-
Notifications
You must be signed in to change notification settings - Fork 40
/
libfsst12.hpp
310 lines (272 loc) · 14.1 KB
/
libfsst12.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// this software is distributed under the MIT License (http://www.opensource.org/licenses/MIT):
//
// Copyright 2018-2019, CWI, TU Munich
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
// (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// You can contact the authors via the FSST source repository : https://github.com/cwida/fsst
#include <algorithm>
#include <cassert>
#include <cstring>
#include <fstream>
#include <iostream>
#include <numeric>
#include <memory>
#include <queue>
#include <string>
#include <unordered_set>
#include <vector>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
using namespace std;
#include "fsst12.h" // the official FSST API -- also usable by C mortals
/* workhorse type for string and buffer lengths: 64-bits on 64-bits platforms and 32-bits on 32-bits platforms */
typedef unsigned long ulong;
/* unsigned integers */
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
#define FSST_ENDIAN_MARKER ((u64) 1)
#define FSST_VERSION_20190218 20190218
#define FSST_VERSION ((u64) FSST_VERSION_20190218)
// "symbols" are character sequences (up to 8 bytes)
// A symbol is compressed into a "code" of, 1.5 bytes (12 bits)
#define FSST_CODE_MAX 4096
#define FSST_CODE_MASK ((u16) (FSST_CODE_MAX-1))
inline uint64_t fsst_unaligned_load(u8 const* V) {
uint64_t Ret;
memcpy(&Ret, V, sizeof(uint64_t)); // compiler will generate efficient code (unaligned load, where possible)
return Ret;
}
struct Symbol {
static const unsigned maxLength = 8;
// gcl = u32 garbageBits:16,code:12,length:4 -- but we avoid exposing this bit-field notation
u32 gcl; // use a single u32 to be sure "code" is accessed with one load and can be compared with one comparison
mutable u32 gain; // mutable because gain value should be ignored in find() on unordered_set of Symbols
// the byte sequence that this symbol stands for
u8 symbol[maxLength];
Symbol() : gcl(0) {}
explicit Symbol(u8 c, u16 code) : gcl((1<<28)|(code<<16)|7) { *(u64*) symbol = c; } // single-char symbol
explicit Symbol(const char* input, u32 len) {
if (len < 8) {
*(u64*) symbol = 0;
for(u32 i=0; i<len; i++) symbol[i] = input[i];
} else {
len = 8;
*(u64*) symbol = *(u64*) input;
}
set_code_len(FSST_CODE_MASK, len);
}
explicit Symbol(const char* begin, const char* end) : Symbol(begin, end-begin) {}
explicit Symbol(const u8* begin, const u8* end) : Symbol((const char*)begin, end-begin) {}
void set_code_len(u32 code, u32 len) { gcl = (len<<28)|(code<<16)|((8-len)*8); }
u8 length() const { return gcl >> 28; }
u16 code() const { return (gcl >> 16) & FSST_CODE_MASK; }
u8 garbageBits() const { return gcl; }
u8 first() const { return 0xFF & *(u64*) symbol; }
u16 first2() const { assert(length() > 1); return (0xFFFF & *(u64*) symbol); }
#define FSST_HASH_LOG2SIZE 14
#define FSST_HASH_SHIFT 15
#define FSST_HASH_PRIME1 2971215073LL
#define FSST_HASH(w) (((w)*FSST_HASH_PRIME1)^(((w)*FSST_HASH_PRIME1)>>13))
ulong hash() const { uint v0 = 0xFFFFFFFF & *(ulong*) symbol; return FSST_HASH(v0); }
bool operator==(const Symbol& other) const { return *(u64*) symbol == *(u64*) other.symbol && length() == other.length(); }
};
// during search for the best dictionary, we probe both (in this order, first wins):
// - Symbol hashtable[8192] (keyed by the next four bytes, for s.length>2 -- certain 4-byte sequences will map to the same 3-byte symbol),
// - u16 shortCodes[65536] array at the position of the next two-byte pattern (s.length==2) and
// this search will yield a u16 code, it points into Symbol symbols[4096].
// you always find a hit, because the lowest 256 codes are all single-byte symbols
// in the hash table, the gcl field contains (low-to-high) garbageBits:16,code:12,length:4
#define FSST_GCL_FREE ((15<<28)|(((u32)FSST_CODE_MASK)<<16)) // high bits of gcl (len=15,code=FSST_CODE_MASK) indicates free bucket
// garbageBits is (8-length)*8, which is the amount of high bits to zero in the input word before comparing with the hashtable key
// ..it could of course be computed from len during lookup, but storing it precomputed in some loose bits is faster
//
// the gain field is only used in the symbol queue that sorts symbols on gain
struct SymbolMap {
static const u32 hashTabSize = 1<<FSST_HASH_LOG2SIZE; // smallest size that incurs no precision loss
// lookup table using the next two bytes (65536 codes), or just the next single byte
u16 shortCodes[65536]; // shortCode[X] contains code for 2-byte symbol, contains 1-byte code X&255 if there is no 2-byte symbol
// 'symbols' is the current symbol table symbol[code].symbol is the max 8-byte 'symbol' for single-byte 'code'
Symbol symbols[4096];
// replicate long symbols in hashTab (avoid indirection).
Symbol hashTab[hashTabSize]; // used for all symbols of 3 and more bytes
u32 symbolCount; // amount of symbols in the map (max 4096)
bool zeroTerminated; // whether we are expecting zero-terminated strings (we then also produce zero-terminated compressed strings)
u16 lenHisto[8]; // lenHisto[x] is the amount of symbols of byte-length (x+1) in this SymbolMap
SymbolMap() : symbolCount(256), zeroTerminated(false) {
// stuff done once at startup
Symbol unused = Symbol(0,FSST_CODE_MASK); // single-char symbol, exception code
for (u32 i=0; i<256; i++) {
symbols[i] = Symbol((u8)i,i); // single-byte symbol
}
for (u32 i=256; i<4096; i++) {
symbols[i] = unused; // all other symbols are unused.
}
// stuff done when re-using a symbolmap during the search for the best map
clear(); // clears the arrays (hortCodes and hashTab) and histo
}
void clear() {
Symbol s;
s.gcl = FSST_GCL_FREE; //marks empty in hashtab
s.gain = 0;
for(u32 i=0; i<hashTabSize; i++)
hashTab[i] = s;
for(u32 i=0; i<65536; i++)
shortCodes[i] = 4096 | (i & 255); // single-byte symbol
memset(lenHisto, 0, sizeof(lenHisto)); // all unused
lenHisto[0] = symbolCount = 256; // no need to clean symbols[] as no symbols are used
}
u32 load() {
u32 ret = 0;
for(u32 i=0; i<hashTabSize; i++)
ret += (hashTab[i].gcl < FSST_GCL_FREE);
return ret;
}
bool hashInsert(Symbol s) {
u32 idx = s.hash() & (hashTabSize-1);
bool taken = (hashTab[idx].gcl < FSST_GCL_FREE);
if (taken) return false; // collision in hash table
hashTab[idx].gcl = s.gcl;
hashTab[idx].gain = 0;
*(u64*) hashTab[idx].symbol = (*(u64*) s.symbol) & (0xFFFFFFFFFFFFFFFF >> (u8) s.gcl);
return true;
}
bool add(Symbol s) {
assert(symbolCount < 4096);
u32 len = s.length();
assert(len > 1);
s.set_code_len(symbolCount, len);
if (len == 2) {
assert(shortCodes[s.first2()] == 4096 + s.first()); // cannot be in use
shortCodes[s.first2()] = 8192 + symbolCount; // 8192 = (len == 2) << 12
} else if (!hashInsert(s)) {
return false;
}
symbols[symbolCount++] = s;
lenHisto[len-1]++;
return true;
}
/// Find symbol in hash table, return code
u16 hashFind(Symbol s) const {
ulong idx = s.hash() & (hashTabSize-1);
if (hashTab[idx].gcl <= s.gcl &&
*(u64*) hashTab[idx].symbol == (*(u64*) s.symbol & (0xFFFFFFFFFFFFFFFF >> ((u8) hashTab[idx].gcl))))
return (hashTab[idx].gcl>>16); // matched a long symbol
return 0;
}
/// Find longest expansion, return code
u16 findExpansion(Symbol s) const {
if (s.length() == 1) {
return 4096 + s.first();
}
u16 ret = hashFind(s);
return ret?ret:shortCodes[s.first2()];
}
};
#if 0 //def NONOPT_FSST
struct Counters {
u16 count1[FSST_CODE_MAX]; // array to count frequency of symbols as they occur in the sample
u16 count2[FSST_CODE_MAX][FSST_CODE_MAX]; // array to count subsequent combinations of two symbols in the sample
void count1Set(u32 pos1, u16 val) {
count1[pos1] = val;
}
void count1Inc(u32 pos1) {
count1[pos1]++;
}
void count2Inc(u32 pos1, u32 pos2) {
count2[pos1][pos2]++;
}
u32 count1GetNext(u32 &pos1) {
return count1[pos1];
}
u32 count2GetNext(u32 pos1, u32 &pos2) {
return count2[pos1][pos2];
}
void backup1(u8 *buf) {
memcpy(buf, count1, FSST_CODE_MAX*sizeof(u16));
}
void restore1(u8 *buf) {
memcpy(count1, buf, FSST_CODE_MAX*sizeof(u16));
}
};
#else
// we keep two counters count1[pos] and count2[pos1][pos2] of resp 16 and 12-bits. Both are split into two columns for performance reasons
// first reason is to make the column we update the most during symbolTable construction (the low bits) thinner, thus reducing CPU cache pressure.
// second reason is that when scanning the array, after seeing a 64-bits 0 in the high bits column, we can quickly skip over many codes (15 or 7)
struct Counters {
// high arrays come before low arrays, because our GetNext() methods may overrun their 64-bits reads a few bytes
u8 count1High[FSST_CODE_MAX]; // array to count frequency of symbols as they occur in the sample (16-bits)
u8 count1Low[FSST_CODE_MAX]; // it is split in a low and high byte: cnt = count1High*256 + count1Low
u8 count2High[FSST_CODE_MAX][FSST_CODE_MAX/2]; // array to count subsequent combinations of two symbols in the sample (12-bits: 8-bits low, 4-bits high)
u8 count2Low[FSST_CODE_MAX][FSST_CODE_MAX]; // its value is (count2High*256+count2Low) -- but high is 4-bits (we put two numbers in one, hence /2)
// 385KB -- but hot area likely just 10 + 30*4 = 130 cache lines (=8KB)
void count1Set(u32 pos1, u16 val) {
count1Low[pos1] = val&255;
count1High[pos1] = val>>8;
}
void count1Inc(u32 pos1) {
if (!count1Low[pos1]++) // increment high early (when low==0, not when low==255). This means (high > 0) <=> (cnt > 0)
count1High[pos1]++; //(0,0)->(1,1)->..->(255,1)->(0,1)->(1,2)->(2,2)->(3,2)..(255,2)->(0,2)->(1,3)->(2,3)...
}
void count2Inc(u32 pos1, u32 pos2) {
if (!count2Low[pos1][pos2]++) // increment high early (when low==0, not when low==255). This means (high > 0) <=> (cnt > 0)
// inc 4-bits high counter with 1<<0 (1) or 1<<4 (16) -- depending on whether pos2 is even or odd, repectively
count2High[pos1][(pos2)>>1] += 1 << (((pos2)&1)<<2); // we take our chances with overflow.. (4K maxval, on a 8K sample)
}
u32 count1GetNext(u32 &pos1) { // note: we will advance pos1 to the next nonzero counter in register range
// read 16-bits single symbol counter, split into two 8-bits numbers (count1Low, count1High), while skipping over zeros
u64 high = *(u64*) &count1High[pos1]; // note: this reads 8 subsequent counters [pos1..pos1+7]
u32 zero = high?(__builtin_ctzl(high)>>3):7; // number of zero bytes
high = (high >> (zero << 3)) & 255; // advance to nonzero counter
if (((pos1 += zero) >= FSST_CODE_MAX) || !high) // SKIP! advance pos2
return 0; // all zero
u64 low = count1Low[pos1];
if (low) high--; // high is incremented early and low late, so decrement high (unless low==0)
return (high << 8) + low;
}
u32 count2GetNext(u32 pos1, u32 &pos2) { // note: we will advance pos2 to the next nonzero counter in register range
// read 12-bits pairwise symbol counter, split into low 8-bits and high 4-bits number while skipping over zeros
u64 high = *(u64*) &count2High[pos1][pos2>>1]; // note: this reads 16 subsequent counters [pos2..pos2+15]
high >>= (pos2&1) << 2; // odd pos2: ignore the lowest 4 bits & we see only 15 counters
u32 zero = high?(__builtin_ctzl(high)>>2):(15-(pos2&1)); // number of zero 4-bits counters
high = (high >> (zero << 2)) & 15; // advance to nonzero counter
if (((pos2 += zero) >= FSST_CODE_MAX) || !high) // SKIP! advance pos2
return 0; // all zero
u64 low = count2Low[pos1][pos2];
if (low) high--; // high is incremented early and low late, so decrement high (unless low==0)
return (high << 8) + low;
}
void backup1(u8 *buf) {
memcpy(buf, count1High, FSST_CODE_MAX);
memcpy(buf+FSST_CODE_MAX, count1Low, FSST_CODE_MAX);
}
void restore1(u8 *buf) {
memcpy(count1High, buf, FSST_CODE_MAX);
memcpy(count1Low, buf+FSST_CODE_MAX, FSST_CODE_MAX);
}
};
#endif
// an encoder is a symbolmap plus some bufferspace, needed during map construction as well as compression
struct Encoder {
shared_ptr<SymbolMap> symbolMap; // symbols, plus metadata and data structures for quick compression (shortCode,hashTab, etc)
union {
Counters counters; // for counting symbol occurences during map construction
};
};
// C++ fsst-compress function with some more control of how the compression happens (algorithm flavor, simd unroll degree)
ulong compressImpl(Encoder *encoder, ulong n, ulong lenIn[], u8 *strIn[], ulong size, u8 * output, ulong *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd);
ulong compressAuto(Encoder *encoder, ulong n, ulong lenIn[], u8 *strIn[], ulong size, u8 * output, ulong *lenOut, u8 *strOut[], int simd);