layout | title | tagline | nav_exclude |
---|---|---|---|
page |
Exam Cheat Sheet |
Cheat sheet for quizzes and exams |
true |
This cheat sheet has been modified from the Data 6 Python Reference and includes all of the functions and table methods that you will need for the exams.
| Function | Description | Input | Output |
| str(val)
| Converts val
to a string | A value of any type (int, float, NoneType, etc.) | The value as a string |
| int(num)
| Converts num
to an int | A numerical value (represented as a string or float) | The value as an int |
| float(num)
| Converts num
to a float | A numerical value (represented as a string or int) | The value as a float |
| len(arr)
| Returns the length of arr
| array or list | int: the length of the array or list |
| max(arr)
| Returns the maximum value in arr
| array or list | The maximum value the array (usually an int) |
| min(arr)
| Returns the minimum value in arr
| array or list | The minimum value the array (usually an int) |
| sum(arr)
| Returns the sum of the values in arr
| array or list | int or float: the sum of the values in the array |
| abs(num)
| Returns the absolute value of num
| int or float | int or float |
| print(input, ...)
| Prints the input
. Multiple inputs can be passed, and they will be separated by spaces by default. | input: any inputs to print
| None|
| type(object)
| Returns the type of object
. | object: the object whose type is to be determined | type: the type of the object|
| Function | Description | Input | Output |
| make_array(val1, val2, ...)
| Makes a NumPy array with the inputted values | A sequence of values | An array with those values |
| np.mean(arr)
or np.average(arr)
| Calculates the average value of arr
| An array of numbers | float: The average of the array |
| np.sum(arr)
| Returns the sum of the values in arr
| array | int or float: the sum of the values in the array |
| np.prod(arr)
| Returns the product of the values in arr
| array | int or float: the product of the values in the array |
| np.sqrt(num)
| Calculates the square root of num
| int or float | float : the square root of the number |
| np.arange(stop)
, np.arange(start, stop)
, or np.arange(start, stop, step)
| Creates an array of sequential numbers starting at start
, going up in increments of step
, and going up to but excluding stop
. Default start
is 0, default step
is 1 | int or float | array |
| np.count_nonzero(arr)
| Returns the number of non-zero (or True
) elements in an array | An array of values | int: the number of non-zero values in arr
|
| np.append(arr, item)
| Appends item
to the end of arr
. Does not modify the original array. | 1. array to append to
2. item to append (any type) | array: a new array with the appended item |
| np.cumsum(arr)
| Returns the cumulative sum of the elements in arr
, where each element is the sum of all preceding elements including itself | array | array: the cumulative sum of the values in the array |
| np.diff(arr)
| Computes the difference between consecutive elements in arr
. | array | array: the differences between consecutive elements in the array containing len(arr) - 1
elements |
| Function | Description | Input | Output |
| str.split(separator, maxsplit)
| Splits str
into a list of substrings using the specified separator
. If separator
is not provided, splits at any whitespace. You can also use the optional argument maxsplit
to limit the number of splits. | 1. (Optional) separator: the delimiter used to split str
2. (Optional) maxsplit: maximum number of splits | list of substrings |
| str.join(iterable)
| Concatenates the elements in iterable
(usually a list or array) into a single string, with each element separated by str
. | iterable: an iterable of strings to join (can be an array or list of strings) | string: a single string formed by joining the elements of iterable
with the separator str
|
| str.replace(old, new)
| Returns a copy of the string with all occurrences of the substring old
replaced by new
.| old
: the substring to be replaced.
new
: the substring to replace old
with. | string: a new string where occurrences of old
have been replaced by new
.|
| Function | Description | Input | Output |
| Table()
| Creates an empty table, usually to extend with data | None | An empty Table |
| Table().read_table(filename)
| Create a table from a data file | string: the name of the file | |
| tbl.with_column(name, values)
or tbl.with_columns(n1, v1, n2, v2, ...)
| Adds an extra column onto tbl
with the label name
and values
as the column values | 1. string: name of the new column
2. array: values in the column | Table: a copy of the original table with the new column(s) |
| tbl.column(col)
| Returns the values in a column in tbl
| string or int: the column name or index | array: the values in that column |
| tbl.num_rows
| Compute the number of rows in tbl
| None | int: the number of rows in the table |
| tbl.num_columns
| Compute the number of columns in tbl
| None | int: the number of columns in the table |
| tbl.labels
| Returns the labels in tbl
| None | array: the names of each column as strings |
| tbl.select(col1, col2, ...)
| Creates a copy of tbl
only with the selected columns | string or int: the column name(s) or index(es) to be included in the table | Table with the selected columns |
| tbl.drop(col1, col2, ...)
| Creates a copy of tbl
without the selected columns | string or int: the column name(s) or index(es) to be dropped from the table | Table without the selected columns |
| tbl.relabeled(old_label, new_label)
| Creates a new table, changing the column name specified by old_label
to new_label
, and leaves the original table unchanged. | 1. string: the old column name
2. string the new column name | Table: a copy of the original table with the changed column name |
| tbl.show(n)
| Displays the first n
rows of tbl
. If no argument is specified, the function defaults to showing the entire table | (Optional) int: number of rows to be displayed | None (table is displayed) |
| tbl.sort(column_name)
| Sorts the rows of tbl
by the values in the column_name
column. Defaults to ascending order unless the optional argument descending=True
is included. | 1. string or int: name or index of the column to sort
2. (Optional) descending=True
| Table: a copy of the original table with the column sorted |
| tbl.where(column, predicate)
| Creates a copy of tbl
containing only the rows where the value of column
matches the predicate
. See Table.where
predicates below. | 1. string or int: column name or index
2. are.(...)
predicate | Table: a copy of the original table with only the rows that match the predicate |
| tbl.take(row_indices)
| Creates a table with only the rows at the given indices. row_indices
is either an array of indices or an integer corresponding to one index. | int or array: indices of rows to be included in the table | Table: a copy of the original table with only the rows at the given indices |
| tbl.apply(function)
or tbl.apply(function, col1, col2, ...)
| Returns an array of values resulting from applying a function to each item in a column. | 1. Function: function to apply to column
2. (Optional) string or int: the column name(s) or index(es) to apply the function to | array containing an element for each value in the original column after applying the function to it |
| tbl.group(column_or_columns, function)
| Groups rows in tbl
by unique values or combinations of values in a column(s). Multiple columns must be entered as an array of strings. Values in the other columns are aggregated by count (by default) or the optional argument function
. You can visualize the group
function here. | 1. string or array of strings: column(s) on which to group
2. (Optional) Function: function to aggregate values in cells (defaults to counting rows) | Table a new groupped table |
| tbl.pivot(col1, col2)
or tbl.pivot(col1, col2, values, collect)
| Creates a pivot table where each unique value in col1
has its own column and each unique value in col2
has its own row. Counts or aggregates values from a third column, collected with some function. If the values
and collect
arguments are not included, pivot
defaults to returning counts in the cells. You can visualize the pivot
function here. | 1. string: name of the column in tbl
whose unique values will make up the columns of the pivot table
2. string: name of column in tbl
whose unique values will make up the rows of the pivot table
3. (Optional) string: name of the column in tbl
that describes the values of cells in the pivot table
4. (Optional) Function: how the values are collected (e.g. sum
or np.mean
) | Table: a new pivot table |
| tblA.join(colA, tblB)
or tblA.join(colA, tblB, colB)
| Generate a table with the columns of tblA
and tblB
, containing rows for all values in colA
and colB
that appear in tblA
and tblB
, respectively. By default, colB
is the same value as colA
. colA
and colB
must be strings specifying column names. | 1. string: name of column in tblA
with values to join on
2. Table: the other table
3. (Optional) string: the name of the shared column in tblB
, if column names are different between the tables | Table: a new combined table |
| tbl.with_row(values)
| Adds a new row with the specified values
to tbl
| 1. list or array: values to add as a new row | Table: a copy of the original table with the new row |
| tbl.with_rows(list_of_rows)
| Adds multiple rows to tbl
using a list of rows | 1. list of lists or arrays: each list/array represents a new row | Table: a copy of the original table with the new rows |
| Function | Description | Input | Output |
| tbl.barh(categories)
or tbl.barh(categories, values)
| Displays a horizontal bar chart with bars for each category in the column categories
. values
specifies the column corresponding to the size of each bar, but is unnecessary if the table only has two columns. Optional argument overlay
(default is True
) specifies whether grouped bar charts should be overlaid or on separate plots. | 1. string: name of the column with categories
2. (Optional) string: name of the column with values corresponding to the categories | None: draws a bar chart |
| tbl.hist(column)
| Generates a histogram of the numerical values in column
. Optional arguments group
(to specify categorical column to group on), bins
(to specify custom bins), and overlay
to specify overlaid or separate histograms. | string: name of the column | None: draws a histogram |
| tbl.plot(x_column, y_column)
or tbl.plot(x_column)
| Draws a line plot consisting of one point for each row in tbl
. If only x_column
is specified, plot
will plot the rest of the columns on the y-axis with different colored lines. Optional argument overlay
(default is True
) specifies whether multiple lines should be overlaid or on separate plots. | 1. string: name of the column on the x-axis
2. string: name of the column on the y-axis | None: draws a line graph |
| tbl.scatter(x_column, y_column)
| Draws a scatter plot consisting of one point for each row in tbl
. The optional argument fit_line=True
can be included to draw a line of best fit through the scatter plot. The optional arguments group
(to specify categorical column to group on) and sizes
(to specify a numerical column for bubble sizes) can also be used to encode additional variables. | 1. string: name of the column on the x-axis
2. string: name of the column on the y-axis
3. (Optional) fit_line=True
| None: draws a scatter plot |
These functions can be passed in as the second argument to tbl.where(..)
and act as a condition by which to select rows from tbl
.
| Predicate | Description |
| are.equal_to(Z)
| Equal to Z
(can be an int, float or string) |
| are.not_equal_to(Z)
| Not equal to 'Z' can be a number (int or float) or a string) |
| are.above(x)
| Greater than x
|
| are.above_or_equal_to(x)
| Greater than or equal to x
|
| are.below(x)
| Less than x
|
| are.below_or_equal_to(x)
| Less than or equal to x
|
| are.between(x,y)
| Greater than or equal to x
and less than y
|
| are.between_or_equal_to(x,y)
| Greater than or equal to x
, and less than or equal to y
|
| are.strictly_between(x,y)
| Greater than x
and less than y
|
| are.contained_in(A)
| True if it is a substring of A (if
Ais a **string**) or an element of
A(if
Ais an **array**) | |
are.containing(S)| Contains the string
S` |