. \n",
+ "Further data cleaning or joining is usually not necessary, but you may choose to further process your data frame for better readability or to better suit your particular data science task.\n",
"\n",
"Because the Data Commons API returns a Pandas Dataframe, you are free to use any functions found in [Pandas' Documentation](https://pandas.pydata.org/docs/reference/frame.html) to edit your dataframe."
]
@@ -528,22 +1232,147 @@
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 450
+ "height": 1000
},
"id": "SioY7DRTAxi6",
- "outputId": "4cf347d4-f959-47d7-b88d-42bfb9d4be90"
+ "outputId": "85c8cc7d-ff6f-4470-d60e-64f7b43c923f"
},
"source": [
"df.insert(0, 'name', df.index.map(datacommons.get_property_values(df.index, 'name')).str[0])\n",
"display(df)"
],
- "execution_count": null,
+ "execution_count": 16,
"outputs": [
{
"output_type": "display_data",
"data": {
+ "text/plain": [
+ " name Percent_Person_Obesity \\\n",
+ "place \n",
+ "geoId/06001 Alameda County 25.1 \n",
+ "geoId/06003 Alpine County 29.1 \n",
+ "geoId/06005 Amador County 29.7 \n",
+ "geoId/06007 Butte County 29.7 \n",
+ "geoId/06009 Calaveras County 30.6 \n",
+ "geoId/06011 Colusa County 33.1 \n",
+ "geoId/06013 Contra Costa County 24.6 \n",
+ "geoId/06015 Del Norte County 32.8 \n",
+ "geoId/06017 El Dorado County 28.4 \n",
+ "geoId/06019 Fresno County 36.6 \n",
+ "geoId/06021 Glenn County 31.5 \n",
+ "geoId/06023 Humboldt County 32.5 \n",
+ "geoId/06025 Imperial County 37.5 \n",
+ "geoId/06027 Inyo County 29.3 \n",
+ "geoId/06029 Kern County 36.4 \n",
+ "geoId/06031 Kings County 34.8 \n",
+ "geoId/06033 Lake County 33.7 \n",
+ "geoId/06035 Lassen County 32.0 \n",
+ "geoId/06037 Los Angeles County 28.5 \n",
+ "geoId/06039 Madera County 35.7 \n",
+ "geoId/06041 Marin County 23.1 \n",
+ "geoId/06043 Mariposa County 29.7 \n",
+ "geoId/06045 Mendocino County 31.4 \n",
+ "geoId/06047 Merced County 32.5 \n",
+ "geoId/06049 Modoc County 32.7 \n",
+ "geoId/06051 Mono County 29.8 \n",
+ "geoId/06053 Monterey County 27.3 \n",
+ "geoId/06055 Napa County 27.8 \n",
+ "geoId/06057 Nevada County 27.6 \n",
+ "geoId/06059 Orange County 25.4 \n",
+ "geoId/06061 Placer County 26.5 \n",
+ "geoId/06063 Plumas County 29.4 \n",
+ "geoId/06065 Riverside County 36.0 \n",
+ "geoId/06067 Sacramento County 31.9 \n",
+ "geoId/06069 San Benito County 31.1 \n",
+ "geoId/06071 San Bernardino County 38.1 \n",
+ "geoId/06073 San Diego County 23.7 \n",
+ "geoId/06075 San Francisco County 18.8 \n",
+ "geoId/06077 San Joaquin County 33.3 \n",
+ "geoId/06079 San Luis Obispo County 29.0 \n",
+ "geoId/06081 San Mateo County 21.3 \n",
+ "geoId/06083 Santa Barbara County 28.6 \n",
+ "geoId/06085 Santa Clara County 18.7 \n",
+ "geoId/06087 Santa Cruz County 24.3 \n",
+ "geoId/06089 Shasta County 30.9 \n",
+ "geoId/06091 Sierra County 30.0 \n",
+ "geoId/06093 Siskiyou County 32.6 \n",
+ "geoId/06095 Solano County 29.9 \n",
+ "geoId/06097 Sonoma County 28.6 \n",
+ "geoId/06099 Stanislaus County 34.7 \n",
+ "geoId/06101 Sutter County 31.4 \n",
+ "geoId/06103 Tehama County 34.0 \n",
+ "geoId/06105 Trinity County 33.2 \n",
+ "geoId/06107 Tulare County 35.2 \n",
+ "geoId/06109 Tuolumne County 29.2 \n",
+ "geoId/06111 Ventura County 26.9 \n",
+ "geoId/06113 Yolo County 25.8 \n",
+ "geoId/06115 Yuba County 33.9 \n",
+ "\n",
+ " Count_MortalityEvent_COVID19 Count_Person Median_Income_Person \n",
+ "place \n",
+ "geoId/06001 635.0 1663823 54302 \n",
+ "geoId/06003 NaN 1515 31071 \n",
+ "geoId/06005 19.0 40577 38576 \n",
+ "geoId/06007 132.0 213605 31677 \n",
+ "geoId/06009 17.0 45674 34144 \n",
+ "geoId/06011 15.0 21811 34163 \n",
+ "geoId/06013 422.0 1162648 51100 \n",
+ "geoId/06015 NaN 27462 28389 \n",
+ "geoId/06017 72.0 191713 45916 \n",
+ "geoId/06019 937.0 1008280 31853 \n",
+ "geoId/06021 22.0 28657 30869 \n",
+ "geoId/06023 23.0 136132 29264 \n",
+ "geoId/06025 529.0 179578 23080 \n",
+ "geoId/06027 28.0 18829 37827 \n",
+ "geoId/06029 678.0 906883 29192 \n",
+ "geoId/06031 113.0 152515 32984 \n",
+ "geoId/06033 39.0 68024 30364 \n",
+ "geoId/06035 16.0 31873 33358 \n",
+ "geoId/06037 11176.0 9936690 35869 \n",
+ "geoId/06039 170.0 157243 29150 \n",
+ "geoId/06041 114.0 260485 63765 \n",
+ "geoId/06043 NaN 17130 33425 \n",
+ "geoId/06045 35.0 91145 32446 \n",
+ "geoId/06047 260.0 282290 30037 \n",
+ "geoId/06049 NaN 8651 30115 \n",
+ "geoId/06051 NaN 13219 45331 \n",
+ "geoId/06053 256.0 437609 34979 \n",
+ "geoId/06055 38.0 137384 45288 \n",
+ "geoId/06057 63.0 102322 37964 \n",
+ "geoId/06059 2459.0 3175227 44190 \n",
+ "geoId/06061 157.0 406608 50615 \n",
+ "geoId/06063 NaN 19650 39176 \n",
+ "geoId/06065 2657.0 2429487 35607 \n",
+ "geoId/06067 948.0 1579211 40179 \n",
+ "geoId/06069 32.0 64753 41870 \n",
+ "geoId/06071 2747.0 2180563 34107 \n",
+ "geoId/06073 1748.0 3289701 42349 \n",
+ "geoId/06075 222.0 851036 65802 \n",
+ "geoId/06077 793.0 779445 36016 \n",
+ "geoId/06079 116.0 281712 38724 \n",
+ "geoId/06081 248.0 754250 59975 \n",
+ "geoId/06083 177.0 445213 36135 \n",
+ "geoId/06085 852.0 1916831 59207 \n",
+ "geoId/06087 122.0 268571 41634 \n",
+ "geoId/06089 102.0 181852 33097 \n",
+ "geoId/06091 NaN 2916 23897 \n",
+ "geoId/06093 14.0 44049 29476 \n",
+ "geoId/06095 171.0 450995 43831 \n",
+ "geoId/06097 196.0 488436 45670 \n",
+ "geoId/06099 634.0 552063 34223 \n",
+ "geoId/06101 62.0 99101 32987 \n",
+ "geoId/06103 44.0 65484 30450 \n",
+ "geoId/06105 NaN 15889 30800 \n",
+ "geoId/06107 451.0 473446 29304 \n",
+ "geoId/06109 33.0 54993 34956 \n",
+ "geoId/06111 376.0 842009 40855 \n",
+ "geoId/06113 110.0 217141 37622 \n",
+ "geoId/06115 29.0 81705 32074 "
+ ],
"text/html": [
- "\n",
+ "\n",
+ "
\n",
+ "
\n",
"\n",
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ "
\n"
],
- "text/plain": [
- " name ... CumulativeCount_MedicalTest_ConditionCOVID_19_Positive\n",
- "place ... \n",
- "geoId/0107000 Birmingham ... NaN \n",
- "geoId/0135896 Hoover ... NaN \n",
- "geoId/0137000 Huntsville ... NaN \n",
- "geoId/0150000 Mobile ... NaN \n",
- "geoId/0151000 Montgomery ... NaN \n",
- "... ... ... ... \n",
- "geoId/5548000 Madison ... NaN \n",
- "geoId/5553000 Milwaukee ... NaN \n",
- "geoId/5566000 Racine ... NaN \n",
- "geoId/5584250 Waukesha ... NaN \n",
- "geoId/5613900 Cheyenne ... NaN \n",
- "\n",
- "[499 rows x 5 columns]"
- ]
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 58,\n \"fields\": [\n {\n \"column\": \"place\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 58,\n \"samples\": [\n \"geoId/06001\",\n \"geoId/06011\",\n \"geoId/06069\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"name\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 58,\n \"samples\": [\n \"Alameda County\",\n \"Colusa County\",\n \"San Benito County\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Percent_Person_Obesity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.323152333425648,\n \"min\": 18.7,\n \"max\": 38.1,\n \"num_unique_values\": 53,\n \"samples\": [\n 23.1,\n 30.9,\n 33.2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Count_MortalityEvent_COVID19\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1658.130465436349,\n \"min\": 14.0,\n \"max\": 11176.0,\n \"num_unique_values\": 50,\n \"samples\": [\n 113.0,\n 14.0,\n 1748.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Count_Person\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1453959,\n \"min\": 1515,\n \"max\": 9936690,\n \"num_unique_values\": 58,\n \"samples\": [\n 1663823,\n 21811,\n 64753\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Median_Income_Person\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9335,\n \"min\": 23080,\n \"max\": 65802,\n \"num_unique_values\": 58,\n \"samples\": [\n 54302,\n 34163,\n 41870\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
},
"metadata": {}
}
@@ -759,10 +2215,10 @@
"# libraries we'll use for the visualizations\n",
"import matplotlib.pyplot as plt\n",
"\n",
- "!pip install heatmapz\n",
+ "!pip install heatmapz --upgrade --quiet\n",
"from heatmap import heatmap, corrplot"
],
- "execution_count": null,
+ "execution_count": 17,
"outputs": []
},
{
@@ -770,10 +2226,10 @@
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 632
+ "height": 883
},
"id": "U0u-9rvdCFe_",
- "outputId": "b9eeb94c-bf1f-4869-bc64-7765c331dbc8"
+ "outputId": "12d986ac-906c-437c-b815-7e7ba81b900f"
},
"source": [
"# List of DCIDs\n",
@@ -789,7 +2245,7 @@
" \"Percent_Person_WithMentalHealthNotGood\",\n",
" \"Percent_Person_WithHighCholesterol\",\n",
" \"Percent_Person_Obesity\"\n",
- " \n",
+ "\n",
"]\n",
"\n",
"# Build Data Frame\n",
@@ -800,19 +2256,17 @@
"plt.figure(figsize=(8, 8))\n",
"corrplot(df.corr(), size_scale=300);"
],
- "execution_count": null,
+ "execution_count": 18,
"outputs": [
{
"output_type": "display_data",
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr8AAAJnCAYAAACedDusAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5hcVZX38e8v3Z0QiAISZTAicURE5JKEBoZ7ENRBCIKAXJXoyEWdoDDwIIJjUFEYURQcUUQIvFwFMS8Xx8gQAnkJDDQQEi7CjILjbUQCIsRMruv94+yG09VVXdXd1VVddX4fn366atfZZ6996hhWr9rnlCICMzMzM7MiGNPsAMzMzMzMGsXJr5mZmZkVhpNfMzMzMysMJ79mZmZmVhhOfs3MzMysMJz8mpmZmVlhdDY7ADMDSTOAGeuvv/7xb3nLW5odTsOsW7eOMWOK8Td4keYKxZpvkeYKxZpvkeYK8PTTTz8fEW8EmDhxYkyePLkh4z700EOvjtsI8n1+zUaPqVOnxt13393sMBqmp6eH7u7uZofREEWaKxRrvkWaKxRrvkWaK8CGG274UER0A3R3d0dPT09DxpX06riNUJw/Z8zMzMys8Jz8mpmZmVlhOPk1MzMzs8Jw8mtmZmZmheHk18zMzMwKw8mvmZmZmRWGk18zMzMzKwwnv2ZmZmZWGE5+zczMzKwwnPyamZmZWWE4+TUzMzOzwnDya2ZmZmaF4eTXzMzMzArDya+ZmZmZFYaTXzMzMzMrDCe/ZmZmZjZqSbpc0nOSHqvH/pz8mpmZmdloNgf4+3rtzMmvmZmZmY1aEXEP8EK99tdZrx2ZmZmZWXt46vfPMX32dxo13ERJPbnnl0bEpSM1mJNfMzMzM+tHUqOGej4iuhs1mJNfszZ3xMXXsmL1mmHvZ3xXJzfMOroOEZmZmTWPk1+zNlePxLee+zGz2vzX+f9ErFo55P4aO44tz/hGHSOyIpHEmMZVfhvKya+ZtZ1ff/crxOpVQ+qrrrFs8amz6xyR1dNvr/z2oN9fdY3lLcd9ZoQiGhnDSXzr0b8Z/ucnVxJrVg+qjzq7+JtDjhuhiEbOr7//tSH9O6WusWxx4pkjEFGZsUZJ7ivpOmA62drg3wJfjIgfDnV/Tn7NrO0MNfEdbt9m+uPcqwaVNKizi00P/ugIRjRyhvIeter7WjSDTXyH2mc0GOo5WcRzOSKOquf+nPyambWBwSYArZowmFnjeNmDmZmZmRWCaOjdHhrKX3LRIiSFpKtzzzsl/UnSbYPczwJJ3enxTyVtVMcYZ0s6rV77GymS1kpaLOkxSTdKWr/ZMZmZmVljOPltHcuBbSWNT8/fC/xuODuMiA9ExJ+HHVnrWRERUyJiW2AVcFItnST5kxIzMysMSQ35aTQnv63lp8AB6fFRwHW9L0jaQNLlkh6Q9IikD6b28ZKul/SkpJ8A43N9npU0MT2eK+khSY9LOiG3zSuSzpX0qKT7JW1aS6Cpwnx+iudpSXum9g5JF6Sq6xJJs1L7vinupWke43Ixfi1VanskTZM0T9IvJZ2UG+90SQ+mfZ4ziGO6ENhygOM3U9ItkuYDd0raTNI9ucpx77yOSrE/Jun84R4/MzOzphKMadBPozn5bS3XA0dKWg/YHviP3GtnAfMjYmdgH+DrkjYAPgn8NSLeBXwR2LHCvj8eETsC3cDJkjZJ7RsA90fEDsA9wPGDiLczxfPZNDbACcBkYEpEbA9ck+YzBzgiIrYjW4v+ydx+/jsippAlqnOAw4C/A84BkPQ+4B3AzsAUYEdJe1ULLlVy9weWUvn4AUwDDouIvYGjgXkpnh2AxZLeDJwPvCeNv5Okg1PfqsdP0gkpse9ZtmxZtbDNzMxsGJz8tpCIWEKWOB5FVgXOex/wOUmLgQXAesBbgb2Aq3P9l1TY/cmSHgXuBzYnSyYhWxbQu674oTR+rW4u028/4PsRsSbF9ALwTuCZiHg6bXNlirvXLen3UuA/IuLliPgTsDKtWX5f+nkEeBjYOhd/OePTceoB/hv4IZWPH8AdKU6AB4GPSZoNbBcRLwM7AQsi4k9pXtfk4q96/CLi0ojojojuTTbZpPRlMzOzplCD/tdoXsPYem4BLiC72XM+UxJwaEQ8ld+4lrU0kqaTJaW7RsRfJS0gS/4AVkdEpMdrGdw503uH9cH2q7SfdbnHvc87yeb+tYj4fo37W5Eqt69SdqDKHb9dyNZbAxAR96Sq8gHAHEnfBF4aYKzhHD8zM7OmEM1Zj9sIrvy2nsuBcyJiaUn7PGBWSuKQNDW130P2UT2StiVbLlFqQ+DFlPhuTbakYKTcAZyYlhwg6Q3AU8BkSVumbT4C3D2Ifc4DPi5pQtrnJElvGmRclY5fH5K2AP4YET8ALiNbEvEAsLekiZI6yCrzg4nfzMzMGsRVqBYTEb8FLirz0peBbwFLJI0BngEOBC4BrpD0JPAk2UfvpX4GnJS2eYps6cNIuQzYKsW5GvhBRHxH0seAG1NS/CDwvVp3GBE/l/Qu4L6Uu74CHAs8N4i4Kh2/UtOB01PsrwAfjYg/SPoccBdZFfr2iPi/gxjbzMxs1PGXXFhTRcSEMm0LyNanEhErgBPLbLMCOLLCPifnnu5fbdyIuAm4aYAYZ+ceT889fp601jWtiT01/eT73gn0q7bmY4yIOWQXvJV77dvAtyvFVrLPcsey0vErHfNKsjXJpdtdR+7uG+XGqnb8zMzMbOQ5+TUzawPq7BrUVxars2sEozEbmsGex719bGS0aeHXya8NnqSzgMNLmm+MiHObEU856VZtd5Z5ad+I8P3E2py6xhKrVw25byva9OCPNjuEhhnK+9uq72vR/M0hxzU7hIYZ6r9TjTqXhZc9mL0qJbmjJtEtJyW4U6puaG1pi0+d3ewQbAS95bjPNDuEhtDYccSqldU3HKC/jV5bnHhms0MoLCe/Zm1ufFcnK1avqct+zKxxtjzjG80OwYpMtd0utRX5v2Zmbe6GWUc3OwQzM2tB7Zr8+j6/ZmZmZlYYrvyamZmZWR/ZBW/NjmJkOPk1MzMzsxL+emMzMzMzs5bnyq+ZmZmZ9eP7/JqZmZlZYYj2TH697MHMzMzMCsOVXzMzMzPrQ8p+2pGTXzMzMzPrp13X/HrZg5mZmZkVhiu/ZmZmZlbC9/k1MzMzM2t5rvyamZmZWT/tWvl18mtmZmZmfQgY0565r5c9mJmZmVlxuPJrZmZmZn3Jyx7MzMzMrEB8n18zMzMzsxbnyq+ZmZmZ9SG87MHMzMzMCqQ9U18nv2ajgqQZwIxJkybR09PT7HAaZvny5YWZb5HmCsWab5HmCsWab5HmWiROfs1GgYi4Fbh16tSpx3d3dzc7nIbp6emhKPMt0lyhWPMt0lyhWPMt0lz7U9te8Obk18zMzMz6adc1v77bg5mZmZkVhiu/ZmZmZtaH/CUXZmZmZlYkY9oz9/WyBzMzMzMrDld+zczMzKyfdl324MqvmZmZmRWGK79mZmZm1ofA9/k1MzMzs6KQlz2YmZmZmbU6V37NzMzMrC9l9/ptR05+zczMzKyfdl3z62UPZmZmZlYYrvyamZmZWR8CRHtWfp38mpmZmVk/XvZgZmZmZtbiXPk1MzMzs37atPDr5NfMzMzMSgh/yYWZmZmZWatz5dfMzMzM+hBq2wvenPyaWVs54uJrWbF6zbD2Mb6rkxtmHV2niMzMWlO7Lntw8mtmbWW4iW+99mEj4+T/cxsrh/H+jOvq5KKPHFjHiEbO5380j5Vr1g65/7jODr764ffXMSKrl1Ouvp2Va4ZxHnd2cuGxB9QxomJx8mtWEL/+7leI1asG3U9dY9niU2ePQERWL9/8t3tZtXbwSdLYjg5O3X/3EYho5Awn8a1H/0YaTuJbj/6Ndv5t97BqiDGP7ezgjAP3qnNEI2c4iW89+teqTQu/vuDNrCiGkvgOp581zlAS3+H0MxsJQ018h9vXiseVXzMzMzPrQ7TvN7w5+TUzMzOzvnyf39Yjaa2kxZIek3SjpPWbEMN0SbtV2Wa2pN/lYj2oUfFVU+4YSpos6bE67PskSR8dYt9X0u+6xFKy7ymSPpB7fpCkz1Xp8yVJ+6XHn23GuWZmZma1advkF1gREVMiYltgFXBSLZ0k1bMaPh0YMPlNLoyIKcDhwOWSanpfJHUMI7ZaDOkY1iIivhcRV9Vrf3U0BXg1+Y2IWyLivIE6RMQ/R8S/p6efBZz8mplZyxuDGvLT+HkVw0JgS0kbSLpc0gOSHpH0QQBJMyXdImk+cKekCZKukLRU0hJJh6bt3ifpPkkPp0rohNT+rKRzUvtSSVtLmkyWLJ6Sqqd7VgsyIp4E1gATq4x1vqSHgcMlnSzpiRTn9WmbN0iam9rul7R9ap+d5r9A0q8knTzYY5ged0j6gaTHJf1c0nhJb08xkcZ6R+9zSeflYrwgF8tp6fGWkv5d0qNpvm9P78GduWP6wYGCS+/hzZJ+Juk/Jf1L7rVLJPWkeM/Jte8kaVEa9wFJGwJfAo5I79kRab/fkbShpF/3/mGSzqXfSOqSNEfSYel4vhm4S9Jdkj4u6Vu58Y6XdOEgjrmZmVnTSI35abS2X/ObKrn7Az8DzgLmR8THJW0EPCCpt2I3Ddg+Il6QdD7wUkRsl/axsaSJwNnAfhGxXNIZwKlkyRLA8xExTdKngNMi4hOSvge8EhEX1BjrLsA6IKqMtSwipqU+vwfeFhEr05wAzgEeiYiDJb0HuIqsogmwNbAP8DrgKUmXRMTqQRxDgHcAR0XE8ZJ+BBwaEVdLeknSlIhYDHwMuELSJsAhwNYREbkY864BzouIn0haj+yPslXAIRHxl3Ts75d0S0TEAKFOAaYCK9PcLo6I3wBnpfe1g+yPm+2BXwA3AEdExIOSXg/8FfhnoDsi/jHNfSZARLwkaTGwN3AXcCAwLyJWK/0/NyIuknQqsE9EPJ/+YDlL0unpGH8MOLHM8T0BOAFg8803H2B6ZmZmNlztnPyOT8kKZFXLHwKLgIN6K47AesBb0+M7IuKF9Hg/4MjeHUXEi5IOBLYB7k3Jzljgvtx4N6ffDwEfGmSsp0g6FngZOALYpcpYN+QeLwGukTQXmJva9gAOTbHPl7RJSu4Abo+IlcBKSc8BmwK/rRBXuWP4ZuCZlOD2zndyenwZ8LGUAB4B7Ay8BPwv8ENJtwG35QeQ9DpgUkT8JMX7v6m9C/iqpL3I/iCYlGL9nwqxAtwZES+l/k8AWwC/AT6cEsxOYDOyYxvAHyLiwTTuX1K/AXafJctkye+RwHcH2jgiXlH2acKBkp4EuiJiaZntLgUuBZg6depAyb2ZmVlDCLXtBW/tnPyuSOtoX6XsXTw0Ip4qad8FWF5lfyJLkI+q8PrK9Hstgz+uF+arw5JmVBkrH+sBwF7ADLIq43ZVxlqZe1wt1nLHsNw+xqfHPwa+CMwHHoqIZanPzsC+wGHAPwLvqRIjwDHAG4EdU3X1WbI/VgbSb26S3gacBuyU/oiZU8N+KrmFLCF/A7Aj2TyruQz4PFml+YohjmtmZtZw7Xqrs6Ks+e01D5iVkmAkTa2w3R3Ap3ufSNoYuB/YXdKWqW0DSVtVGe9lsuUFg1XTWGn96eYRcRdwBrAhMIGsSntM2mY62ZKMvwwhjkFJVdt5wCWkRC999L9hRPwUOAXYoaTPy8BvJR2cth+n7G4JGwLPpcR3H7Iq7lC8nuyPhZckbUq2fAPgKWAzSTulcV+XlndUfM8i4hXgQeDbwG0RUe6u6n36R8R/AJsDRwPXDXEOZmZmVidFS36/DHQBSyQ9np6X8xVgY2W3+HqUbA3nn4CZwHWSlpAtQ9i6yni3Aoeoxgveeg1irA7gaklLgUeAiyLiz8BsYMfU9zzguFrHroNryJYp/Dw9fx1wW4rl/5GtXS71EeDktM0i4G/SfrrT3D5KVjkdtIh4lOzY/AK4Frg3ta8iW8JwcXqP7yCrCN8FbNN7wVuZXd4AHEvfpSd5lwI/k3RXru1HwL0R8eJQ5mBmZtYMvuCtxUTEhDJtKyhzwVFEzAHm5J6/QpmEMSLmAzuVaZ+ce9xDdoszIuJpYPsqcc6u0F7LWKvJ1veWbvMCcHC1sdItzAaKrdwxfBbYNve89GK+PYArequiEfEHsrW/FWOJiP+k/FKIXQeKKx9LmffwwNzjmRX28yDwd2VeKj3u+f3eBH3vy5Lff0RcDFxc0n8PwHd5MDOz1tHGX3LRtsmvNZ6knwBvp7Y1vW2v944iwKMRcWez4zEzMzMnvw0j6SyyL7HIuzEizm1GPL3SrcjKJWb79l6wVquIOKQ+UbWHtASl2rrwhlHXWGL1qiH1s9FtbEcHq9aWW4JevZ/ZaDG2s4NVawZ/Hvf2tfoS7XvBm5PfBklJblMT3XJSgjul6obW8rb41NnNDsFGyKn7797sEBpmXFcnK1evGVb/VjGus4OVQ0wGe/u3kjMO3KvZITTMuM5OVq4Zxnnc2Zjz2MsezMxawPiuTlYMIznq3YeNThd95MDqG7WJr374/c0OwUbIhcce0OwQCs3/wptZW7lh1tHNDsHMrC2Mac/Cb+FudWZmZmZmBebKr5mZmZn14a83NjMzM7NCEe2Z/HrZg5mZmZkVhiu/ZmZmZtaXfJ9fMzMzMyuQNs19vezBzMzMzIrDlV8zMzMz68Nfb2xmZmZmhdKutzrzsgczMzMzKwxXfs3MzMyshL/kwszMzMwKQoIx7Zn7etmDmZmZmRWHK79mZmZm1o+XPZiZmZlZYbTrrc687MHMzMzMCsOVXzMzMzPrw19yYWZmZmaF0q5rfr3swczMzMwKw5VfMzMzM+tL/pILMxtBkmYAMyZNmkRPT0+zw2mY5cuXF2a+RZorFGu+RZorFGu+RZprkTj5NRsFIuJW4NapU6ce393d3exwGqanp4eizLdIc4VizbdIc4VizbdIcy2nXb/hzcmvmZmZmfUhfMGbmZmZmVnLc+XXzMzMzPoR7Vn5dfJrZmZmZv2065dceNmDmZmZmRWGK79mZmZm1kd2wVuzoxgZTn7NzMzMrC952YOZmZmZWctz5dfMzMzMSvjrjc3MzMysQNo1+fWyBzMzMzMrDFd+zczMzKwPAWPas/Dr5NfMzMzM+vOyBzMzMzOzFufKr5mZmZn1JVd+zczMzMxaniu/ZmZmZtaHgDG0Z+XXya+ZmZmZ9dOmqx687MHMzMzMisOVXzMzMzMrIca0aenXya+ZWYs64uJrWbF6zbD3M76rkxtmHV2HiMysnfhuD2ZmNqrUI/Gt537MzFqBK79m1na++W/3smrt2iH1HdvRwan7717niKxevnbr3axaM8T3trODM2fsXeeIRtbXf7pwSPMd29nB6R/YcwQisqIQ7Vv5dfJrViB/nHsVsWZ1zdurs4tND/7oCEY0Moaa+A63r428oSa+w+3bLEONuRXnCnBzzxOsWbduUH06x4zhQ93bjFBEI2vOwodZvXZw8+3qGMPMPaeNUEQ5gjHtmft62YNZkQwm8R3K9mZmwzHYxHeofUaLwSa+Q+1jfbnya2ZmZmb9tOuyh6ZWfiWtlbRY0mOSbpS0fhNimC5ptyrbzJb0u1ysBzUqvmoknSXpcUlLUny7pPYFkrrrPNZMSd+p8z4/luJeLGmVpKXp8XnpuJ9Wp3EuzI3ztKQ/p/bJkh4r2bZu45qZmbUiAWOkhvw0WrMrvysiYgqApGuAk4BvVuskqTMi6nV58nTgFWBRle0ujIgLJL0LWCjpTRFR9bMHSR0RMSKLryTtChwITIuIlZImAmNHYqyREhFXAFcASHoW2Ccink/PZ9dxnFN6H0uaBUyt174rqfN5amZmZnUwmtb8LgS2lLSBpMslPSDpEUkfhFerjrdImg/cKWmCpCtSpXCJpEPTdu+TdJ+kh1M1eUJqf1bSOal9qaStJU0mS7hPSRXBqpfGRsSTwBpgYpWxzpf0MHC4pJMlPZHivD5t8wZJc1Pb/ZK2T+2z0/wXSPqVpJMHCGcz4PmIWJliez4ifl+60QBx7ijpbkkPSZonabPUvkDSt3OV7p0HOiaSjk3v12JJ35fUkX7mpP5LJZ2Stu13LKrYptyxSMfuoVT1PiHX/oqkcyU9mo7rpmX2eRRwXQ1jI2lK2s8SST+RtHHuGHWnxxNT4l7uPN1M0j25Y+nLr83MrAUIqTE/jTYqkl9JncD+wFLgLGB+ROwM7AN8XdIGadNpwGERsTfwBeCliNguIrYH5iurfJ4N7BcR04Ae4NTcUM+n9kuA0yLiWeB7ZFXdKRGxsIZYdwHWAVFlrGURMS0irgc+B0xNcZ6UXj8HeCS1fR64Ktd3a+D9wM7AFyV1VQjn58Dmyj7G/66kfvfwqXRM0j4vJjueOwKXA+fmuq6fqvKfSq9VOh7vAo4Adk/brwWOAaYAkyJi24jYjlTdrXAsBlLpWHw8xd0NnCxpk9S+AXB/ROwA3AMcXxLvFsDbgPm55rfrtSURi0viugo4I8W7FPhiDTHnz9OjgXnp2OwALC7dWNIJknok9SxbtqyG3ZuZmY08qTE/jdbsZQ/jU7IBWeX3h2TLDw7Sa2su1wPemh7fEREvpMf7AUf27igiXpR0ILANcG/6S2IscF9uvJvT74eADw0y1lMkHQu8TJbs7VJlrBtyj5cA10iaC8xNbXsAh6bY50vaRNLr02u3p2ruSknPAZsCvy0NKCJekbQjsCfZHwo3SPpcRMzJbfZ3FeJ8J7AtcEdq7wD+kOt3XRrjHkmvl7RRheOyL7Aj8GDaz3jgOeBW4G8lXQzcTpaoVzoWA6l0LE6WdEjaZnPgHcAyYBVwW2p/CHhvyf6OBG4qWYryy97lN/DacgtJGwIbRcTd6aUrgRtriDl/nj4IXJ6S9rkR0S/5jYhLgUsBpk6dGjXs38zMzIao2cnvinzSAaAsgzo0Ip4qad8FWF5lfyJLPI6q8PrK9Hstg5/7hRFxQS6eGVXGysd6ALAXMAM4S9J2VcZamXs8YKwpiVsALJC0FDgOmJPbpOwxSTE8HhG7Vtp1lef5/V8ZEWf2e0HagaxqexLwYeDjlDkWVdbF9jsWkqaT/fGza0T8VdICsj+SAFZHROS3L9nfkcCnBxivVmt47ZOT9Upee/W9T3887EU27zmSvhkRV2FmZjbKjcF3e2iUecCslAQjqdKFSXeQS2LSWsz7gd0lbZnaNpC0VZXxXgZeN4Q4axpL0hhg84i4CzgD2BCYQFbpPiZtM51sScZfBhOApHdKekeuaQrw6xrjfAp4o7KL5pDUJenduX5HpPY9yJaXvFQhjDuBwyS9KW3/BklbpOUWYyLix2TLLqYNcCwGa0PgxZT4bk1W3a4qbbsxfSv0FaU5v5hbp/sRoLcK/CxZxRvgsAHG3AL4Y0T8ALiMbEmEmZmZNUmzK7/lfBn4FrAkJUvPkN3RoNRXgH9VdpuqtcA5EXGzpJnAdZLGpe3OBp4eYLxbgZuUXVg3q5Z1vwAR8acax+oArk4foQu4KCL+nD5av1zSEuCvZBXbwZoAXJyWJKwB/gs4Ib9BpTgj4mlJhwEXpdg6yY7742mb/5X0CNBFVrHtNVPSwbnnf5fm/fP0fq0m+6NkBXBFagM4s9KxGMK8fwacJOlJsiT+/hr7HQlcn6sM1+I44HvKbsP3K+Bjqf0C4EfKLra7fYD+04HTJa0mu6tI631dmpmZFU62Hrc9K79NTX4jol/VLyJWACeWaZ9D7uP8iHiFMgljRMwHdirTPjn3uIcsKSEinga2rxLn7ArttYy1mmx9b+k2LwAHl2mfXfJ82wHieggoe4/iiJheQ5yLyZYglHN1RHy2ZPs59F1S0esG+q5x7lWuytnvWOT2P7nk+eyS5/ljsX+FfUzIPb4JuKnS/lLbs2Rrn8uOm45Rv8pyRPyCvufN2al9Dn3P0yvJ1gqbmZm1lHZNfkfjsgczGyHqrHTjkPpsb2Y2HJ1jBp+WDKWPFdtoXPbQNJLOAg4vab4xIs4tt32jpNt43VnmpX0jou73xspXja29bHpwMVZdjO3oYNXaoX23zNiOjjpHY/U0trODVWuG+N52tt57O9T5tuJcAT7UvU2zQ2ioro4xrF5b9fuy+vVplDHtWfh18puXktymJrrlpAR3StUNzQyAU/ffvdkh2Ag5c0a/25m3tdM/4O/FaWcz9xzd10B72YOZmY0q47vqU7+o137MzFqB/8UzM2tRN8w6utkhmFmbEmJMm1Z+nfyamZmZWV9tfKszL3swMzMzs8Jw5dfMzMzM+mnTwq+TXzMzMzPrS9C2a3697MHMzMzMCsOVXzMzMzPrp10veHPya2ZmZmb9iPZMfr3swczMzMwKw5VfMzMzM+tnTHsWfl35NTMzM7PicOXXzMzMzPqQ5AvezMzMzKw4fJ9fMzMzM7MW58qvmZmZmfXjZQ9mZmZmVhhtmvt62YOZmZmZFYcrv2ZmZmbWh2jfC96c/JqZmZlZX2rfNb9e9mBmZmZmheHKr5mZmZmVkJc9mNnIkTQDmDFp0iR6enqaHU7DLF++vDDzLdJcoVjzLdJcoVjzLdJcSyn9tCMnv2ajQETcCtw6derU47u7u5sdTsP09PRQlPkWaa5QrPkWaa5QrPkWaa5F4uTXzMzMzPpp1wvenPyamZmZWT/tuubXd3swMzMzs8Jw5dfMzMzM+mnXZQ+u/JqZmZlZYbjya2ZmZmZ9SNlPO3Lya2ZmZmb9+II3MzMzM7MW58qvmZmZmZVQ217w5uTXzMzMzPoQXvZgZmZmZtbyXPk1MzMzs37atPDr5NfMzMzMSshfcmFmZmZm1vJc+TUzMzOzfsbQnpVfJ79mZmZm1ofwsgczMzMzs5bnyq+ZmZmZ9TOmPQu/Tn7NzMzMrFT7fsOblz2YmZmZWWG48mtmZmZm/bRr5dfJr5m1nZP/z22sXL1myP3HdXVy0UcOrGNEVg9HXHwtK4bxvgKM7+rkhllH1ykis6H5zNXD/zfq28f636ihcvJrVhC/vfLbxOpVg+6nrrG85bjPjEBEI2c4/1GpR/9G+9qtd7NqzdpB9xvb2cGZM/YegYhGxnAT33rto1G+cNMdrBzC+9prXGcHXz7svXWMaGQN9TyG1juXW2igVw8AACAASURBVOHfKAnGuPJrZq1sKInvcPpZ4ww1YRhqP2uM4SS+9ejfaMM5H30uj4w2zX19wZuZmZmZFYcrv2ZmZmbWT7te8ObKr5mZmZn1IcQYNeanaizS30t6StJ/SfrccOfWkORX0lpJiyU9JulGSes3YtySGKZL2q3KNrMl/S4X60GNim8gki6U9Nnc83mSLss9/4akUyUd1HtSSDpY0ja5bRZI6i6z7+mSbitpmyPpsPT4svx+KsT36vYl7ZMlrUjH81FJiyS9s9K4QyXpWUkT0+Omn2tmZmZWH5I6gH8F9ge2AY6qlpdU06jK74qImBIR2wKrgJNq6SSpnssypgMDJr/JhRExBTgcuFxSTccovTkj5V5S7CmeicC7c6/vBiyKiFsi4rzUdjDZSTIsEfGJiHhiGLv4ZXrvdwCuBD4/3JiqGPBcq/M5NaBGjmVmZlZXyr7euBE/VewM/FdE/CoiVgHXAx8cztSasexhIbClpA0kXS7pAUmPSPoggKSZkm6RNB+4U9IESVdIWippiaRD03bvk3SfpIdThW9Can9W0jmpfamkrSVNJkuCTklVwT2rBRkRTwJrgIlVxjpf0sPA4ZJOlvREivP6tM0bJM1NbfdL2j61z07zXyDpV5JOHiCcRcCu6fG7gceAlyVtLGkc8C7g4XTsvpMq3AcBX0/zfXvqe3g63k/XcgxSnK9WjCX9Q+r7gKQfSPpObtO9UmX3V+WqwMnrgRfLjFHpGFVq30TSzyU9nirglf6v03uuTZe0UNItwBOSOiR9XdKDad8npv1uJumeXOV4z7TtnPR8qaRTyhyXiZKeTY9Lz9+y53nJ/E+Q1COpZ9myZVXeETMzs5GnCMY06Ics1+rJ/ZyQC2US8Jvc89+mtiFraGUqVcL2B34GnAXMj4iPS9oIeEDSv6dNpwHbR8QLks4HXoqI7dI+Nlb2EffZwH4RsVzSGcCpwJdS/+cjYpqkTwGnRcQnJH0PeCUiLqgx1l2AdUBUGWtZRExLfX4PvC0iVqY5AZwDPBIRB0t6D3AVMCW9tjWwD/A64ClJl0TE6tJYIuL3ktZIeitZlfc+sjd+V+AlYGlErFJaNxMRi1Kid1tE3JRiA+iMiJ0lfQD4IrBfGmJPSYtzQ74VKF0K8WbgC2TvzcvAfODR3CabAXukOd0C3JTa3572/TpgfWCXMoe70jGq1P5F4P9FxJckHQD8Q+kOS841UtzbRsQz6f9UL0XETumPh3sl/Rz4EDAvIs5VVslfP403KVWSyb2vA8mfv1+lzHkeEct7N46IS4FLAaZOnRo17N/MzKydPB8R/ZZmjpRGJb/jc8nVQuCHZNXMgySdltrXI0u6AO6IiBfS4/2AI3t3FBEvSjqQ7CP9e1NSN5YsIex1c/r9EFlCMxinSDqWLME7gixZG2isG3KPlwDXSJoLzE1tewCHptjnp6rl69Nrt0fESmClpOeATcn+oilnEVniuxvwTbLkdzey5PfeGueWPy6Tc+0LI+LVr4qRNKdM352Bu3vfF0k3AlvlXp8bEevIKqub5tp/mZaRIOkIsiTv70v2XekYVWrfi/S+RsTtkvLV5HLn2m7AAxHxTGp/H7B9rkK9IfAO4EGypS5daT6LJf0K+FtJFwO3Az8vc2xK5c/f91H+PH+yhv2YmZk1T6xrdgQAvwM2zz1/S2obskYlvyt6E6BeyjLJQyPiqZL2XYDlDExkCcZRFV5fmX6vZfBzvDBfHZY0o8pY+VgPIEvMZgBnSdquylgrc4+rxdq77nc7smUPvwH+CfgLcEWVcUrHG8pxqXXfUHkZwi3UHutQlTvXoO/7JGBWRMwr7SxpL7L3cY6kb0bEVZJ2AN5PtnTmw8DHyZbE9C4bWq9kN6Vj9TvPzczMRr11o+LDyAeBd0h6G1nSeyQwrO8ob+atzuYBs1ISjKSpFba7A/h07xNJGwP3A7tL2jK1bSBpqwr9e71M9tH7YNU0lrIL0TaPiLuAM8iqiRPIqo/HpG2mk5X2/zKEOBYBBwIvRMTaVFnciGzpw6Iy2w91vpU8COydlp10kiqyg7QH8Msy7ZWOUaX2e0gnvqT9gY0HGcc84JOpwoukrdL7ugXwx4j4AXAZMC0tsRkTET8mW/4yLe3jWWDH9LjSGufesWo5z83MzKxERKwB/pHsv6dPAj+KiMeHs89mXo3+ZeBbwJKUOD5DltyV+grwr5IeI6tYnhMRN0uaCVyX1mxClpg8PcB4twI3pQuOZkXEwlqCjIg/1ThWB3C1pA3Jqn0XRcSfJc0m+yh9CfBX4Lhaxi1jKdldHq4taZsQEc+X2f564AfKLqQbKDmrSUT8Lq1ffQB4AfgF2ZKLanrX/Irs7gufKLPNbMofo0rt55C9H4+TJf7/PcjpXEa27OPhlJT+iezuGNOB0yWtBl4BPkq2vOQKvXbXjzPT7wuAH6X1w7cPMFat57mZmdmoERHE6Fj2QET8FPhpvfbXkOQ3IiaUaVsBnFimfQ4wJ/f8FcokjBExH9ipTPvk3OMesoSGiHga2L5KnLMrtNcy1mqyymbpNi+QJVYDjtV7QdUAsa0lu1tCvm1myfM5pGMXEffS91Zn03PbPU9a8xsRC4AFlfYbEdNzL10bEZemyu9PSOuay8QxIf1+FhhfYT6vjjvAMarUvoxsLW25/ZY7114dKz1fR3bLtdLbrl2ZfkpNK22IiF/Q93w6O7XPoe/5W/Y8NzMzG/ViVCx7qDt/w5sNxuxUxX2MrII5t8r2Noqoa2xD+5mZmY1GhbwJv6SzyL7EIu/GiDi3GfH0krQJcGeZl/ZN1c6miojTqm9lo9VbjvtMs0NomHFdnaxcvWZY/VvJ2M4OVq1ZO6R+NnqN6+xg5RDe13z/VjLU87i3bytpmX+jRsmyh3prrX/h6yQluU1NdMtJCe6Uqhua2YAu+kixllWfOWPvZofQEOO7OlkxjIShdx+t4suHvbfZITRUUc5jgG8fW6x/o0ab1vlXwMzMCu2GWcO6u5GZDUoQo+NWZ3Xn5NfMzMzM+gp8wZuZmZmZWatz5dfMzMzM+hkt9/mtNye/ZmZmZtaflz2YmZmZmbU2V37NzMzMrET4Pr9mZmZmVhBB297qzMsezMzMzKwwXPk1MzMzs/687MHMzMzMiiF8twczMzMzs1bnyq+ZmZmZ9ZF9u3F7Vn6d/JqZmZlZXwGsa881v172YGZmZmaF4cqvmZmZmfXjZQ9mZmZmVhDt+w1vXvZgZmZmZoXhyq+ZmZmZ9demyx5c+TUzMzOzwnDl18zMzMz6iTZd8+vk12wUkDQDmDFp0iR6enqaHU7DLF++vDDzLdJcoVjzLdJcoVjzLdJc+4mAde257MHJr9koEBG3ArdOnTr1+O7u7maH0zA9PT0UZb5FmisUa75FmisUa75FmmuROPk1MzMzs/687MHMzMzMiqJdv+TCd3swMzMzs8Jw5dfMzMzM+mvTyq+TXzMzMzPrK6Jtb3XmZQ9mZmZmVhiu/JqZmZlZf77Pr5mZmZkVhpc9mJmZmZm1Nld+zczMzKyPINr2Pr9Ofs3MzMysr8DLHszMzMzMWp0rv2ZmZmbWX5ve7cGVXzMzMzMrDFd+zczMzKwfX/BmZmZmZgURvuDNzMzMzKzVufJrZmZmZn2Flz2YmZmZWZF42YOZmZmZWWtz5dfMzMzMSkTb3ufXya+Zmdkoc8TF17Ji9Zph72d8Vyc3zDq6DhFZEUWbLntw8mtWAP91/j8Rq1YOub/GjmPLM75Rx4hG1ud/NI+Va9YOqe+4zg6++uH31zmikfX1ny5k1RDmO7azg9M/sOcIRDRyvnDTHcN6b7982HvrHNHIqEfiW8/9WH0N5zyG1jqXRyMnv2YFMJzEtx79G204/1EZTt9mGUriO5x+zVS097Zovn/XA6xeO7hqY1fHGE7cZ+cRimhkDPdcbMi5HIDv9mBmZmY2cgab+A61j9XCX3JhZmZmZtbyXPk1MzMzs36iTe/2ULXyK2mtpMWSHpN0o6T1GxFYSQzTJe1WZZvZkn6Xi/WgRsU3EEkXSvps7vk8SZflnn9D0qmSDpL0udR2sKRtctsskNRdZt/TJYWkT+TapqS204YY72RJVS8NTts9lovjtpLX50g6bIgxzO6NX9JMSW/OvfaspIll+syUtE7S9rm2xyRNrjLW50uebyrpWkm/kvSQpPskHTKUeZQZq+z7aGZmNipFNOanwWpZ9rAiIqZExLbAKuCkWnYsqZ5V5enAgMlvcmFETAEOBy6XVNOyDkkdw4itmntJsad4JgLvzr2+G7AoIm6JiPNS28HANtTmMeDDuedHAY8OI97JwGi6L85M4M3VNkp+C5w1yP2/mvxKEjAXuCci/jYidgSOBN4yyH2amZnZKDXYNb8LgS0lbSDpckkPSHpE0gfh1erbLZLmA3dKmiDpCklLJS2RdGja7n2povZwqiZPSO3PSjontS+VtHWq3J0EnJKqulXvyxMRTwJrgIlVxjpf0sPA4ZJOlvREivP6tM0bJM1Nbff3VhVTZfLyVMn7laSTBwhnEbBrevxusmT1ZUkbSxoHvAt4OB2776QK90HA19N83576Hp6O99Mlx+DXwHqpYing74F/631R0tsl/SxVMRdK2jq1z5F0kaRFaQ69VdrzgD3T2KekCu/CdPweVpUKfDmSdpR0d4phnqTNUvvxkh6U9KikH6vkU4UUUzdwTYpnfHppVv4cyXW5DXi3pHeWieGotP1jks5PbecB49O+rwHeA6yKiO/19ouIX0fExWn79XLn8yOS9qnSPl7S9ZKelPQTYHxpXGm7EyT1SOpZtmzZYA+vmZlZ3WVF2XUN+Wm0mpPfVMndH1hKVl2bHxE7A/uQJWobpE2nAYdFxN7AF4CXImK7iNgemK/sI+uzgf0iYhrQA5yaG+r51H4JcFpEPAt8j1TVjYiFNcS6C7CO7EYdA421LCKmRcT1wOeAqSnO3ur2OcAjqe3zwFW5vlsD7wd2Br4oqatcLBHxe2CNpLeSVXnvA/6DLCHuBpZGxKrc9ouAW4DT03x/mV7qTMf7s8AXS4a5iazavRvwMJC/L9WlwKxUxTwN+G7utc2APYADyZJe0nFYmMa+EHgOeG86fkcAF5WbJ68lzIslLSZL4EnH5WKyc2JH4HLg3NTn5ojYKSJ2AJ4E/qHk2N1E9p4dk+JZkV7qc47kuqwD/oVcNTfF8GbgfLLkdgqwk6SDI+JzvPbJxjFkf5w8XGF+AJ/OwortyCrsV0pab4D2TwJ/jYh3kb1nO5bbaURcGhHdEdG9ySabDDC8mZmZDVctSxPGp2QGssrvD8mqmQfptXWl6wFvTY/viIgX0uP9yD42BiAiXpR0INlH+vdmhUrGkiWEvW5Ovx8CPjS46XCKpGOBl8kStV2qjHVD7vESsgrjXLKPviFLDA9Nsc+XtImk16fXbo+IlcBKSc8Bm5J97F7OIrLEdDfgm8Ck9PglsmURtcgfl8klr/0ozWVr4DpeW2YxIT2+Mc0fYFyu39zI/uR6QtKmFcbtAr4jaQqwFtiqwnYLI+LA3ieS5qSH7wS2Be5IMXQAf0ivbSvpK8BGwARgXoV9lxroHLkWOEvS23JtOwELIuJPKbZrgL147X0uS9K/kp0DqyJip/T4YoCI+IWkX5Mdj0rte5H+WIiIJZKW1Dg/MzOzJmvOetxGqCX5XZHW0b4qfbx+aEQ8VdK+C7C8yv5EliAfVeH13qrl2hrjy7swIi7IxTOjylj5WA8gS1ZmkCVP21UZK19drRZr77rf7ciWPfwG+CfgL8AVVcYpHa/fWBHxP5JWA+8FPsNr66PHAH8uff8qzEEVtjkF+COwQ9rf/9YYb36/j0fErmVemwMcHBGPSppJtra7FgMdizWSvgGcMcg4AR4n/bGT9vXp9ElFzxD2ZWZm1tp8n98+5pGtuxSApKkVtruD7CNh0nYbA/cDu0vaMrVtIKlSNbHXy8DrhhBnTWMpuxBt84i4iyxp2pCsErkQOCZtM53s4/a/DCGORWRLC16IiLWpMr4R2dKHRWW2H8p8/xk4IyJe/dqXFOszkg6H7I8WSTtU2U/p2BsCf0gV4o+QVW4H4yngjZJ2TTF0Seq94O91wB/S0ohjaoynFnPIPnV4Y3r+ALC3pInKLm48Crg7vbY6t2RlPtn66U/m9pVfh5w/H7Yi+7TjqQHa7yFdPChpW2B7zMzMrKmGmvx+mezj8CWSHk/Py/kKsHG6yOhRYJ/00fNM4Lr0MfB9ZB/XD+RW4BDVeMFbr0GM1QFcLWkp8AhwUUT8GZgN7Jj6ngccV+vYJZaS3eXh/pK2lyLi+TLbXw+cni6eenuZ1/uJiEURUe5j/GOAf0jH/3Hgg1V2tQRYmy5CO4VsjfBxqf/WVK/sl8a1CjgMOD/tYzGvVaa/QLb++V7gFxV2MQf4XskFb7WMeRHwpvT8D2Rrme8iuxPGQxHxf9Pml5Kdx9dERJDdaWNvSc9IegC4kteqyN8FxqTz5AZgZlr6Uqn9EmCCpCeBL5Et0zAzM2sJsS4a8tNoVZcVRMSEMm0rgBPLtM8hS1Z6n79CmYQxIuaTrcMsbZ+ce9xD+hg8Ip6mStUsImZXaK9lrNVk6zZLt3mBLBkacKx0G7iBYlsLvL6kbWbJ8zmkYxcR99L3VmfTc9s9T1rzGxELgAUDxRcRz5DdAaJ0m9LxJ6Tfq8kuDMvLH/sz0nbPkq3lLRtHfv8RsZhsSUlpDJeQJYgDxf9j4Me5lyfnXsufI3Poe+5dRO7ivIi4jmw9dOlYZ5BbIpES5SNLt0uv/S/wsUG0r6i0LzMzs1Et/PXGZmZmZiOqq2PwaclQ+lixtdzXG0s6i+y2Xnk3RsS55bZvFEmbAHeWeWnfiPDNW62pNHYcsWpl9Q0H6N9KxnV2sHLN2uobVujbasZ2drBqCPMd24JzLdp7WzQn7rNzs0NoiOGcx739G6LAd3sYVVKS29REt5yU4Fa6q4JZU215xjeaHUJDffXD7292CA11+gdqvhSi5X35sPc2O4SGGN/VyYrVa+qyHxt9WuU8Die/ZmZm1gg3zBpN3zJv1l6c/JqZmZlZf+va84I3J79mZmZm1ldE2y578CWSZmZmZlYYrvyamZmZWX9tep9fJ79mZmZm1p+XPZiZmZmZtTZXfs3MzMysRBBtuuzBlV8zMzMzKwxXfs3MzMysrwDWteeaXye/ZmZmZtafL3gzMzMzM2ttrvyamZmZWR8BbXvBm5NfMzMzMysRXvZgZmZmZtbqXPk1MzMzs3687MHMzMzMiqGNb3XmZQ9mZmZmVhiu/JqZmZlZiQAvezAzMzOzogjf7cHMzMzMrLW58ms2CkiaAcyYNGkSPT09zQ6nYZYvX16Y+RZprlCs+RZprlCs+RZprmV52YOZjZSIuBW4derUqcd3d3c3O5yG6enpoSjzLdJcoVjzLdJcoVjzLdJc+4nw3R7MzMzMzFqdK79mZmZm1o8veDMzMzMza3Gu/JqZmZlZf77gzczMzMwKIYJY157Jr5c9mJmZmVlhuPJrZmZmZv216QVvTn7NzMzMrL82XfPrZQ9mZmZmVhiu/JqZmZlZH0H73ufXya+ZmZmZ9RUBvtuDmZmZmVlrc+XXzMzMzPrxsgczMzMzKw7f7cHMzMzMrLW58mtmZmZmJcJfcmFmZmZmBREQ69oz+fWyBzMzMzMrDFd+zczMzKw/X/BmZmZmZtbaXPk1MzMzs/58wZuZmZlZ/R1x8bWsWL1mWPsY39XJDbOOrlNEBkG06bIHJ79m1nbOv+0eVq1ZO6S+Yzs7OOPAveockdXL1269e1jv7Zkz9q5zRFYPw01867UPKwYnv2YF8j8/uZJYs7rm7dXZxd8cctwIRjQyhpocDbdvM93c8wRr1tVepekcM4YPdW8zghGNjKK9t9+/6wFWrx189a2rYwwn7rPzCERk9XLJnf8x5Pf2k/vuMgIRlQi87MHMWt9gEt+hbG/NM5jEdyjbW3MMJTkaTj9rnFZ4b6NN/53w3R7MzMzMrDBc+TUzMzOzEu379cajuvIraa2kxZIek3SjpPWbEMN0SbtV2Wa2pN/lYj2oUfENRNKFkj6bez5P0mW559+QdKqkgyR9LrUdLGmb3DYLJHWX2fd0SbeVtM2RdFh6fFl+PxXie3X7Mq9tJemnkv5T0sOSfiRpU0kzJX2n1mOQ9vWspImD6ZP6zZT05sH2G2B/ZY+lmZnZqBTrGvPTYKM6+QVWRMSUiNgWWAWcVEsnSfWsaE8HBkx+kwsjYgpwOHC5pJqOraSOYcRWzb2k2FM8E4F3517fDVgUEbdExHmp7WBg2FfBRMQnIuKJofSVtB5wO3BJRLwjIqYB3wXeONy4BmkmMKjkt87nnpmZmdXZaE9+8xYCW0raQNLlkh6Q9IikD8KrVbpbJM0H7pQ0QdIVkpZKWiLp0LTd+yTdl6qJN0qakNqflXROal8qaWtJk8kS7lNSVXfPakFGxJPAGmBilbHOl/QwcLikkyU9keK8Pm3zBklzU9v9krZP7bPT/BdI+pWkkwcIZxGwa3r8buAx4GVJG0saB7wLeLi3mpoq3AcBX0/zfXvqe3g63k/XcgxSnK9WOSX9Q+r7gKQflFRu95K0KM2ltwp8NHBfRNyaO64LIuKx9PTNkn6WqsL/khvzqPTePSbp/ApxHZviWCzp+5I60s+c1G+ppFNSLN3ANWnb8ZJ2lHS3pIeUVdE3y831W5J6gM9I2jedm0vTezWuyrE6QVKPpJ5ly5bVcnjNzMxGVAREREN+Gq0lqlSpmrY/8DPgLGB+RHxc0kbAA5L+PW06Ddg+Il5Iyc9LEbFd2sfG6aPvs4H9ImK5pDOAU4Evpf7PR8Q0SZ8CTouIT0j6HvBKRFxQY6y7AOvIbhIy0FjLUkUTSb8H3hYRK9OcAM4BHomIgyW9B7gKmJJe2xrYB3gd8JSkSyKi32X5EfF7SWskvZWsynsfMIksIX4JWBoRqyT1br9I0i3AbRFxU4oNoDMidpb0AeCLwH5piD0lLc4N+VagdCnEm4EvkL03LwPzgUdzm2wG7JHmdAtwE7At8FDFg5wdh6nAyjT/i4G1wPnAjsCLwM8lHRwRc3OxvAs4Atg9IlZL+i5wDPA4MCl9woCkjSLiz5L+kew86JHUBVwMfDAi/iTpCOBc4ONp92MjoltZ1fo/gX0j4mlJVwGfBL5VaTIRcSlwKcDUqVPbc4GVmZm1nnXt+Z+k0Z78js8lVwuBH5JVMw+SdFpqX48s6QK4IyJeSI/3A47s3VFEvCjpQLKP9O9NSd1YsoSw183p90PAhwYZ6ymSjiVL8I4Adqky1g25x0vIKoxzgd5kbQ/g0BT7fEmbSHp9eu32iFgJrJT0HLAp8NsKcS0iS3x3A75JlvzuRpb83lvj3PLHZXKufWFEHNj7RNKcMn13Bu7ufV8k3QhslXt9bmRfIfOEpE1rjOfOiHgp7e8JYAtgE2BBRPwptV8D7MVrxxNgX7Lk+MH0nowHngNuBf42JdG3Az8vM+Y7yZLyO1LfDuAPuddvyG33TEQ8nZ5fCXyaAZJfMzMza5zRnvyuSOtoX6Us8zg0Ip4qad8FWF5lfyJLkI+q8PrK9Hstgz82F+arw5JmVBkrH+sBZInaDOAsSdtVGWtl7nG1WHvX/W5HtuzhN8A/AX8BrqgyTul4Qzkute4bsvcHskrsQF/DNJj55wm4MiLO7PeCtAPwfrJlLh/mtYpuvu/jEbFrad+k2rlnZmbWQqIpF6M1Qiut+e01D5iVkmAkTa2w3R1kFTfSdhsD9wO7S9oytW0gaasK/Xu9TLa8YLBqGkvZhWibR8RdwBnAhsAEskr3MWmb6WRLMv4yhDgWAQcCL0TE2lSB3Yhs6cOiMtsPdb6VPAjsnZaddJKq2VVcC+wm6YDeBkl7Sdp2gD4PpHEmKruI8Cjg7pJt7gQOk/SmtM83SNoiLYcZExE/JluqMi1tnz8WTwFvlLRr6tsl6d309xQwufd9Bz5SJg4zM7NRr13X/LZi8vtloAtYIunx9LycrwAbp4uYHgX2SR+JzwSuk7SEbBnC1lXGuxU4RDVe8NZrEGN1AFdLWgo8AlwUEX8GZgM7pr7nAUP9jtmlZHd5uL+k7aWIeL7M9tf/f/bOMtyu8mjD90MSggTX4l4ohWKFIkWKO8GtEKBFChR3istXnFK0SHAJDikUCVZocXcobsUpAULk+X7Mu8PmEAjJOTkr6+y5rytX9ll7rb3n3ctmzfvMDLBXSdiafQTvjxK23wKOIpzTe4FXCcnFD23zJeGw76xIansG+APw/g9s8w6wL3AHoSl+2PZ1bdZ5hnBubym/662E5nh64M4isbkIaESG+wJnlOXdgPWBP5fj6TFGUAXE9lfAVkC/sk+HAWf80HiTJEmSJOk8xmrZg+1eI1j2JbDdCJb3JZyVxt+fMwKH0fYA4JcjWD5L0+uHiBJnFO3m/COx85DvWf5jvmswoe9tu85HRNmxH/yuRpLWD9g2FJi4zbI+bf7uS/ntbN/Lt0udLdu03gcUza/tO4E7v+9zbS/b9NYlts8qkd9rKDrcEdjRq+n1c8AqIxjScFvLems0vb4UuLTtBm1+78v5tt66wUJtF5RI8FVNix4j5Clt11u2zd+3Ewl5P7hekiRJkoy1mJQ9JEk7OKRET58CXuHbSWhJJ6LuPcbo+kl1dB9n1C7no7p+Ug09uo3efhrd7ZLOI/dtdYzVkd+xDUkHEE0smuln+8gq7GkgaQpCz9qW5W1XXjjW9p4jXyvpDKbtPbrqmXoxbvdufD1k6GhvW0fWXaTdvWlqQavt2+2WW7RqE5IxxA7LL1a1CSOhGj1uZ5DO7yhQnNxKHd0RURzcBUa6YpK0CPus8R11StJF2G/NHyoEk9SV8Xt058vBQ9r9GUkHM6xryh7ySEmSJEmSpFIu33nTqk1IWoh0fpMkSw5a/QAAIABJREFUSZIkSZLvkrKHJEmSJEmSpCUwXVbzmymDSZIkSZIkScuQkd8kSZIkSZKkDV23vXE6v0mSJEmSJMl3GZayhyRJkiRJkiSpNRn5TZIkSZIkSb6DU/aQJEmSJEmStAR2ly11lrKHJEmSJEmSpGXIyG+SJEmSJEnyLUzKHpIkSZIkSZJWImUPSZIkSZIkSVJvMvKbJEmSJEmSfJcuWuc3nd8kSZIkSZLk29hdVvObsockSZIkSZKkZcjIb5IkSZIkSfJdMuEtSZIkSZIkSepNRn6TJEmSJEmS79JFNb/p/CZJkiRJkiRtME7ZQ5IkSZIkSZLUm4z8JkmSJEmSJN/GwLCUPSRJMoaQtCaw5vTTT89DDz1UtTmdxsCBA1tmvK00Vmit8bbSWKG1xttKYx0RXVX2kM5vkowF2L4BuGHBBRf8/SKLLFK1OZ3GQw89RKuMt5XGCq013lYaK7TWeFtprK1EOr9JkiRJkiRJG5zVHpIkSZIkSZIWoovKHrLaQ5IkSZIkSdIyZOQ3SZIkSZIk+TYGD+uakd90fpMkSZIkSZLv0kU1vyl7SJIkSZIkSVqGjPwmSZIkSZIkbXCXTXhL5zdJkiRJkiT5FgacsockSZIkSZIkqTcZ+U2SJEmSJEm+SxeVPWTkN0mSJEmSJGkZMvKbJEmSJEmSfBsbD+uamt90fpMkSZIkSZLvkrKHJEmSJEmSJKk3GflNkiRJkiRJvksXjfym85skSZIkSZK0wVnnN0mSJEmSJEnqTkZ+kyRJkiRJkm9jYFjKHpIkSZIkSZJWIWUPSZIkSZIkSVJvMvKbJEmSJEnSSWx0yiV8OXhIuz9n/B7duXznTTvAou/HWe0hSZI689qZR+PBX4/yduoxLjNvt98YsGjMsdtF/Rk0ZPRvLj27d+fEzVfvQIuSjmKXi25kUDsch549unPy5mt0oEVjjj9deSuDhgwd7e17du/G4euv2IEWJR1BRzi+Hfk534+7rOwhnd8kaRFGx/Ftz3ZV0h7HtyO2r4K+9zzC4KGjdqPq0W0c+vx6oTFk0ZihPY5vR2zfmbTH8e2I7avg9NvvH63jeIflFxtDFiVdkXR+kyRJugCj6jCM7jZJMibJ43gswil7SJIkSZIkSVqJLlrqLKs9JEmSJEmSJC1DOr9jMZKGSnpM0lOS+kmaoAIblpW0xEjWOUTSW022rtVZ9o0MSTNIuk7Si5JelnSypHHLe30k/bUDvuMwSSuU17tWsZ+SJEmSpGMpCW+d8a+TSed37OZL2wvY/jnwNbD9j9lIUkfKWZYFftD5LZxoewFgA+BcST/q2JLUrR22jeyzBVwNXGt7TmAuoBdwZEd+j+2DbN9W/twVSOc3SZIkScZS0vmtD/cAc0iaUNK5kh6Q9KiktWF4FPN6SQOA2yX1knSepCclPSFpvbLeSpL+JemREk3uVZa/KunQsvxJSXNLmoVwuHcrUd1fj8xI288CQ4ApR/Jdf5b0CLCBpD9KeqbYeVlZZ3JJ15Zl/5Y0f1l+SBn/nZL+I+mPP2DOb4CvbJ9XbBsK7AZs3RSdnbF81ouSDm5sKGnz8hs/JulMSd3Kv74luv2kpN3Kun0lrV9smQ64Q9IdkraWdFLTZ/5e0okj+w2TJEmSpGpMJLx1xr/OJhPeakCJ5K4K3AwcAAywvbWkSYEHJDWijgsB89v+SNKfgU9tz1c+YzJJUwIHAivYHihpH2B34LCy/Qe2F5L0B2BP27+TdAbwue3jfqStiwHDiPPmh77rQ9sLlW3eBma1PaiMCeBQ4FHb60j6DXABsEB5b25gOWAi4HlJp9sePAJz5gUebl5g+zNJrwNzlEWLAj8HvgAelNQfGAhsBCxpe7Ck04DNgKeB6UskniZbG5/9F0m7A8vZ/qA4+wdI2qvYtxWw3Qh+s22BbQFmnHHG7/tpkyRJkqTzMFnnN6mE8SU9Vl7fA5wD3AesJWnPsnw8YKby+lbbH5XXKwAbNz7I9seS1gB+BtwbigDGBf7V9H1Xl/8fBtYdRVt3k7Q58D/CcVxsJN91edPrJ4CLJV0LXFuWLQWsV2wfIGkKSROX9/rbHgQMkvRfYBrgzVG0t8Gttj8EkHR1+d4hwMKEMwwwPvBf4AZgNkmnAP2BW37og21/XiLxa0h6Fuhh+8kRrHcWcBbAggsu2DVTa5MkSZJkLCGd37GbL4uOdjhFx7qe7efbLF+MiFj+ECKcvU2+5/1B5f+hjPqxcWJzdFjSmiP5rmZbVweWBtYkIqXzjeS7BjW9/iFbnwHWb15QHOiZgJeISHlbZ9PE73S+7e+0NZP0C2BlQg6yIbD1SGw9G9gfeA44byTrJkmSJMnYQ5Y6S8YS/gHsXJxgJC34PevdCuzY+EPSZMC/gSUlzVGWTShprpF83/8IecGo8qO+S5EYN6PtO4B9gEmIpLR7CKkBkpYlJBmfjaINtwMTSNqifE434Higr+0vyjorFn3x+MA6wL1lu/UlTV22m1zSzEU2Mo7tqwhJx4haY33r97J9PzAjsClw6SjanyRJkiQVYexhnfKvs0nnt34cDvQAnpD0dPl7RBwBTFaSsx4ndKjvA32ASyU9QcgQ5h7J990A9P6xCW8NRuG7ugEXSXoSeBT4i+1PgEOAhcu2/wds+WO/u8kGA72JpLoXgReAr4hIbIMHgKsI6cVVth+y/Qzh3N5Svv9W4CfA9MCdRYpyEfCdyDAhX7hZ0h1Ny64A7rX98aiOIUmSJEmSjiVlD2MxtnuNYNmXjCBpynZfoG/T358zAofR9gDglyNYPkvT64eIEmfYfgGYfyR2HvI9y3/Mdw0mdLZt1/mIiMT+4Hc1ks9+wLY3CDnFiN7rS9Nv1ua9y/m2LrnBd6K9tvs0vT4FOKXNKksBWeUhSZIkqRfZ3jhJklGhUY0DeNz27VXbk3RtenQbh8FDR236sEe3nPxLxi7yOB6LMJVIEjqDdH6TH42kA4gmFs30s92hTSNGFUlTEDrdtizfqORQBUW+MTJNdaehHuPiwV+P1nbJ2E+fX49Igp7UmZ7duzFoyNB2bV83dlh+sapNSGqGpA0IqeQ8wKJl9voHSec3+dEUJ7dSR3dEFAd3gZGu2OLMvN2IJMpdk57duzNoyJB2bZ+MnfTs0Z1Bg9uxb3vUZ98evv6KVZuQjAHG79GdL9txDDd/zpjFdZE9PEWUZz3zx25Qn6tAkiTJj+TEzVev2oRkDHHy5mtUbUKStIvLd960ahN+PDUodVY6y1KKYP0o0vlNkiRJkiRJqmRKSc1yhbNKA6gxQjq/SZIkSZIkybfoNdvcLHXFvZ3zZdIHthf5/rd1GzDtCN46wPZ1o/p16fwmSZIkSZIkYy22V+jIz8v6IEmSJEmSJEnLkM5vkiRJkiRJUksk9Zb0JrA40F/SP0a2TcoekiRJkiRJklpi+xrgmlHZJiO/SZIkSZIkScuQzm+SJEmSJEnSMqTzmyRJkiRJkrQM6fwmSZIkSZIkLUM6v0mSJEmSJEnLkM5vkiRJkiRJ0jKk85skSZIkSZK0DOn8JkmSJEmSJC1DOr9JkiRJkiRJy5DOb5IkSZIkSdIypPObJEmSJEmStAzp/CZJkiRJkiQtQzq/SZIkSZIkScuQzm+SJEmSJEnSMqTzmyRJkiRJkrQMsl21DUmSFCS9D7xWwVdPCXxQwfdOAnxawfdWMd5WGiu01nhbaazQWuNtpbECzGl7Euj0+9HMtqfqpO+ie2d9UZIkI6czT/5mJD1ke5EKvvcs29tW8L2dPt5WGmv53pYZbyuNtXxvy4y3lcZavvesxuuq7kedQcoekiSpkhuqNqATaaWxQmuNt5XGCq013lYaK7TIeNP5TZKkMmy3xIUWWmus0FrjbaWxQmuNt5XGCq0z3nR+kyQBOGvkq3QpWmm8rTRWaK3xttJYobXG20pj7XQy4S1JkiRJkiRpGTLymyRJkiRJkrQM6fwmSZIkSZIkLUM6v0mSJEkyFiJJVdvQWUhKfyTpNPJgS5IkSZKxDEkzADtJmrRqW8Y0kqYDDin/J8kYJ53fJOnitFL0qBlJM1Vtw5imsW8lTS6pR9X2dDZd/NieENgc2FLS5FUbM4b5Algc2EXStFUb01lIml/S4lXb0Yqk85skXRzblrSKpBMlbSppxqptGtNImhLYX9KcVdsyppCksm/XAs4GurTT0OTozyJpLohju1qrxgySutt+HjgW+C2wh6QJKjZrjCCpm+1PgA2BOYC9W8EBltQTWB2Yu/yd/lgnkj92knRRmpyFeYBDga+BRYEDJM1WpW2dgICpgYWrNmRMURzf5Yl9e6TtNySN21WdpDLeNYBrgAMl3V2kAV0O20MkrQ7sANwM/A7YVdLE1VrWsZQHuKGSxrf9MbAV8BNg367uANseBLwB7CBpMtvDqraplUjnN0m6KMVZWAq4ADjI9j7A+cA7wF6S5qjUwDGApJkkTWn7feBU4sbSpcbZ9FAzHjAFcDXwlaStgH7AoV0xul+ivXsDKwPXA1MBnze93yUkEAomBP4AnG77QGA5YBXCKZywUgM7iKaZi+WB0yUdTEgftiT27Z6SflKpkR1I03k7m6QdAWxfRDzcbFzeS5+sk8gfOkm6Ni8AsxKRI2w/SkTOPgH2kzR+hba1mzJ12Hg9N7AZcLOkXwPvAn8HJinvd4nrXXEYViX2o4mp4ssIjej1RNS7S+l/Jc1OPLRdBmwA7AmsbvsTSb+BriOBcDAQeBaYrERFnwH+BOwL/L4r6LubHs7PBgYAXwJbE87vNoQcYG9J41ZnZfuR1EvS9GW8SwLLAitJulrSxsAwYBqAjP52Ht2rNiBJko6jKZoyK9DD9gsl8vmopBNs7277iRKF+ML2lxWbPNqUMWwgaRDwHnAQsAnwPrA+0AtYG/iVpPVtD63M2A5E0s+B3YHdbD8l6Z/AMNvvSZoP2I2I8HcJJC0LnEJEfdcGpgTWsP1Oecg5QdIGtl+s0Mx20XTezgKMC7wMPA38Cvg38CTxMHcT8C/bgysytd00jXUywuk7yfYFJaI9L3H89gO2AGa1/XWF5nYE0wEnS7qTuC71sX2upD5EhHtjYEZJL9u+sDozW4t0fpOkC1FuKusA+wBfS3oWuBL4BfCApJ62d7T9eKWGtpOS/T6EmDJ8hpjFWrXIHc4u708GDCW0v8sAAxo33orMHm2aHIbuQG9gfiLB7aniBI5XIqCnAXvafrJKezsKST8F9gf2sH2LouzX3kDv4ixtCexXZ8cXhp+3qwPHAS8CExNO4HyE1GHc8npn2/dXZ2n7KWNdCViV0LxuK+kS2+9LehwYD5jd9sPAR1Xa2h4UZdt+Zvs2SQ8CRwK72n4awHbfst6/iMS32crftbxG1Y0uMQ2YJEkgaWrC8d2ayJ4eAGxERFiWJpyGuessASha112BKW1/QEybfkpJbpM0ju2PbL9MREifAhaC+k6NN02Zzkg4SOcBG0laqKzSiI5tafvGKmzsKNpod+cijt0NAGxfSiT4jUfIWXa2fUPd9b4lcW8f4Le21wJuA/Ygqj0cCJxZ3ru1Ois7BknzEjM0l9k+gZDvnK4oTTgnMAMwqEITO4pFgPdKkuLDxP7dSdIyjRXKteohYqZmeUnT1vUaVTdqewNMkmSEdCNmdN6z/R5wBzAYWM32f4FZbD9XZ22Z7a+AE4HBknYiEtsaNUL3tT1M0iKS5rP9OaFv/o2knjV3kpYB7iIivkcDrwFbS1rU9jDbA+oeFYThjv7iko6wfQOwFzCOpF3L+9faPsH2gbbvaGxTpc0dwMfAf4mZCmwfQTzQHGr7Fdu32X6wSgPbi6RuikokxxMzUeOU8/EE4D+EnvtU4GjbT1Vnacdg+3rgdeAvwIS2jweOAs6RtECR7JxSAhFTEbkZSSeRsockqTFN0+FLAENt31+m0faV9OcylfgYMLekbpSbaxdgXCKp6zfA+MQNZg2gf5luXI+YEn+ScH73LaWFaoekHrYH2z5K0lCgP7Aa8Fci8et3kp4D/tcFnMAGbwMbShpi+5Ay7b+6pL1sH1u1ce2l6bydAOhu+zNJHwALSnqzyHf6AUtVa2n7aZrG72H7i6J1PQ1YCXi6jHVvSVMAQ2x/Wuep/6Z9O4PtNyXdC6wsaXDRNovQsI9POPrDitxjKdvvVmp8C6GaHl9JkhQUmf+nAlvY/qekXwJrEo7huUSW+O9s316hmR1CuXFMTEgZ1gG+IjLgHwdOJiIoKwIv2r6vKjs7iiJrWA84uUTukbQfkTjTmyj1Nbntl6qzsuMomt6BtgdLmpko49bf9kGSehMPOIfZfq1SQzsARXOSHYnEzPOBt4DtgFcJGc96wN51lrE0OYKrANsCzwEPAfcRYx4AnFPkS7WnabxrAb8nklJfkrQ1sAJwle2rFCXcujtqc3dzF0nGrRPp/CZJjZE0FSFt6GP7oaKnm4mInC1EJH09XnfHt0SthzWiQZJ2ACayfYyiXNI2RKLQOUXuMVw7WtcIEgzXgp4H3E849x8S+/QmYAJgkSIDqT1lrH2JxKB/Fgd4FiKp8WLbh0uauvEQUGckzU/s122J0nSHE5HeO4FfArMTv8HddY6CApREzOOJusV9gNlsr6ioQnMucCsRAR1SnZUdh6Jd8VnAprafbDi3JaHx98AlwJV1lp51BVL2kCQ1RVEC6h0iOrZVmU78KaEffKg4hnW/cU5m++Ny8/g5EfEFeAw4WNI5Jdo9DhE1G97drI7jboocLUAkdb1NRHjPJ5L8TiG0gQOAK+ru+DaNdybbr0u6iUhSHCzpQduvSrqRbyoCvFyxyaNFSUSdGnimOD29gFccFQ2QtDPhBL5t+/Lmbet2HI/gmjMtcW72AhYgEnEhju3fAlN3Bce3JK8NA34O/Av4XNIuwAqKeuprEGX6nk/Ht3oy4S1JakiJLhxPdPh6EBhIZE2vDNwIzAz1u3E2I6kXsJ2ia1t34FhJ/SStT2RP30UkjHS3fTewo+1XqrS5PTQ5gqsTUcEdiEoWvyead8wI/Jl42Lnb9iOVGdtBNE0RnynppyUpaABwAKGTXAeYHli+xo7vT4HrCKnKimXx54SD/wtFE4uXiIoOdW86MwHh/CFpmSJdGRe4gkj2WtX2a4pSZ/sDb3WBRL5GEm2j9fRtwEREw5khwGFEOcZ5bZ/vmpeZ7Cpk5DdJakaZCt4PuNH2fWVa7Yby3uLALoTOt+4MIZy/HoSsYQ2iIPxixPhPBZYknKPXbH9SkZ3tQtIkACXRZ2IiiW3nEtGehYj6vkt06ZsSOMr28xWZ26FIWgw4AtjE9vOSxrV9oqRXiTqwixDjfaFKO0cXRdfBfsCxti9oLHc0mnmU2Nf3SnqPeMjZshpLO4xJiaorXxNJmevY7itpOUKm9JGinfFJRD3q2kd8mzXNkh4iZuO2BHqV8S5EPPScU6WdybdJ5zdJ6kdPIjlmVUnX2n60RB/mJaKFh9n+e10lD4o6vuM5WtdORtQnXpKoZnE2cLGkLYkEkpWI6HctE6BKdHsf4ANJ59n+WNIXRMc6yrT/qcDCjhq3b1do7phgVuARYKik3Ygp4kmAtW1fI2mSumb/FynOHsB5zY6vpB0Jp35rYF1gUSI5dUfb/6zC1o6g7KO3Jd1KPLSeYfux8vYBwFGSbidmnPey/feqbO1ImmbhNib06l8AlwIDFbW5zyeaW2TEdywiE96SZCynaTp8QUI39xJgIhI4LXBmSazoDkzmKG9WO2cBhjsMvyKcg4HAgkSh/wWAVYAXbJ9Y1p2ccJJr7RCWTPC5CQ3o6ZIOI6Key9n+XNKGhE5yM+DrOu7XBk3H8iJECbqviP07LxHJf4BogHBjkbLUGkl/Ay5sjEXSesTMzAfEufvromcf3zVvNV7268+Idr4TEAlu1wIXOeptN9adtDzY1vIa1aBpzBsTJSRfI47h9Yu0Yw4imXESRyOLZCwiNb9JMhZTkiga02qXAMsCzxIVHa4jIsC7SVrQ9hBHzczaan1LIsi7RET3KOA+R1mr24FbgNkk7VvW/ajh+Dbp7mqBonoFALbPBR4FNpO0DdHA4h/AI5L2ITSDZ9seVNf92qAcy6sClxMPam/a3gRYwvaZxD1pLUITW1v0TQfFr4mHlgZvE87RukQDhCXL8lonLpb9ug5R5eAzR4OHI4nukhtI2kTS38tMx2eNbaqzePRpnLtN9r9FVOs4j2gm9JqkNYGtgDfT8R07Sec3ScZCSuIIRBekiYlM/9WAu4kb6Mu2nwSuBN7gm/a2taXJYXiFqOowAPiZpDlL5Oh64J/A9JK+1Q2pTjdSSVMSzTjmbFq8EfAlkSy0he0DCT3oi8C2tm/ufEs7njLmY4Heth+UNE/R/Y5fZjYuI7SgtUzmkzSRpOkdjQvmJc5PSdoKwPa/bP9X0ZRmBr6Rt9Tm+B0RitJtBxHttR+QNC3wPFHKbRlC4tHX9ueuaaUDRQ1qSqT+15L+qOjS9jER4b4JmFLSrwgd+7/rHM3v6qTsIUnGMkqSzHFEsfvngQuIqeCpiaSvTWy/XKbDbwa+sl1r57dpCnFtokHHDsCcRNRsAuDA8v+iwCO236nM2A5A0omElGNrItL7uu29Ja1LRPdfIKbLP63Oyo6n6HkPAgYRU8JLEg7gncANwFQu5b/qSJn2v4BIcluF0HP/gjhuPy3vzQL8H7B7F3qoWYxIsr2AKLe4OFGreGtC0z1e0bPXUupQItYHA28SDXXOJK698xKzUp8RreU3JdpUn2P7urqOtxXIyG+SjEWUm+fZRJTzaeBnhLZ3cSKDeL3i+C4EHArMVXfHF4ZPmy5PjOlKRzvfZ4iIykCiVNIjwAd1dXwl/UzShQC2dyOi+M8AX9jeuyy/mtC9zgNMUpWtHUVDjiJpFknzEFr1J4FpiPGvTUT4J7P9ep0dX4ByzN5CSHausf0AcBVwITHmw4HNgX3q7Pg27deZFDVsXwP+TnRbfJ6o63sCMIvtL21/DLWOcJsorzg7McY/2t6FKNfWAxhs+y9EqclN0/Ed+8nIb5KMJUgal4j4PWR7/ZLAth9R8utvRGTs30SVlqWBPxVtXZdA0q7AR7YvkDSeSwMHSdMRXa8+tX1nlTaOLoparxcRlSn2tX1FkXn8iahasb5LZ7qy/k/q6uS3pUTzDyAcpM+BY4DnygPPL4EzgAPq7Aw2Ux7iFiWivuvaHtDm/fFsf1V356joWncnGs4MIqLZX9oeVKb+zwX+UNdzFoYn1Ta6S35Yxrw/kXi7ZVlnNeL4XtX2Z9VZm4wKGflNkrGEEsH9LbCMpK0dNTAHAnPY/oDQhd5LNLXY3vb1dUv0GgnTE5FAmhzfxYAhtq+r601U0lxEsuKZhMRhMRie3Hc4MW16laKmL+W9ruL4zkXo1VcgIoMLEXVQKRrfPwGH2765rsdyUxR0sZKwOMT20UTC0zWS5i3/jpLUAxgMtY6CNmaoDiWqkHQn9uswoJuk+YjEt33qes4CKDpKXk/MxF0t6WSic9vRwCBJe5RV/0OMvdYNSlqNjPwmyViCvukBvyTQn2h3OgWwVal40GVo0vj+FBjf9mOKmr6nE8l8B5SkoPOJJJr7KjV4NJHUk0jwesD2RZJmI5L2drHdr6wjYpp8BeDXQO2rOgBImoEo6bUH8D9Ct76Z7f9IWpiQ9UzuqA1b9yjoakTjhn8APyF0nwcRzQ2OIsq6HVzXmZryYNbb35QZXAJYnpDoHMI3+3V+4uFmovJ3LfdrOU+vJx5ObyLyDS4FniDO5wWJhNTxiADFX2xfW421yeiQzm+SjEWo9IcvEc/biKjYMSViNKSON5LvQ9HW9mCiusOHxDTpF0TB+MGEE/En2/0rM7IDkDS5o9NT4+FmK6Kqw8HAwPIQICLC/2K11raPpuN3GULmsSmwIzAH4SA9X2QBJwJr1vWhTtIUtj8sr7sT+tZrbQ8oUdHVgB62jy5a56+LVr+uzuCswH3Aybb/T9LURDv1aYClywPMqkR1h981fpu6Imlz4Be291J0Hfy6JL1dDbxoe0dFabfViTrrD9V137Yq2eEtScYiiuMwju37Ja0MXCfpf7ZPr9q2jkTR5GAvop7vesQU6hdEOaSVJE1BZIi/VaGZ7aLhCNr+qCxqlHh6gciCn8H2c431iLJmtaThIJTjdzYi2rmF7XtKdL8n0FvRvW47Ykq8ro5vd+ASSY/Z3sf2kKINXRsYYPsZSTMDO5Xf5dnGtnV0jspD2yuKsl7XS+pu+whJ/YjKDutJeg74M3Bg3R3fwtTAVBBytDLmzyWtD9wuaXYiOPFv2++W9Wq3b1uZ1PwmyVhGkwN8H+EYHidpBn1TB7cr8AWwG6EV3JaIoMwGHCtpWdsf1tzxVdmPPy8Z8dM0bo627wXuAU5RdPaqZd3TBsW5vVDSYZL6EA1YpiQ06jhaUp9P7POpgZ1s31hXjW/R4u8ILCXp0LL4WKJW8e/L328QwaXJKjCxwyjH8dDi/L1ElFrcuOhdzyMa7fyaKE+4fxfKQ7gBmFnSShD7XFF7fSBR7gxHzeJ3K7QxaQcZ+U2SsZDiOHWzfbeiaP4nVdvUHpo0vlMD/3OUhELSQcBZth+RdAOwLuXmUleaxvobYur/HuBDSefZfrCsdiEh65iMaG5RS8qU/jnEFHhPojX1V0R0d3dJe9k+dkR6yLpFyiTNRJS8Gmj7JUmbAJdKMqH3vQnYRVERYC6iqsd73/+JYzdNx/HSwEqSXiE0zSsQ+QiyfRxwc3GOh3SFqf/ivL8N3AisJmmY7dtsf6FI5puZqFGd1JjU/CZJJ9N0U1mCaHTwGJHk9Z0bZeOm0ulGjgEkrUHUyIQobXWXpI2I7OkTCCnArrbvrsrGjkLSUkSy03VEstPaxL7+q6OzWQ9gRtv/qdDM0aY4CBMSDyrn2t5d0QHrYKKl6/GSliOc4CdsH9XYro7OkaQJCc3rbES96dOIGs2nOFi2AAAgAElEQVRvEVUsLiSqefQk9NyfFH1zLcfboOizzwZOJRo6DCEivq8Rv8e5tg/9/k+oL4pmQ2sRzv6L5d/2xLXrqiptS9pPOr9JUgElOeR4orrBH4CTiQjosKZ1GglSkxH1Qs+pxtr2o2jKcTSRIb0ckSl+DtHoYA0iQegi23+vzMgOoOnB5m6iQcnMtgcqSn6tBiwBnOSaVq9o0BTp2x44jKgEcK+kg4lM/z0ljQcsRUgEdrf9SpU2twdFDe51iX04BeEAL0q04e4BbAD8zfZBlRnZwZQHnH2I7oOXKOptLw8sYnuXckxP2xUeVr+P8kA3M7AF4fA/VZIaa/1Qk6TsIUk6HUkTAb2BVYHpiALx1xapQyOzuOH4TkJ0OatVdKUk/Kxs+6widfgjMdP9JPCkpIFAH6C7owTY5bYH1/Wm0mT3OMBQ20tLeoCQPfS2/UJxJroTusHaImkq4HJJ29g+Q9JQ4EZJFxCtfPtA1GqWdA/Rjvqj7//EsZuyb78ushwTOvW3ifbFGwIzENPgB0q6tDnBrW7om+TLRtfFcYE+kq51VHS4D9ha0ky2XwBeqOs5+2MocrNPiHJ9zcu75HhbiXR+k6STsf0/SW8SSTIzA2vbfldR+uttSQ8Xx3dSoB8xzfbPKm0eDaYG9i0RwtMk3QJsL2k722faPqfcWH8n6d6G5KOON5WmaO8KwCKSPrB9tu1FJd0v6Urb65dp8Ddsf1G1ze3B9vuSngAukLSp7b9JGkyUqlvf9quSetoeZHsQ8XBXS5oeQie2/ZmiwsFgIsHrS9t9y3rXEl3AahndljSB7S/KA/iCxHXpeqL73oTEuXwI8XDXg6Zk+Tqes/Ct83YKYt99/H2OfOM4aN6u0w1OOpSulD2eJGMlJeKHIut/nrL4ReIGc5Tt1yQtSskYLxfk8YEBwGF1cnwlzSlp5ZLYtRnw++LwXkLoBheW9DsAR/m2beucFATDI2SrAH8BHgWOlnSipF62FwPmlnR9WbfWjq+izBfAKUAv4DZJMxcncFvgdEW1jto6vDD8XJ22OL5rA7dI+guwoe2riWoAv5K0O4DtlxuOb+N8rwvlIfsISYtLWhy4nJAnXUNco24GpiU0vpcCJ9p+tSJzO4xy3q5FOPl3SVrjhxxfSRNI6pGOb9cgI79JMoZpusj+H9EW8xbgSGB+YCNFeag5gD1t31M2GwxsYvv5KmxuB3MA/SWtabu/pB2BU0uw5CxJw4B1SkT4DCJhqLYUR2dSYCdiCnwaYkp8HuBkSTva/rkiubH2FJ3vqoTO90hgS8IxXMn22YqOdv0lTQ985vqWcdueOE77EJ3pTgCGEg9zE5aZi+7AykUC8Hpjwzo5R2X2ZUKiI91mhLO7lqP+9PHA74AzbG9bpExDbL/VFaKfkuYFdiaSMn8KHFVmLK5qWqfh+E4K3EEcC89VYnDSoaTzmyRjiKZpNRE6wY2JiO+9RM3Tw4iIyqzAe7afLuvKUeGhVo5vGe9Nis5Hl0razPYNTQ7wsOIgdScShWrlKDSjbxpYGPhY0jaEE3wk0fp0KuBVQsZyqGue4NaG5YFrbF8JXCnpRGCApOVtnyrpete0NF/jnLW9fzkXLwMusX2FIoHvI2DvEgE8Q9JddZ25UCSs7UNUc7iFSE5cgTh+n7O9h6RjgP0lHW37kca2dT1vG0iaEdgVGGz7KeApSUOAg8u+vUzfzrvoB/zRdjq+XYSUPSTJGKI4vmsQpYF+CUxo+0uiq9lqwHG2X7E9wPbTjW3qGi1rOPq2rwe2Ai4uEeD7iIoWe0va3valjsS32qEoedWow7ywpHWLHvQ9YFyiZu94RP3e24Dr3UVK1TXxKjB+4w/buxHd6y4ukd+3oZbT/xMA85XXvyJmai4E1pc0ne2vgH8SUeCNJM1QY8d3HkLe8CjwdnFs+xHXqt8o9OvY3pto2DG0Kls7ijbH43tEEGKYpN+WiO91xMPrwU2Sl8kIicuhTbNySRcgS50lyRhC0fnqTKA/Ufvzc6Ic0mOSpiSco01dGj7UlaYI9/zAxETU6ANJvYnOXpsUCcSSxDWnNhrmZhSJMb8H/kVk9/clnIf5iDq+rwBHEPVQZwd2tP2PSoztIJr27aLABIQc5zWitu2ficYOsxF63/Md3etqR5mN6AUcR4xxDWAN249LOhlYjCg3+LaiRvNErmkFC0m9CIfuEtt/a/PeLMA6RJOOG2zf1OkGjgGajuNlieN1nDIL1YeYlbsfuNL2IElT2/5v2a4P8JrtOyoyPRlDpPObJGMASQsTju85tk+XtADRwncawkl4uEyvDa7U0A5C0mrAicDVhHZwHUfXtrWIUm29S2SllhSnYBNgEsLxnRE4wfZDiiz4FQjH+D3iQedr2/+uxNgORtHi9a/AlUS90/0J2cqRwIdEV7c/uqY1mhWl27Ykpv+XIcrTnWl7z6Z1TiL28Uq2367E0A6iROfPB7Z2dC3rTpTnc3l/fqJBy8+AvYGP6i5zgOENO04BziJab79I6H3XA5Ylao5fSPhFtZx9S348KXtIkjHDY4RjsAGA7ceIaMtnRHmviYip4toj6edEA4tViBvIhMBFkpYoEoj1iJa3tUTR6elq4EFiKvx/hE57EQDbhxCayUuAGWzf3RUcXwUTArsAe9neH1gaOJBwjNYkdJOr1dXxLcwKzElIcwYD6wM/l7SDpMkBbO9KdOubtTIrO44hRGLq6hBJjAzf3ZqSkLRcBRxu+8O6O76SukkaB9iUeGA9yfbiRLOSU21fRDQteajOsrNk1MiEtyTpANpM/U8BPG97ZUnXS7rY9ma2nyi6s4G2/1exye2iTbb3s0Slg5mIG+YUkv4M3CxpBdvXjGCbWlCkK/2JknO3lWXnEM0OZldUObjF9mFNU+ddgrKvBkr6D1GlRLb/I2lrIiLYz/YHwAeVGtpObD9QpAxrAwsT0of3iQ6MXyhqGG8IbFD3mZqSqDlUUl9gUUnP236i4fApSp1tDGxn+/MqbW0vTdebCRy11V8jahQ32Ai4pJy3Z6TT21pk5DdJOoDi+K5FJIzsDJwoaR/bawETSrqqrPe47ZeqtLW9NDn6q0vaFxjXUZJtPuCustoASkWHBjV0fOchpkHHo0R5AWy/A1wAfEokBzUiaAe55lUdGklBijq3P5HUDXgB2IFI4gPoRhe4dzQnQBWt8hXEg+vehH57D6IV99bApXV1fNskek2sKG/WD5gI2Kxx/Epahqg1fnFXcXwlrUzUnu5BVM/ZRtKixeGdl6i2MynxMJu0EKn5TZIOoGSKXw3sX7Su8xE3z5uIG82dwM62H6/Oyo6jZIOfAOzeFBFdldCEvkGUw/qD7furs3L0UZQ3+hsR3ewnaQDwhu0tm9aZgdAMTgAcXaKgtaVEBYeV/Xgc8fAyA7AWofOdG3id0PgeXCQttaRNAtQvgScJyc5sRG3bDwgN8H+BSfwD3b/GZiRNA8xt+67i5B5IdNw7lqh2sB0hzXoD+AnRdKe2+7WZ4vieAmxve0BZtiEx5jeIOuuHdJXxJqNGOr9JMpo03UDHA74myiDtbvvfZdmWwJzNiTN1pWgBJ7H9cvn7r8C/bV+kaFgxpNxolwQWB+603b9Ck9tF0br+pBGlL9Gym4HXbfdpWm9GoGedo/mKTnSfl9ezESWwdrF9X5GvLAmsTDQCmBL41Pb9dXQGm1GUITycmK1ZlZDvHEm05v4jkbx4jGvclU/RgW4hIt9gK6K2eC/igXwr21eXB/dJIGY16rxfm67JkwG7A7cTlRzWJCL4RwAvE1VpxrX9ZJ3Hm4w+tZ+6SpIqaLrILkeUtBpGTJseJGluR03Qd4GZJU1Ypo9rSXHkNyNqYo5XFo9PTBfCN9eRXkB/23s5SpvVqs5rgxIBHQiMVxwDbH9NZMDPWDS/lOVv1N3xBc6StFlZ9CExPfwfANv7EFnxB9l+pOib7y/v1dZhkDQdoflslKibgciBORh4h6hucXmdHV8A2ycATwDrAv+1fZ/tW4hyZmdJ2tb2F7bfKXKeWu/Xck1eiZiBGkIkofYjZi3+SbQgt+3nXWqN13m8yeiTzm+SjAblIrsCMTX6cFl8LqF1vUnSAYQs4BzbA23Xtkh8ceT7EhUb9i/T/ecSTStWsf11SZT5O1HftrFdLW8qZep/DWKM88M3iUJEg5J5JV1UpY0diIF/ABuWKeHPiIeaVZrWuRUYWIFtY5L3gT8ROuZDiMhgf+IB58/AC7afrcy6DkLSFLaPIVrzTiNpJUV75juIxLaTJE2nqIZQe4rcbAPgPtuHAtsAO9k+DDiHqNRSy4fypGPJag9JMoqUiGYPInK0r+07i3P0GXCcpCcIHegWrmnR/wYNHSjRjnl6IiFoG6JW5jbAOZL+DiwB7OGaN+wAkDQvoYlc1/azkqYmdJKflkz5JWlKgKsjRaIyDlGP+HxJgwiZznuEVv1yRfvbj4HfAvtWZmwH0DRTsyQxQzHU9m2KTm5P2H5V0vREA5OT6prcBt8a69xEt7J/OFoxT0CUcRsm6b4y/hlc02YdzZSZtV7ANUTk/g0AlyYdkjYhdOsHNyLcSWvTJZ72kqQzcfA18BEwQ8kcbhSIXwB41Pa1XcDxVYmCLk8khjxDVDnoRWT/P0zoe48nurjdWFepQxsmJab+eygaWFwBPC1pJgDbQ+uayAfDy7fdQuhb/1acvhuJyhb7Ebre1YG3CC3obrb/Xud9W5zBNYhp71mA4yVtSlSyWFvSxYTW+cq6R3zLWNcGTiOa6mwsaZsigXgG6AMsVaK9n0D9WlE3aLbb9qeEnGMyorZ4M+MC+xSNcy3HmnQs6fwmyY+gccGUNKukmcviR4huXnOVG84viC5nk1dkZodSxrQqcRO9rSy7n4j6TgDsA0xq+0XbTze2qcre0aVp3y4uabXy0NKdiP6+QkgArgR+U52VHYOknxHTv8cRmf9vEfrtr21fRjzc7AcsYvtU2wfavh3qt2+L1n6C8npiogXzqkSb8c+Bu0vUczZCF7qua9qsQ9L4TcfxlESkfkciUfE84FeSNrd9EqEBftf2sDKrU7t9C9+KcK8InCHpj0QZvo2A3ST9rrGu7fMbD3B1HGvS8aTsIUlGQtNFdjXgDOBfkgbb3lzSnMTUYk+iycMRjpq3taVpvOMAmxNtUO8tkbPehDP8VyIj/usKTe0QyljXBI4hunxhe43G+5IWJLS+l1ZjYcegqFhxFjHkC8uydQgpy2yS9rN9SZlC3kHSgxQnqTqrRw9JkxKVDe6S9A9Cs/whIe1Yg6h08GYZ//O2r63O2vZRxnokMa3/aVnck6jmNLiMf3FgW0lfFQ1w7WlKbjuWGPt2wEK2+xSZww2KFvKnN29TkbnJWEaWOkuS70GlhFd5PTfRyvVC4FEimjKO7Q2KfnJO4GPbT3eF6IKkpQjd3JrAXkS5oDeJDOoViU5YvYrOudaUBL5LCSf/RUmLEIluFwPzEFHf3WzfUKGZHUKR5ZxI1LSdh4j8HkE4hKcQWuY3iLJ271ZlZ0cgaX9gRuDvtm+QdBAxW7Gk7ceK/vdMYDPXtP62pPFtf1l06b2AGR01ffclNPon235JUm+i4sPnwAF11fmWa+2UwFu2P5G0K5GQOTmRYLyu7TfKugsDE9m+syp7k7GXjPwmyQiQNBXR/ehmouzTOUT06HXbX0jamGiNeYft5YhEIaDLRBeWAqayvYekz4EHbD9TdK/z00Uc38I7RDmvIyW9SxT7n4iIIu0kaV3bT1RqYQdRnL4/EiWghtresLx1fkn+mtT2C8CXlRnZDpofWG0fVZyjvSQNIyqWdAf6SrqCqHawX40d38mJ0oq3EhU7NgA2l7QXUZN6deCyMtbtieYduxLHd+2c36JVv5rQ4y+hqLbzAfFw+imwpu13ywzdzI2Ib1cIRiQdT2p+k2TEzEVExtYmphB3JSo8LC9pgnIx3RT4QNKi1ZnZMYwgCeTfROtPbPctju86RLH8s+rs+DZpIxeQ9GtC83kcUf7qKkLqcSTQ0EPW1vFt3q+SJpU0qaO+6WbAlyU62oiSrQDUucrBFETt2rmaFi9NJDutDfyCaGpxOPA40fnrhromQJXo7UBCx7y07VMJzfb+wISENOnPxGxNb6LM1wzU0/GdFbie6KS4LiE/ux54iHCG7ymO75JEBPjlxrbp+CYjIp3fJBkBJenpYsIB/CPwHHFT6QNsoKiVadsb2H6gOks7hqKf+5WkHcvfdxK+01HEi56Ek3hA3TOmy1jXIfSvvQnN4DS2d7R9F/BroirAbRWa2W7KFPHS5fXqRB3ma0ri0xOERnIVSZcRkoddbD9amcHt5ysiAniApNklXQ68aPtXwGOEA7w6IYPob/s+qJ9zpKaavLYPAN4G9pO0bIl29ieSFhe23c9R5WFSQu6ylWtW6qtca1YjZuBeArB9CPAAMUPxF6KZ0J3EGPdyNPJIku8lZQ9J0obGNJntu8uNZm3CAT6ZyKI+BegmqW8dk4EajGA6sAfwW0lzEFKA04gyUOPaHiTpxOI41noasegjfw8sR2SGLwk8WRz8aYg2sIfYvr7mY90MWEjStMSY9iQigv3KuC6UtAtwGVEGqq6VDqYlkhX7EI0r9iVmLm50dKjD9mmS9iQedu6jvrKOKYHDJR1u++2yeFHCud1UUZf7VEk9gAMlPWr7Y+J83tT26xWZPtqUa04/4tjdoDjD8xNR7PdtvwYMUJTsG2L7vZqft0knkAlvSTICmi+ekpYlHOD3gFOB+YBhtv9dnYXtQ1I3l65zZcpbwJPAUGABwpFYkmgL+lvbV1ZkaofQZn9OBRxFTI2uAWxp++UigXgF+Mz2Z13hBippbyI5cZDtLcqyZQmd5D62z5HUy/bndR2vpAmJ6f5hxMNMT6LSw3TAns2RTkkzF2eplijKLO5FSDn+RDyI/8f2vpL2AH4K9LN9q6SZ6ujstqVxXJaH1q0JZ/8XhNTjrfJwXvuqM0nnks5vknwPbRympYFNiCnGI2se8Z2KaN27LlGn+GrCEXwauM72gLLegsS0+RLEFPmndXOOSqRMtt9vsz+PJrpdbWr7QUm/IaZP13PNS9U1ULS2/VDS9kTE83jgXtsDS7LQ9USVknfqfDzDcAf4NKIpx7p8U4d6LqIL4ysVmtehFP3rDoQjeJXt7cpyAQcBswK7u6YVHUZEkwM8JfFgPhtwvmvcbCaplnR+k+QHaOMwLUfUPa11BygASX8lIrwvEVHQD4mbygzArY0pcEVG+V+Bnep2M5U0HrA3MDVwmO3/Nt1ElwHWIpy/u4lM+D1t31idxe2naXxzAwcD/7DdV9LuRBT/CuA+R8WSyeu2T5tpG6lW1DE+l5geX49o3nEIMDvxkPNVFXZ2BCMY69TE2HoCu9r+X9N7s9n+T+dbOWZpOranImQ8swD9bfev1rKkjqTzm7Q0TRfUmYF3AYq+dZxGNKyu08FtKRGjFYBngdeJaODhwC9tP1/e7004hDfa7i9pCaK28TK236zI9NGmTPGvRHR+Ot72f5vem4JIpOkBvFQ03rXf14rWtruUP78mpsHPUZT9WoSQCDQ69g2r45ibztsVieYyPWyfoWg1fj4hC9iIiABP5yjfVjskTQQMtv2VpFWIKf+PbZ9SoqD7AVMBe9h+v0pbO4KiVZbtrxVJxQPbvN/Y79MA2wBX236uEmOTWpPOb9LylJvKGcAAosD/SbY/buMAd7c9RNEudQ7XrPyVokbmJYSm9Svgv0QZpEOI5JG1bX8gaTZCDnCD7WcVbWEnrZt2sM2+W4KIBA4BTnRp3lCkDtPavqQ6S9uPpPGBr5qmhW8gpsRfIiQAKwB32b6oaIBvrtvxOyIUHQePIhL5zgOutL2LokNdP6C77bWqtLE9FCnHJURC4n8Ip/5sQor0le0NywPcYUSThy1s17lUXQ8iz6AbkcA3L3Cc7S/arNdwgHvaHlSWDT/fk+THkKXOkpamJHstS7Q9vQgYj2hXPFmJio1TksOGKNqIXkskhdWGEtG9j0hwWp9o2DEz8BPbOwD/Aq6QNHWZLj2lOL7dbH9WQ8dXZd/NImkqR0mrc4mb6u5lnYUICUBtnQUY3tr2OGDipsXDW9sSzQ8GEq1t17d9TBdxfCclGjdsRJyzrwJrSbrIkci5AZEQVltK1PNiIsK5BdE6/ThibONKutz2h4TO97A6O74Axf5xiWodJxKNdb4oWubm9VyCEYMkjVtep+ObjBLp/CYtSXFqexHOwWKO+q53EclfXwFHF03kMNtDy822H5Hs9nR1lo8WnxFT+78CsH0Hce7PWN7fj0h2u6ZEXwaV9Wrl5DcoN8fViUj+2Yr6n+8Q8o2hkq4lOmD9zna/tjfXuqBobfsJcCgwhaRlbH9AOPU7SJqjvH8X8BrRoGXyCk0ebSSNr+hAh6R5CL3n1kS5zkOJaOhyRLmvs2wPdX07t40nabry5zVEicWFgAWKFGAQsCEwuaRrbX9Y9zyEpnPwX4CJuswTSJq4rSSnTTDiLKI8YZKMEun8Ji1JcWo/B1YhaqHuVJy9B4hp4y8oHc6K7u4GIrpyV1U2jw7lRvEhkfW+raSDJa1H3DAeguERl92AbWwPrnsUpThHGwCb2V6baFByVfn/cmLfbmv72ho7vpMTD2irEx27VgX+T9JShGP/LtHadm+iysN5wPREa9s6MimwuqJVb1/gk6Lf7gE8VM7d6YjuXldUZmXHsBCwjqJN8cPAjYQ2f2HiNxjfUdpr9bK81jTJGKYnHrzXBk4n5DoblHV+Immmcj0bKmkSIlBxnu23KjM+qS3Z5CJpGZousosDcwDP2n6oJEXdLgnbf5V0H/CU7U+Lc9SbSCipXSe3cqPo5mj9uRhwL+H4TlaSSnraHmR7COEc1hZFQ5JGNKgH8AmA7e0lXQn8yfaBknZo7Nu6JXo1sP2RpEZr2y8djQ2GEV0IjyQqdLxARPd7E9PJtWxtC2D7HUnvEA9p/Wy/Wt4SMJGk0whd9/q276njvi1JXPMS1Uf2JBI19yrj+LuimsVOQE9JVxUt7MOVGdxBlGvyGsBJxCzFq7YPL5rn5SQtAqxIlCF8vUR8ryO6Tf6zOsuTOpOR36QlaHJ8VyUiR5MB/SVt42jpuixwoqRdHXwKw1ufXlxHx7dBkwP8DrAY8AFF+9pIGKkzTdFbO0p37UREd5cuCUEQ0bOhZaXmfVsr1JqtbRvcBPyhLD4UwPbDhIb9UmAD2/eU5bXat8Wh+yXwFhGUOo2IYP9E0pKSeti+lkjM3ZaoZ9wlUJTlWwXYETgTmFvSMY7GOn0Jyc7Oth8vsqyDgAPT8U3aQ1Z7SLo0kqZzaQMqaRYiqa0PUR7pHKLk15WO0kG/AKa2fWs11o5Z9E3FimmJcmdn296rarvaQ9NDzcpE8tNrhAM4hIgkvQg8QrSn3ss1ruOr0toWOLzpmL6WkDM8Clxme4CipNlaRKTsY0lzEdUBapW42EDRkGN+4DXbVxXt727AE8S+3oSQJA38gY8Za5E0GbArkX/wDJHAeKvtyyUdQ8xinAVMSQSsnrP9XlX2dhSKqhxTAw8S1Ug2U5Sqm51IVvzU9o4j2K7W9amTsYOM/CZdnQMkzQtQpkq3JCJhxxAX2VOA4yRtbftxR1vQWupAR0ZxfLs5Sn39jIik1Zri+K5ElLy6CJiHmA59DDiAaOzwK0LPXFvHtzAhEb0+RNI0Rf/6nO1fAs8DG0ta0fZJQB/bHwPYfqHGju/ihOPXHfiLpIMdbcWPARYkEsLuqqvjW+hGyB2WKwmKDwIrSVoNOJB4kNuNqDQzUd0d38b1tSQlvgPsDCxejt0hxAPrkUQS57xN241TtkvHN2k3GflNuiRluvuTMuU/M3Cs7Q3Le2sRU8C9JS0AHAvsXeQPtaUpCjoFMKxE/b6jfWxEgNtu1+kGdxCS/gDcQehbDwc2tP1auVkuBPwfMS1+qdvUDK0baqHWtpLmI6b4/1mioDMQCamn2z68rFPbbmYlkj+u7bfL1P/dwI6OCiR9iAoWl9v+h6Q5gJ62n67z+dp0jfoNoeN9nojeL0kkZv6+zF6MA4xX9/M1GXvJhLeky1F0YacBb0g6ojhCM0q6wPYWxDR4nxI5m4+44dTa8YXhUdC1gH2IJKD9vyfa2WjXPD4wxDWvD0p08eoHfEw063i3aLvnsX2CpOMIPeFVhBa4VjQ7O7ZfKePpRSQ+TWT7f+X9Q4szWHvHt/BLoiPd55IG2H6zJG0+Xca9d40d38mJB7Khkna3/YykrYAtJT0BXAkMA7ZQ1By/rLFtXR1fGH6NWg04ggg6bA0sYHvXkuB2maTNivSsdudqUh9S9pB0KYqjMBjYjpgC/wOA7cWBaSRdCLwH7E3Ugf2D7QFV2duRlCnCnYmxHwocpShr1rxOo1TQpETji9k739LRpzFlKmkJSb2L/vNc4GXgmeL4LkvofZ8GsH0zsFGZUq4NkiaSNF5xGFaRdJCknR0lvg4iqlmcKmmqxjZ1dQbhW/t29qKDPR84mIjoL1m0nm8QEoF/VGdp+ykPKE8BPydK1q1FyB+eBpZwlGG8Bbi9LOtKLA6sA7xPSNCOB7B9MaF9HvL9myZJx5Cyh6RL0TSttghx41wGuMT29uX9m4CBjk5nXQZJMxIO0fS2VyvL1iZ+g2NsX6Zv18i8kkgSuqc6q0eP4ij8iajZuybRBeufREWDoUSr18Nt91dpe1q3qWK1Xmvbxn5aFTiamApfCViC0On/f3vnHm5XWZ373xvC5SQ1JYiIRcHGCyiHinirKAgqKokIcj1cPFguQlXA2gQrVIIFJLRC8SiCHCgQKUpFMFzlIo1ARSgqVBERQQQRucstGAh5+8f4FntmkVDIXsna35zj9zx5kr3XmvsZX+bca445vvGO9+1EMniZY251le06peL7sl77AjGZYxIhvF0DeDfwGLCvY6zXSo6ZvgPBSCwAABviSURBVNXS+EyeZPsRSUcQbQ7jgZ1t36kYdbaKY8JDlec2qYus/CatonzIvpEQP32WGJT+WkmzyutbAquW91RNr1JWuIeY4btQ0kcU83vnEMKRmZLWLInvZMKw4/O1JL6SJiiU4b2kcFfivN5FWNueY/vntt9fXtu6JL5yMeyo7UbqjljbKtT9lMT39cSOxXbEjOKJRJ/rSYTz14dotOrVdk4lrULMYf6MpL1K/DcSaz2HGOt1OzH269Tyf1N1FbSR+E4DDik7Tt8gzuN5JfF9J2FO8kDvuNrObVIfWflNWkf5MJ1ue5vy9TqEmORSoqJS9Q0FFrmpbAZMAcbZPqkIZTYCriFGuM2XtEbZKqe8/huHxfGYR9IkIik4mXAuW5GYBfp7ohq4h+1flZvrnbb/a1ixDoKSIK1WRFArEonQQcSDzUzbjyvMDi4gdjC2GWK4o0Ih8voYcHKphK5FuHvdTTy47mz7Vkmb2r5CjbGFtVIS/FcR/a5nERMcpgOn2z5f0srA3xIivyuGF+ngkLQp8Tu7t+2rJE0gruv9gEcJq+ol6ROSZJmQgrekehqJ4Hhi2/t2YF6p7t5cBG8nAP+HcLm6fWjBDoiy3vcQo9pOBHYqN5l9iGrR5sAKpcf5/sZxpw4h3KWibPk+Iul7xI3yKduXSPohkRztWRLfdxF9gzsPM94BsRGwYalwfwR4A3FNzyCsbc+z/URJ9jcYYpyDYCfgAELQdh7R3vFpouL7Z+Ua3xj4nMKMpspxbU1s/xz4uaQfE20sTwGPA4dLutf2tZKOLGuvduu/L/a3Ecn9VYpJM/MU86m/S9htL3QIOatdb1Ifmfwm1VNuFFsRPYL/i5j5eishnrha0kPEWJ19PWKLWi2lBcDALsAxZVv4WEkXAMfZ3qNUTK8rN5PqbiiSXgdML4nAcZKeAg6UZOAywuHqqFL53pao9Fc7sUPdtLa9iHhIe5qoBJ4G7Ei05Xxc0pPElI6ZbUh8e5Te+7sk7URcuysRJh67SboBeBLq3vpvfCZvQExhWau81GvVehMwz/aNzWOWb5RJl8nkN6meUvk7BNieGGf19yUB3JNoCdgSONr21UMMc9Q0KiMTbD8q6TdEG0CPnYAzSgX8hF6/a22UreHZRM/rrwFsn1hanA8kBFH/j5j5uiIwp1TMqqwcacTa9hZGrG3/QLG2Ba61/Z1yXg8gkv8qx0CVtY63fX85Z7cR1e2fES0QJwFTy78fI+ZvX1LruV0cpfd+XNnVmA2sXP5c5hbYjQOUXbcDyp8VgVMk/QD4iaSXEQ86uwwxxKTjZM9vUh2S1gZeYfs/ytfTCVvQhcR0g11t36YRBfnE0itZ7Q200drxfmI7/K+IqtEMYpzbj4lqypeJ5OGBGtda+gFPA861/XWVYfcUZytJ2xOJ0ZdsXzDMWAeBOmRtK+nPCBvmHwP/4jBzeBXwfqLlYXOiDeBU278aXqTDo+bPqB4K845/ADaxvUH53vaErfyjwDrAUQ5BbpIMhaz8JtWgKP29iBBzPSzpANsXE/MiP0aMfNqtJL7/l+idnA78EereVmskvl8m2jeeAs4sbQBHAncSW6eH2r7/OX7UWGc+0bP8aPl6BtEHu66knwL7E9fAdEk/dBl7VTE9a9snbf9AUs/a9lHC2vYIwtp2O2D3WhPfwkKiz3MDYuLB6sC6wEuIKv6XiMr+HpKOAh6p9Xe28bD6nG6L5b0r2H56CGEOjL61PUiYzqwjaSYwy/ZZkq4hdiwmZY9vMmyy8ptUh6QjCeenp4CvANcR/YNnENum65W/D7R90bDiHASNm+hkQgz0PSL534pwRzqc6G+eRFil/rTWm0pjrbsR4rV1gV8Qkw1uIirdP7d9gqS1a+4DVQetbSEMLIjzuBlwHGHHfASx1n0kvYGYY3zz8KIcDGq4LbKEaQYamb09gXgAqm4STeP3dkti9+lponVnY6KX+25Cm1D1vOKkXWTlN6kCSSt6ZJbpXMIZ6CJGegN3ISqgbyO2iA+yfVHtyUK5qbyPcKtbQCT4PyYqZVcRva9Tm8lCrettxH0R0QP6FmK9fywJwmZElRDgt8s/wsGgjlnbNn8HHaPLziB+R3cE9iV+n1cor98wrDgHiRZ1W1yXcFtc2fa3G+9pui3+O/HA94uhBLyUNBLfLYBZhCHJpcTEjiOI63gHYIakL9R4/SbtJJPfZMxTKmMHSTrFMZ/2EuJD9i+J/tC/A75ge1stOie16sQXQNIGxM3jRNv/Kela4CbbtxfhyBaMKKhbQWlleAC4vvc9hWPfNkQLALWK+SCsbSX9jDivR0o6ubzUs7Y9RdIlxOdztda2kl5EjKf7o6QPAG8FHrT9FUn/RLj0HQd8pvJWnUVQuC1+ilj7z4CfSVpAmM2s6Ge7LX4L2N92NYmvpDWBCURL2e+A9xAtSX9K7ESdaPsJ4GJJTwN31/5ZnLSLbHtIxjyK+bVzCbHMCUQ14TKiUnIasYW6DzHm61vDiXKwKMaZ/QkxzupuYAfbv2+8vjNhfjDT9tnDiXLZU3om301Ukf7W9nlDDmmpUYesbfXc9szzbe9Qzu1hwGTCxW5BrQlS80FbMZZuF2L6zJnAvznMZrYj2pQ2t/370so0h9ilumpYsb9QSjFiNvAwsQNzNrEjswnwGqI3/VZJexP9zicv8YclyZDI5DepAoVr28XEVunGRKKwFiEE+kn5/i9tXze0IAdAYxuxVxn630QCcbzt4xrv2x24z/aFbahwL4lSPXwzUUW7qta1lh2Jw4kk9wqHG9/WwIuJNo+VCYX8bsSD3vuIxKHaCrekHYm2pJuBq22frnAwO5NIgHcqCfAatm8aZqyjofE7uxktdluEZ8YQ/iuhP7iFcOR7DfEZfChRwT5P0obA14n52xcPKdwkWSKZ/CbVUKYdHEtMNXgjIab4D9vfUzgHVScWadLXP7cj8FPg+0Sv7xxCNX3S4o5Z/tGOjqVVw6uMr1vuAQ8AdcDaVh2yZ26iPrdFIjHch3g434wQNH6duOdWef3CM0WIK2yPK1+/jnBX/CCwd/l7PlGYONL2ucOKNUmei0x+k6pQ2Lp+EfhL2w/3CeGqp4jb/olIGPYheiQ/KukthPPV520fP8wYB8VSqOGfasO5lrQW0QLwQ2BtQiH/MTeMOip+qNkY2JAQPPXsmbckRtYdD/TsmVcCNrBdtUudRtwW/z9R3T6pfP8C4B6H2c7HgbkOa+PqKf3bX7U9RdKHCefBrW0/JmkKkfyuUlofqryOk/aTgrekKmxfUAQUv5S0nu2Hhh3TaFDY2q4O3GX7D8DriX7B1Qjf+08AFLHbNCJRrJ6uqOH7UUutbdUxe+ZGUtdqt8XFYfu7kj4p6THi93FT2/PK/8ltfe+t6jpOukMmv0l1lA/fPYiq0twhh7PUSFqXEIvcDGws6b3A/cSW+MPAVkUYMxVYp1fxrb2a0gU1/JJwC61t1SF7Zni226JiTN3NxDivHxGjCNcH1iRGMtZuxPIsitbgQ8Ds8iADMa6u6tazpDuMG3YASbI02L7A9tyimq8OSX8OnEv0xW1LTLE4lzDsuBm4siS+7wCOIcYHAXVWU/rO0z1ED+hCSR8pFd85xESHmZLWLEniZEZaPa4cQtjLhF4V0PZC20/Ynl4e6Kq7lss5+hvC1esewnTmxbb3IGyptwdeLWkTwolxe9t3DyveQdBIfL9M2DQ/ZftM4B+JWeMnES0eh9u+v8bf1+eD7cuBvSTdq5hHnYlvUg1Z+U2qpsYbS0lyphIjoH4FYPtQxQihJwjjin0lzSVmac6wfcmQwh01z6GGh6gYLpR0lu1vS7qyp4YnlOQzXdEYKOictW1n7Jkb53Uy8E5iksU1iqkWPbfF3WiB2+LzpTy0fZTKd+GS7pGCtyQZApLWAD4KvJRoc/gLQiD0vt42YhFGLbB9T+030a6o4XsshZivKmtbddeeuee2uCpx/fbcFhcSPdxT3ZjH3SVqP7dJt8jKb5IsZ8pN4l5JpxIVoxlE5aQnHFnJ9pO27+odU+tNpaGG3wU4pqjhjy1q+OOKGn4ScF1ZY5XrbNJ2MZ86Zs/cQx10W3wh1Hxuk+6RyW+SLGfK1mkvAT6JEIn8Hng5MfWhSlevJl1Vw3dBzOeO2DP30Ijb4jmE2+KdALYvKq833Rar7mdOkq6QgrckGQKNBPh+wvr1dqJyNm24kY2ePjX88Qqzg5uBPSW9tSS8TTV81RWjroj5JK1WqtoQDl9fBW4iHto2At4D7CBp7bL1f7rtnw4n2tHTPK+2Hwa2IayYt+t760rAZ2yfXaNoMUm6SFZ+k2QZUhI/2X5S0kTbj/deayTA90k6DdiTxlSHWulTw+/rMKY4U5IJNfydRI/zoSX5r5auiPkUzm0HAWtI6tkz38ii9sxTCMHXqaU3tpoe5n4a53ULYEdJPbfFnYA5kuaXFh5sn9Y8ZnhRJ0nyfEnBW5IsI0ri+w5CEb8qUe38okfmYvbe17vRruwy61UV2vj2qeE/DXwPuAbYihE1/K20TA3fFTGfOmDP3EQdcltMkq6RyW+SLEPKDXQGIXz6WBkN9KyET9J42wsUTlgLa1L+N+mSGl4dtLaF9tozq89tUdKngEsJt8VjgG1t31ne+ybgRbbnDiveJEmWnmx7SJJlQOPmfzWRIF0PTJA0yfYjfe9doSS+qwLHAgcDdz3rh45xuqKG76qYD1ptz9xJt8Uk6SopeEuSAdOofq0FzCf6O48H3kskh0h6maS1+5T/ZwOnNEec1YCkFUr85wDr0VDDl8R3Z+AS4Eu1q+G7Jubrxw17ZmA20cpyDHCh7fk1JoLqmNtikiRZ+U2SgVOSow8SVdzvA7fbPkzSRGBzSW8mqqDb2b6jVHznAAfXIoCCRateth+WtA3wTaLX9bjGW3tq+Atrr5R1Scy3JNywZyYcCadDnVXQMp2hM26LSZIE2fObJAOm3Dg/SYhiHgIOIPoIDyximfcAN9i+qFQOjwLOqWXkFTxbDQ/01PALiER+Vq8Htv+Y5R/t6OmSmK+x1hdkz1zxejvltpgkSSa/STIwigBqDeA/ge/b3rVsg78K+BzwsO1PLOa41Ww/uHyjHT1dU8N3TMzXanvmHo1Efw3iIeatjLgt3qXitjjcKJMkGTTZ9pAko6R3Ay0VsLsl7QccLWkL25dKuoURk4P1bd9Yjhtne2EtiW+/Gh54PWFbvBrwMuATAEXsNo1InFpBV8R80H575iaNyRStdVtMkuTZZPKbJKOgUTl6N5EA3QxcQGyNnyBpb9uXS7oZ2MONGb81TQHoqhpeHbO2VQfsmftpJMD3K8xm/opwW1zd9gXDji9JksGT0x6SZBSUG+dU4IvAfwG7EsK17wCHAN8sFeCF7jO3qIUuquGLEApov7VtX9xttmdeUTFHmyI+fYZGAnwfYTf+W1rgtpgkyeLJym+SjJ63E8nRa4l+0KMBbP9rmQJQXS9kjy6q4fvFfGqxtW1jrZvRbnvmZ9wWS6vG+pIWcVtsJMD3SDraFbstJkny3GTymyQvkEbC0DOsGEfMPB1PcYFSjDpbxfYZzWOGGPZSUdb5LWAisENJhv+C6Im8z/ZvgMvbpIYva+4X821UxHw7A+eVFoDjm8cMKdxRUda6iD2zpE2JNS8ANicSxq8TbS69404dQrhLje2nStW36bY4r/9aLf8f423PV+Vui0mSLJlse0iSF0Aj8Z0GHFKqSN8gEt/zSuL7TmL7/4HecbUmRz0xEHAqcB+RPBwI7FSSh5UAbN9l+57y7+rWKumlktYv5xNGxHyPEGK+z0GI+YBpwE1DCXSAKMxJxhHrPMb2sbbfDrwYOM726cREi+uKoLPK6mejrWNxbov9NuNNt8UTifFnSZK0jKz8JskLoCS+mxI9vnvb/oOkJ4lkd7/S9/pK4NO2/32IoQ6ELqjhuybma8TdenvmxsPqWsTD29bAZsR85snAyYppHSsS13PTbfHzrsxtMUmS50dWfpPkedAnCnobcLrtq8oW6TzgO0RF8G+ArW2fX6sAqp+mGp4QA91OqOGnDTey0dM1MV8jGeyEPXNZ6weJnu3jgemOSR2XAxtJOh64EpjskdFt5wKH2P7+0AJPkmSZkpXfJHkelJvoVsAGhGvbWuWlXoL7JmCeywzf3jHLN8rRURIh2X5S0kTbj/dea6rhFeOg9qRyNXwXxXyNxLcT9szlXH6AmEH9EHCApH90uC3+hnBb3M/2DeX6PwT4+1qEfEmSLB3p8JYkzwNJbyQEUAcQW6SnAAcDPyF6Qk8HdrF9/dCCHAVNNTxR8VsfWEQNX97Xqxyu3AY1vDpibds4b623Z4buuS0mSfLCyOQ3Sf4HJK0O/AOwie0Nyve2J5KmR4F1gKMc81CrpUw4aKrhv7u4BKi0eiyoXQ3fSAg7YW2rDtgz91+vkj5MjB7cx+G2OI64vmcCh7nPbXEoQSdJstzJtockWQx9N9EHCSerdSTNBGbZPkvSNcA8YJLtX9daKWvEvTg1/CN9722q4Y8lqt9VioK6IObroQ7YMzceZlrttpgkyejJym+S9NG4iW5J9PI+DXwV2JjoH7ybGA1VfXK0GDX8Coyo4X9ke0lq+HMINXz1oqDG/8FLCGvbVwIXuAXWthqxZ/4Rcd3u0KzualF75rOHE+XgKBM5DidalPYAbrT9KUm7Av8M7Gr70mHGmCTJ8MlpD0nSoJEIbQHMAs4nKkczgLnAhcCrgRltmObQFTW8OmZt27w23XJ75j56bov30ee2CHyKit0WkyQZHFn5TRJA0pqEov+Ptn8naRZwUXn5KGBH23eU974XuLs52aFWihr+k8B5FDU8UeE9UNJbCDX8DbYvKqK4o4BzbF85tKBfIF0T8/U9wO0I9OyZFwBziLadkxZ3zPKPdnQ01jrJ9iOSjiDO9XhgZy/qtnhW85hhxp0kyXDJ5DfpPCUBnE0YGvyWGHD/EmAT4DXA7rZvlbQ3IfA6eWjBDoiuqeE7KObrt2d+0GHP/BbiQefzbtgz10gj8Z1G2DAfTvRrn0C4LR6lcFv8F0LwVr3pTJIkgyHbHpJOI+n1hD3xZ4h+z+uIaufTRO/rUSXx3RDYn0iOq6W3tW37adt3A/sBb5e0RUn0bgGOAF4saf3GcePKcVUlvo2t/FZb26qD9swl8e25LX7H9h+Imc3HAB+QdC7Rq98Kt8UkSQZHVn6TTlMqQ1fYHle+fh3RJ/hBYO/y93zC1OJI2+cOK9bR8hxq+HcQa+6p4ccR28TznuPHjXm6IuZTnz0z8F5gQ2ISx8PANm6nPTOSZhBziY9oVO3HAasQSf/CmiexJEmybMhRZ0mncVgUT5V0m+0pwHrAysAE21+TdCmR/K5SKsDV3kRLItivht+wqOEnAt+U1FPDV534wiJivmOJntfbbR9W1rq5pDcTDwHb2b6jVE3nAAe7EocvjdgzH2b7dEmHlq+nEsnwLV7Unnn/3rGVX8etdltMkmTZkslv0nlK/+cnJT0G/IIwOZhXEt3b+t5b+020p4Z/LX1qeIXFbZU9rotDLbe2LS0dnbJnhmfcFg+g4bYo6QfAT0ol/zSi5SNJkmSxZNtDkhRKO8Bs2y8vX4+vVfDUo4tq+C6J+dQRe+Ye6ojbYpIky5YUvCVJwfblwF6S7pU0uUWJ7zTgkLKt/w0i8T2vJL7vJLbDH+gdV2ty1EUxn+17gVOJnuYZwIHATmXnYiUA23fZvqf8u7pz2xAtwojb4h2SZirG0p0F/DUxsm9X23P6jkmSJFmErPwmSR+lL3ae7bnDjmW0FDX81wgx21WSJhCtAPsRlbJXAgfZPn94UY6eron5ejTWvTpR/ZwCnGb7muFGNhga62u922KSJMuPTH6TZAnUukXcVTX8YsR8nbC2bSSIrbJnbqxrC2Kc2e7ApcTD3BHApsAOwK+BL9R+/SZJsvxIwVuSLIFab6YdVsO3VsxXBHmy/aSkibYf771Wzrds3yfpNGBPKrZnVsNtEfgdIUzcH/hTYl0n2n4CuFjS04TbYhuu3yRJlhOZ/CZJy+iKGr5fzEdoGGYTn2vb9on5zmgeM8SwXzBq2DOXvu31JS1iz9xIgO+RdLQrtWdWn9uipLOBXxItHa8hqvd3qEVui0mSLH9S8JYkLaL0fu4NvNT2jbavJ7aIP04I274CfLZ8v1q6JOaz/RSwEvB3RPvGtb1RfH3vc2ltmS9ppfLvmhLfTrktJkkyPLLnN0kqp6/HdxzwLmA6cC0wqyRDryCMKya1qMe39WK+RpL/IuDbRCvAqcBlpdrdfO8KDpe6VQljj4Nt37Xcg15K1CG3xSRJhksmv0lSMV1Tw3dJzNc4t622Z24i6QPAV21PkfRhYnzZ1rYfkzSFlrgtJkkyXLLnN0kqpU8NP4sRNfxEotVhIaGGnyGpFWr4Lon5ylpbbc/cj7vltpgkyZDI5DdJKqPLaviuiPmg/fbMS8L2hZI+RLgt9kR9K1DxtI4kScYW2faQJBXRr4YHzgZeAmxCqOF3L1vCrVPDqyPWtuqQPfNzUVogZgPr2n5o2PEkSdIectpDklRCF9XwfRMNWm1t24vbHbFn/p+w/V3iweYNQw4lSZKWkZXfJKmErqnhuyTma6y1U/bMz5cUtyVJMkiy5zdJKqGM85oq6TbbU4D1gJWBCba/JulSWqKG75qYr6y13555Q4c980Tgm5J69sydSnwhxW1JkgyWTH6TpCLarobvspiPFtszJ0mSjCWy7SFJKqRsj8+2/fLy9fjSF1otXRPzNarbk2w/IukIos1hPLCzF7VnPqt5zDDjTpIkqZ0UvCVJhdi+HNhL0r2SJrcg8e2UmK+R+LbenjlJkmSskZXfJKmY0ic6z/bcYccyGrom5oNu2DMnSZKMRTL5TZIW0Ibt8C5Y23bJnjlJkmSskoK3JGkBbUiO2i7mg27ZMydJkoxVsuc3SZIxg+0LgQ8Ba/ZZ27aChj3zHOBqYFppXVld0kaEPfOKQwwxSZKk9WTlN0mSMUUxc9hL0r20yNq22DPvDby0V9ktEx4+zog982dtXz+8KJMkSdpP9vwmSTImaYOYr6/HdxzwLmA6cC0wy/Z8Sa8gjCsmZY9vkiTJsieT3yRJxjS1JoNdsmdOkiSpiez5TZJkTFN54tuzZz4f+DQwA5gLXAi8mrBn1hJ/UJIkSTJwsuc3SZJkQHTcnjlJkqQKsu0hSZJkAHTNnjlJkqRWsu0hSZJklHTNnjlJkqRmsvKbJEkySrpoz5wkSVIr2fObJEkySmxfJWmqpNtsTwHWA1YGJtj+mqRLaYE9c5IkSRvIym+SJMmAKLOJ/41n2zPnB22SJMkYIXt+kyRJBkTb7ZmTJEnaQCa/SZIkA8T25cBeku6VNNn2gmHHlCRJkoyQbQ9JkiTLgDbYMydJkrSRTH6TJEmWIdnzmyRJMrbI5DdJkiRJkiTpDNnzmyRJkiRJknSGTH6TJEmSJEmSzpDJb5IkSZIkSdIZMvlNkiRJkiRJOkMmv0mSJEmSJElnyOQ3SZIkSZIk6Qz/DUfMbw2ggBfJAAAAAElFTkSuQmCC\n",
"text/plain": [
- "