-
Notifications
You must be signed in to change notification settings - Fork 40
/
libfsst12.cpp
420 lines (377 loc) · 17.1 KB
/
libfsst12.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// this software is distributed under the MIT License (http://www.opensource.org/licenses/MIT):
//
// Copyright 2018-2019, CWI, TU Munich
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
// (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// You can contact the authors via the FSST source repository : https://github.com/cwida/fsst
#include "libfsst12.hpp"
#include <math.h>
#include <string.h>
Symbol concat(Symbol a, Symbol b) {
Symbol s;
u32 length = min(8, a.length()+b.length());
s.set_code_len(FSST_CODE_MASK, length);
*(u64*) s.symbol = ((*(u64*) b.symbol) << (8*a.length())) | *(u64*) a.symbol;
return s;
}
namespace std {
template <>
class hash<Symbol> {
public:
size_t operator()(const Symbol& s) const {
uint64_t k = *(u64*) s.symbol;
const uint64_t m = 0xc6a4a7935bd1e995;
const int r = 47;
uint64_t h = 0x8445d61a4e774912 ^ (8*m);
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
h ^= h >> r;
h *= m;
h ^= h >> r;
return h;
}
};
}
std::ostream& operator<<(std::ostream& out, const Symbol& s) {
for (u32 i=0; i<s.length(); i++)
out << s.symbol[i];
return out;
}
#define FSST_SAMPLETARGET (1<<17)
#define FSST_SAMPLEMAXSZ ((long) 2*FSST_SAMPLETARGET)
SymbolMap *buildSymbolMap(Counters& counters, long sampleParam, vector<ulong>& sample, const ulong len[], const u8* line[]) {
ulong sampleSize = max(sampleParam, FSST_SAMPLEMAXSZ); // if sampleParam is negative, we need to ignore part of the last line
SymbolMap *st = new SymbolMap(), *bestMap = new SymbolMap();
long bestGain = -sampleSize; // worst case (everything exception)
ulong sampleFrac = 128;
for(ulong i=0; i<sample.size(); i++) {
const u8* cur = line[sample[i]];
if (sampleParam < 0 && i+1 == sample.size())
cur -= sampleSize; // use only last part of last line (which could be too long for an efficient sample)
}
// a random number between 0 and 128
auto rnd128 = [&](ulong i) { return 1 + (FSST_HASH((i+1)*sampleFrac)&127); };
// compress sample, and compute (pair-)frequencies
auto compressCount = [&](SymbolMap *st, Counters &counters) { // returns gain
long gain = 0;
for(ulong i=0; i<sample.size(); i++) {
const u8* cur = line[sample[i]];
const u8* end = cur + len[sample[i]];
if (sampleParam < 0 && i+1 == sample.size()) {
cur -= sampleParam; // use only last part of last line (which could be too long for an efficient sample)
if ((end-cur) > 500) end = cur + ((end-cur)*sampleFrac)/128; // shorten long lines to the sample fraction
} else if (sampleFrac < 128) {
// in earlier rounds (sampleFrac < 128) we skip data in the sample (reduces overall work ~2x)
if (rnd128(i) > sampleFrac) continue;
}
if (cur < end) {
u16 pos2 = 0, pos1 = st->findExpansion(Symbol(cur, end));
cur += pos1 >> 12;
pos1 &= FSST_CODE_MASK;
while (true) {
const u8 *old = cur;
counters.count1Inc(pos1);
if (cur<end-7) {
ulong word = fsst_unaligned_load(cur);
ulong pos = (u32) word; // key is first 4 bytes!!
ulong idx = FSST_HASH(pos)&(st->hashTabSize-1);
Symbol s = st->hashTab[idx];
pos2 = st->shortCodes[word & 0xFFFF];
word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.gcl);
if ((s.gcl < FSST_GCL_FREE) && (*(u64*) s.symbol == word)) {
pos2 = s.code(); cur += s.length();
} else {
cur += (pos2 >> 12);
pos2 &= FSST_CODE_MASK;
}
} else if (cur==end) {
break;
} else {
assert(cur<end);
pos2 = st->findExpansion(Symbol(cur, end));
cur += pos2 >> 12;
pos2 &= FSST_CODE_MASK;
}
// compute compressed output size (later divide by 2)
gain += 2*(cur-old)-3;
// now count the subsequent two symbols we encode as an extension possibility
if (sampleFrac < 128) { // no need to count pairs in final round
counters.count2Inc(pos1, pos2);
}
pos1 = pos2;
}
}
}
return gain;
};
auto makeMap = [&](SymbolMap *st, Counters &counters) {
// hashmap of c (needed because we can generate duplicate candidates)
unordered_set<Symbol> cands;
auto addOrInc = [&](unordered_set<Symbol> &cands, Symbol s, u32 count) {
auto it = cands.find(s);
s.gain = s.length()*count;
if (it != cands.end()) {
s.gain += (*it).gain;
cands.erase(*it);
}
cands.insert(s);
};
// add candidate symbols based on counted frequency
for (u32 pos1=0; pos1<st->symbolCount; pos1++) {
u32 cnt1 = counters.count1GetNext(pos1); // may advance pos1!!
if (!cnt1) continue;
Symbol s1 = st->symbols[pos1];
if (s1.length() > 1) { // 1-byte symbols are always in the map
addOrInc(cands, s1, cnt1);
}
if (sampleFrac >= 128 || // last round we do not create new (combined) symbols
s1.length() == Symbol::maxLength) { // symbol cannot be extended
continue;
}
for (u32 pos2=0; pos2<st->symbolCount; pos2++) {
u32 cnt2 = counters.count2GetNext(pos1, pos2); // may advance pos2!!
if (!cnt2) continue;
// create a new symbol
Symbol s2 = st->symbols[pos2];
Symbol s3 = concat(s1, s2);
addOrInc(cands, s3, cnt2);
}
}
// insert candidates into priority queue (by gain)
auto cmpGn = [](const Symbol& q1, const Symbol& q2) { return q1.gain < q2.gain; };
priority_queue<Symbol,vector<Symbol>,decltype(cmpGn)> pq(cmpGn);
for (auto& q : cands)
pq.push(q);
// Create new symbol map using best candidates
st->clear();
while (st->symbolCount < 4096 && !pq.empty()) {
Symbol s = pq.top();
pq.pop();
st->add(s);
}
};
#ifdef NONOPT_FSST
for(ulong frac : {127, 127, 127, 127, 127, 127, 127, 127, 127, 128}) {
sampleFrac = frac;
#else
for(sampleFrac=14; true; sampleFrac = sampleFrac + 38) {
#endif
memset(&counters, 0, sizeof(Counters));
long gain = compressCount(st, counters);
if (gain >= bestGain) { // a new best solution!
*bestMap = *st; bestGain = gain;
}
if (sampleFrac >= 128) break; // we do 4 rounds (sampleFrac=14,52,90,128)
makeMap(st, counters);
}
delete st;
return bestMap;
}
// optimized adaptive *scalar* compression method
static inline ulong compressBulk(SymbolMap &symbolMap, ulong nlines, const ulong lenIn[], const u8* strIn[], ulong size, u8* out, ulong lenOut[], u8* strOut[]) {
u8 *lim = out + size;
ulong curLine;
for(curLine=0; curLine<nlines; curLine++) {
const u8 *cur = strIn[curLine];
const u8 *end = cur + lenIn[curLine];
strOut[curLine] = out;
while (cur+16 <= end && (lim-out) >= 8) {
u64 word = fsst_unaligned_load(cur);
ulong code = symbolMap.shortCodes[word & 0xFFFF];
ulong pos = (u32) word; // key is first 4 bytes
ulong idx = FSST_HASH(pos)&(symbolMap.hashTabSize-1);
Symbol s = symbolMap.hashTab[idx];
word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.gcl);
if ((s.gcl < FSST_GCL_FREE) && *(ulong*) s.symbol == word) {
code = s.gcl >> 16;
}
cur += (code >> 12);
u32 res = code & FSST_CODE_MASK;
word = fsst_unaligned_load(cur);
code = symbolMap.shortCodes[word & 0xFFFF];
pos = (u32) word; // key is first 4 bytes
idx = FSST_HASH(pos)&(symbolMap.hashTabSize-1);
s = symbolMap.hashTab[idx];
word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.gcl);
if ((s.gcl < FSST_GCL_FREE) && *(ulong*) s.symbol == word) {
code = s.gcl >> 16;
}
cur += (code >> 12);
res |= (code&FSST_CODE_MASK) << 12;
memcpy(out, &res, sizeof(u64));
out += 3;
}
while (cur < end) {
ulong code = symbolMap.findExpansion(Symbol(cur, end));
u32 res = (code&FSST_CODE_MASK);
if (out+8 > lim) {
return curLine; // u32 write would be out of bounds (out of output memory)
}
cur += code >> 12;
if (cur >= end) {
memcpy(out, &res, sizeof(u64));
out += 2;
break;
}
code = symbolMap.findExpansion(Symbol(cur, end));
res |= (code&FSST_CODE_MASK) << 12;
cur += code >> 12;
memcpy(out, &res, sizeof(u64));
out += 3;
}
lenOut[curLine] = out - strOut[curLine];
}
return curLine;
}
long makeSample(vector<ulong> &sample, ulong nlines, const ulong len[]) {
ulong i, sampleRnd = 1, sampleProb = 256, sampleSize = 0, totSize = 0;
ulong sampleTarget = FSST_SAMPLETARGET;
for(i=0; i<nlines; i++)
totSize += len[i];
if (totSize > FSST_SAMPLETARGET) {
// if the batch is larger than the sampletarget, sample this fraction
sampleProb = max(((ulong) 4),(256*sampleTarget) / totSize);
} else {
// too little data. But ok, do not include lines multiple times, just use everything once
sampleTarget = totSize; // sampleProb will be 256/256 (aka 100%)
}
do {
// if nlines is very large and strings are small (8, so we need 4K lines), we still expect 4K*256/4 iterations total worst case
for(i=0; i<nlines; i++) {
// cheaply draw a random number to select (or not) each line
sampleRnd = FSST_HASH(sampleRnd);
if ((sampleRnd&255) < sampleProb) {
sample.push_back(i);
sampleSize += len[i];
if (sampleSize >= sampleTarget) // enough?
i = nlines; // break out of both loops;
}
}
sampleProb *= 4; //accelerate the selection process at expense of front-bias (4,16,64,256: 4 passes max)
} while(i <= nlines); // basically continue until we have enough
// if the last line (only line?) is excessively long, return a negative samplesize (the amount of front bytes to skip)
long sampleLong = (long) sampleSize;
assert(sampleLong > 0);
return (sampleLong < FSST_SAMPLEMAXSZ)?sampleLong:FSST_SAMPLEMAXSZ-sampleLong;
}
extern "C" fsst_encoder_t* fsst_create(ulong n, const ulong lenIn[], const u8 *strIn[], int dummy) {
vector<ulong> sample;
(void) dummy;
long sampleSize = makeSample(sample, n?n:1, lenIn); // careful handling of input to get a right-size and representative sample
Encoder *encoder = new Encoder();
encoder->symbolMap = shared_ptr<SymbolMap>(buildSymbolMap(encoder->counters, sampleSize, sample, lenIn, strIn));
return (fsst_encoder_t*) encoder;
}
/* create another encoder instance, necessary to do multi-threaded encoding using the same dictionary */
extern "C" fsst_encoder_t* fsst_duplicate(fsst_encoder_t *encoder) {
Encoder *e = new Encoder();
e->symbolMap = ((Encoder*)encoder)->symbolMap; // it is a shared_ptr
return (fsst_encoder_t*) e;
}
// export a dictionary in compact format.
extern "C" u32 fsst_export(fsst_encoder_t *encoder, u8 *buf) {
Encoder *e = (Encoder*) encoder;
// In ->version there is a versionnr, but we hide also suffixLim/terminator/symbolCount there.
// This is sufficient in principle to *reconstruct* a fsst_encoder_t from a fsst_decoder_t
// (such functionality could be useful to append compressed data to an existing block).
//
// However, the hash function in the encoder hash table is endian-sensitive, and given its
// 'lossy perfect' hashing scheme is *unable* to contain other-endian-produced symbol tables.
// Doing a endian-conversion during hashing will be slow and self-defeating.
//
// Overall, we could support reconstructing an encoder for incremental compression, but
// should enforce equal-endianness. Bit of a bummer. Not going there now.
//
// The version field is now there just for future-proofness, but not used yet
// version allows keeping track of fsst versions, track endianness, and encoder reconstruction
u64 version = (FSST_VERSION << 32) | FSST_ENDIAN_MARKER; // least significant byte is nonzero
/* do not assume unaligned reads here */
memcpy(buf, &version, 8);
memcpy(buf+8, e->symbolMap->lenHisto, 16); // serialize the lenHisto
u32 pos = 24;
// emit only the used bytes of the symbols
for(u32 i = 0; i < e->symbolMap->symbolCount; i++) {
buf[pos++] = e->symbolMap->symbols[i].length();
for(u32 j = 0; j < e->symbolMap->symbols[i].length(); j++) {
buf[pos++] = ((u8*) &e->symbolMap->symbols[i].symbol)[j]; // serialize used symbol bytes
}
}
return pos; // length of what was serialized
}
#define FSST_CORRUPT 32774747032022883 /* 7-byte number in little endian containing "corrupt" */
extern "C" u32 fsst_import(fsst_decoder_t *decoder, u8 *buf) {
u64 version = 0, symbolCount = 0;
u32 pos = 24;
u16 lenHisto[8];
// version field (first 8 bytes) is now there just for future-proofness, unused still (skipped)
memcpy(&version, buf, 8);
if ((version>>32) != FSST_VERSION) return 0;
memcpy(lenHisto, buf+8, 16);
for(u32 i=0; i<8; i++)
symbolCount += lenHisto[i];
for(u32 i = 0; i < symbolCount; i++) {
u32 len = decoder->len[i] = buf[pos++];
for(u32 j = 0; j < len; j++) {
((u8*) &decoder->symbol[i])[j] = buf[pos++];
}
}
// fill unused symbols with text "corrupt". Gives a chance to detect corrupted code sequences (if there are unused symbols).
while(symbolCount<4096) {
decoder->symbol[symbolCount] = FSST_CORRUPT;
decoder->len[symbolCount++] = 8;
}
return pos;
}
// runtime check for simd
inline ulong _compressImpl(Encoder *e, ulong nlines, const ulong lenIn[], const u8 *strIn[], ulong size, u8 *output, ulong *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd) {
(void) noSuffixOpt;
(void) avoidBranch;
(void) simd;
return compressBulk(*e->symbolMap, nlines, lenIn, strIn, size, output, lenOut, strOut);
}
ulong compressImpl(Encoder *e, ulong nlines, const ulong lenIn[], const u8 *strIn[], ulong size, u8 *output, ulong *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd) {
return _compressImpl(e, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch, simd);
}
// adaptive choosing of scalar compression method based on symbol length histogram
inline ulong _compressAuto(Encoder *e, ulong nlines, const ulong lenIn[], const u8 *strIn[], ulong size, u8 *output, ulong *lenOut, u8 *strOut[], int simd) {
(void) simd;
return _compressImpl(e, nlines, lenIn, strIn, size, output, lenOut, strOut, false, false, false);
}
ulong compressAuto(Encoder *e, ulong nlines, const ulong lenIn[], const u8 *strIn[], ulong size, u8 *output, ulong *lenOut, u8 *strOut[], int simd) {
return _compressAuto(e, nlines, lenIn, strIn, size, output, lenOut, strOut, simd);
}
// the main compression function (everything automatic)
extern "C" ulong fsst_compress(fsst_encoder_t *encoder, ulong nlines, const ulong lenIn[], const u8 *strIn[], ulong size, u8 *output, ulong *lenOut, u8 *strOut[]) {
// to be faster than scalar, simd needs 64 lines or more of length >=12; or fewer lines, but big ones (totLen > 32KB)
ulong totLen = accumulate(lenIn, lenIn+nlines, 0);
int simd = totLen > nlines*12 && (nlines > 64 || totLen > (ulong) 1<<15);
return _compressAuto((Encoder*) encoder, nlines, lenIn, strIn, size, output, lenOut, strOut, 3*simd);
}
/* deallocate encoder */
extern "C" void fsst_destroy(fsst_encoder_t* encoder) {
Encoder *e = (Encoder*) encoder;
delete e;
}
/* very lazy implementation relying on export and import */
extern "C" fsst_decoder_t fsst_decoder(fsst_encoder_t *encoder) {
u8 buf[sizeof(fsst_decoder_t)];
u32 cnt1 = fsst_export(encoder, buf);
fsst_decoder_t decoder;
u32 cnt2 = fsst_import(&decoder, buf);
assert(cnt1 == cnt2); (void) cnt1; (void) cnt2;
return decoder;
}