-
Notifications
You must be signed in to change notification settings - Fork 40
/
libfsst.hpp
450 lines (399 loc) · 23 KB
/
libfsst.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
// this software is distributed under the MIT License (http://www.opensource.org/licenses/MIT):
//
// Copyright 2018-2020, CWI, TU Munich, FSU Jena
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
// (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// You can contact the authors via the FSST source repository : https://github.com/cwida/fsst
#include <algorithm>
#include <cassert>
#include <cstring>
#include <fstream>
#include <iostream>
#include <numeric>
#include <memory>
#include <queue>
#include <string>
#include <unordered_set>
#include <vector>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stddef.h>
using namespace std;
#include "fsst.h" // the official FSST API -- also usable by C mortals
/* unsigned integers */
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
#define FSST_ENDIAN_MARKER ((u64) 1)
#define FSST_VERSION_20190218 20190218
#define FSST_VERSION ((u64) FSST_VERSION_20190218)
// "symbols" are character sequences (up to 8 bytes)
// A symbol is compressed into a "code" of, in principle, one byte. But, we added an exception mechanism:
// byte 255 followed by byte X represents the single-byte symbol X. Its code is 256+X.
// we represent codes in u16 (not u8). 12 bits code (of which 10 are used), 4 bits length
#define FSST_LEN_BITS 12
#define FSST_CODE_BITS 9
#define FSST_CODE_BASE 256UL /* first 256 codes [0,255] are pseudo codes: escaped bytes */
#define FSST_CODE_MAX (1UL<<FSST_CODE_BITS) /* all bits set: indicating a symbol that has not been assigned a code yet */
#define FSST_CODE_MASK (FSST_CODE_MAX-1UL) /* all bits set: indicating a symbol that has not been assigned a code yet */
inline uint64_t fsst_unaligned_load(u8 const* V) {
uint64_t Ret;
memcpy(&Ret, V, sizeof(uint64_t)); // compiler will generate efficient code (unaligned load, where possible)
return Ret;
}
struct Symbol {
static const unsigned maxLength = 8;
// the byte sequence that this symbol stands for
union { char str[maxLength]; u64 num; } val; // usually we process it as a num(ber), as this is fast
// icl = u64 ignoredBits:16,code:12,length:4,unused:32 -- but we avoid exposing this bit-field notation
u64 icl; // use a single u64 to be sure "code" is accessed with one load and can be compared with one comparison
Symbol() : icl(0) { val.num = 0; }
explicit Symbol(u8 c, u16 code) : icl((1<<28)|(code<<16)|56) { val.num = c; } // single-char symbol
explicit Symbol(const char* begin, const char* end) : Symbol(begin, (u32) (end-begin)) {}
explicit Symbol(const u8* begin, const u8* end) : Symbol((const char*)begin, (u32) (end-begin)) {}
explicit Symbol(const char* input, u32 len) {
val.num = 0;
if (len>=8) {
len = 8;
memcpy(val.str, input, 8);
} else {
memcpy(val.str, input, len);
}
set_code_len(FSST_CODE_MAX, len);
}
void set_code_len(u32 code, u32 len) { icl = (len<<28)|(code<<16)|((8-len)*8); }
u32 length() const { return (u32) (icl >> 28); }
u16 code() const { return (icl >> 16) & FSST_CODE_MASK; }
u32 ignoredBits() const { return (u32) icl; }
u8 first() const { assert( length() >= 1); return 0xFF & val.num; }
u16 first2() const { assert( length() >= 2); return 0xFFFF & val.num; }
#define FSST_HASH_LOG2SIZE 10
#define FSST_HASH_PRIME 2971215073LL
#define FSST_SHIFT 15
#define FSST_HASH(w) (((w)*FSST_HASH_PRIME)^(((w)*FSST_HASH_PRIME)>>FSST_SHIFT))
size_t hash() const { size_t v = 0xFFFFFF & val.num; return FSST_HASH(v); } // hash on the next 3 bytes
};
// Symbol that can be put in a queue, ordered on gain
struct QSymbol{
Symbol symbol;
mutable u32 gain; // mutable because gain value should be ignored in find() on unordered_set of QSymbols
bool operator==(const QSymbol& other) const { return symbol.val.num == other.symbol.val.num && symbol.length() == other.symbol.length(); }
};
// we construct FSST symbol tables using a random sample of about 16KB (1<<14)
#define FSST_SAMPLETARGET (1<<14)
#define FSST_SAMPLEMAXSZ ((long) 2*FSST_SAMPLETARGET)
// two phases of compression, before and after optimize():
//
// (1) to encode values we probe (and maintain) three datastructures:
// - u16 byteCodes[256] array at the position of the next byte (s.length==1)
// - u16 shortCodes[65536] array at the position of the next twobyte pattern (s.length==2)
// - Symbol hashtable[1024] (keyed by the next three bytes, ie for s.length>2),
// this search will yield a u16 code, it points into Symbol symbols[]. You always find a hit, because the first 256 codes are
// pseudo codes representing a single byte these will become escapes)
//
// (2) when we finished looking for the best symbol table we call optimize() to reshape it:
// - it renumbers the codes by length (first symbols of length 2,3,4,5,6,7,8; then 1 (starting from byteLim are symbols of length 1)
// length 2 codes for which no longer suffix symbol exists (< suffixLim) come first among the 2-byte codes
// (allows shortcut during compression)
// - for each two-byte combination, in all unused slots of shortCodes[], it enters the byteCode[] of the symbol corresponding
// to the first byte (if such a single-byte symbol exists). This allows us to just probe the next two bytes (if there is only one
// byte left in the string, there is still a terminator-byte added during compression) in shortCodes[]. That is, byteCodes[]
// and its codepath is no longer required. This makes compression faster. The reason we use byteCodes[] during symbolTable construction
// is that adding a new code/symbol is expensive (you have to touch shortCodes[] in 256 places). This optimization was
// hence added to make symbolTable construction faster.
//
// this final layout allows for the fastest compression code, only currently present in compressBulk
// in the hash table, the icl field contains (low-to-high) ignoredBits:16,code:12,length:4
#define FSST_ICL_FREE ((15<<28)|(((u32)FSST_CODE_MASK)<<16)) // high bits of icl (len=8,code=FSST_CODE_MASK) indicates free bucket
// ignoredBits is (8-length)*8, which is the amount of high bits to zero in the input word before comparing with the hashtable key
// ..it could of course be computed from len during lookup, but storing it precomputed in some loose bits is faster
//
// the gain field is only used in the symbol queue that sorts symbols on gain
struct SymbolTable {
static const u32 hashTabSize = 1<<FSST_HASH_LOG2SIZE; // smallest size that incurs no precision loss
// lookup table using the next two bytes (65536 codes), or just the next single byte
u16 shortCodes[65536]; // contains code for 2-byte symbol, otherwise code for pseudo byte (escaped byte)
// lookup table (only used during symbolTable construction, not during normal text compression)
u16 byteCodes[256]; // contains code for every 1-byte symbol, otherwise code for pseudo byte (escaped byte)
// 'symbols' is the current symbol table symbol[code].symbol is the max 8-byte 'symbol' for single-byte 'code'
Symbol symbols[FSST_CODE_MAX]; // x in [0,255]: pseudo symbols representing escaped byte x; x in [FSST_CODE_BASE=256,256+nSymbols]: real symbols
// replicate long symbols in hashTab (avoid indirection).
Symbol hashTab[hashTabSize]; // used for all symbols of 3 and more bytes
u16 nSymbols; // amount of symbols in the map (max 255)
u16 suffixLim; // codes higher than this do not have a longer suffix
u16 terminator; // code of 1-byte symbol, that can be used as a terminator during compression
bool zeroTerminated; // whether we are expecting zero-terminated strings (we then also produce zero-terminated compressed strings)
u16 lenHisto[FSST_CODE_BITS]; // lenHisto[x] is the amount of symbols of byte-length (x+1) in this SymbolTable
SymbolTable() : nSymbols(0), suffixLim(FSST_CODE_MAX), terminator(0), zeroTerminated(false) {
// stuff done once at startup
for (u32 i=0; i<256; i++) {
symbols[i] = Symbol(i,i|(1<<FSST_LEN_BITS)); // pseudo symbols
}
Symbol unused = Symbol((u8) 0,FSST_CODE_MASK); // single-char symbol, exception code
for (u32 i=256; i<FSST_CODE_MAX; i++) {
symbols[i] = unused; // we start with all symbols unused
}
// empty hash table
Symbol s;
s.val.num = 0;
s.icl = FSST_ICL_FREE; //marks empty in hashtab
for(u32 i=0; i<hashTabSize; i++)
hashTab[i] = s;
// fill byteCodes[] with the pseudo code all bytes (escaped bytes)
for(u32 i=0; i<256; i++)
byteCodes[i] = (1<<FSST_LEN_BITS) | i;
// fill shortCodes[] with the pseudo code for the first byte of each two-byte pattern
for(u32 i=0; i<65536; i++)
shortCodes[i] = (1<<FSST_LEN_BITS) | (i&255);
memset(lenHisto, 0, sizeof(lenHisto)); // all unused
}
void clear() {
// clear a symbolTable with minimal effort (only erase the used positions in it)
memset(lenHisto, 0, sizeof(lenHisto)); // all unused
for(u32 i=FSST_CODE_BASE; i<FSST_CODE_BASE+nSymbols; i++) {
if (symbols[i].length() == 1) {
u16 val = symbols[i].first();
byteCodes[val] = (1<<FSST_LEN_BITS) | val;
} else if (symbols[i].length() == 2) {
u16 val = symbols[i].first2();
shortCodes[val] = (1<<FSST_LEN_BITS) | (val&255);
} else {
u32 idx = symbols[i].hash() & (hashTabSize-1);
hashTab[idx].val.num = 0;
hashTab[idx].icl = FSST_ICL_FREE; //marks empty in hashtab
}
}
nSymbols = 0; // no need to clean symbols[] as no symbols are used
}
bool hashInsert(Symbol s) {
u32 idx = s.hash() & (hashTabSize-1);
bool taken = (hashTab[idx].icl < FSST_ICL_FREE);
if (taken) return false; // collision in hash table
hashTab[idx].icl = s.icl;
hashTab[idx].val.num = s.val.num & (0xFFFFFFFFFFFFFFFF >> (u8) s.icl);
return true;
}
bool add(Symbol s) {
assert(FSST_CODE_BASE + nSymbols < FSST_CODE_MAX);
u32 len = s.length();
s.set_code_len(FSST_CODE_BASE + nSymbols, len);
if (len == 1) {
byteCodes[s.first()] = FSST_CODE_BASE + nSymbols + (1<<FSST_LEN_BITS); // len=1 (<<FSST_LEN_BITS)
} else if (len == 2) {
shortCodes[s.first2()] = FSST_CODE_BASE + nSymbols + (2<<FSST_LEN_BITS); // len=2 (<<FSST_LEN_BITS)
} else if (!hashInsert(s)) {
return false;
}
symbols[FSST_CODE_BASE + nSymbols++] = s;
lenHisto[len-1]++;
return true;
}
/// Find longest expansion, return code (= position in symbol table)
u16 findLongestSymbol(Symbol s) const {
size_t idx = s.hash() & (hashTabSize-1);
if (hashTab[idx].icl <= s.icl && hashTab[idx].val.num == (s.val.num & (0xFFFFFFFFFFFFFFFF >> ((u8) hashTab[idx].icl)))) {
return (hashTab[idx].icl>>16) & FSST_CODE_MASK; // matched a long symbol
}
if (s.length() >= 2) {
u16 code = shortCodes[s.first2()] & FSST_CODE_MASK;
if (code >= FSST_CODE_BASE) return code;
}
return byteCodes[s.first()] & FSST_CODE_MASK;
}
u16 findLongestSymbol(const u8* cur, const u8* end) const {
return findLongestSymbol(Symbol(cur,end)); // represent the string as a temporary symbol
}
// rationale for finalize:
// - during symbol table construction, we may create more than 256 codes, but bring it down to max 255 in the last makeTable()
// consequently we needed more than 8 bits during symbol table contruction, but can simplify the codes to single bytes in finalize()
// (this feature is in fact lo longer used, but could still be exploited: symbol construction creates no more than 255 symbols in each pass)
// - we not only reduce the amount of codes to <255, but also *reorder* the symbols and renumber their codes, for higher compression perf.
// we renumber codes so they are grouped by length, to allow optimized scalar string compression (byteLim and suffixLim optimizations).
// - we make the use of byteCode[] no longer necessary by inserting single-byte codes in the free spots of shortCodes[]
// Using shortCodes[] only makes compression faster. When creating the symbolTable, however, using shortCodes[] for the single-byte
// symbols is slow, as each insert touches 256 positions in it. This optimization was added when optimizing symbolTable construction time.
//
// In all, we change the layout and coding, as follows..
//
// before finalize():
// - The real symbols are symbols[256..256+nSymbols>. As we may have nSymbols > 255
// - The first 256 codes are pseudo symbols (all escaped bytes)
//
// after finalize():
// - table layout is symbols[0..nSymbols>, with nSymbols < 256.
// - Real codes are [0,nSymbols>. 8-th bit not set.
// - Escapes in shortCodes have the 8th bit set (value: 256+255=511). 255 because the code to be emitted is the escape byte 255
// - symbols are grouped by length: 2,3,4,5,6,7,8, then 1 (single-byte codes last)
// the two-byte codes are split in two sections:
// - first section contains codes for symbols for which there is no longer symbol (no suffix). It allows an early-out during compression
//
// finally, shortCodes[] is modified to also encode all single-byte symbols (hence byteCodes[] is not required on a critical path anymore).
//
void finalize(u8 zeroTerminated) {
assert(nSymbols <= 255);
u8 newCode[256], rsum[8], byteLim = nSymbols - (lenHisto[0] - zeroTerminated);
// compute running sum of code lengths (starting offsets for each length)
rsum[0] = byteLim; // 1-byte codes are highest
rsum[1] = zeroTerminated;
for(u32 i=1; i<7; i++)
rsum[i+1] = rsum[i] + lenHisto[i];
// determine the new code for each symbol, ordered by length (and splitting 2byte symbols into two classes around suffixLim)
suffixLim = rsum[1];
symbols[newCode[0] = 0] = symbols[256]; // keep symbol 0 in place (for zeroTerminated cases only)
for(u32 i=zeroTerminated, j=rsum[2]; i<nSymbols; i++) {
Symbol s1 = symbols[FSST_CODE_BASE+i];
u32 len = s1.length(), opt = (len == 2)*nSymbols;
if (opt) {
u16 first2 = s1.first2();
for(u32 k=0; k<opt; k++) {
Symbol s2 = symbols[FSST_CODE_BASE+k];
if (k != i && s2.length() > 1 && first2 == s2.first2()) // test if symbol k is a suffix of s
opt = 0;
}
newCode[i] = opt?suffixLim++:--j; // symbols without a larger suffix have a code < suffixLim
} else
newCode[i] = rsum[len-1]++;
s1.set_code_len(newCode[i],len);
symbols[newCode[i]] = s1;
}
// renumber the codes in byteCodes[]
for(u32 i=0; i<256; i++)
if ((byteCodes[i] & FSST_CODE_MASK) >= FSST_CODE_BASE)
byteCodes[i] = newCode[(u8) byteCodes[i]] + (1 << FSST_LEN_BITS);
else
byteCodes[i] = 511 + (1 << FSST_LEN_BITS);
// renumber the codes in shortCodes[]
for(u32 i=0; i<65536; i++)
if ((shortCodes[i] & FSST_CODE_MASK) >= FSST_CODE_BASE)
shortCodes[i] = newCode[(u8) shortCodes[i]] + (shortCodes[i] & (15 << FSST_LEN_BITS));
else
shortCodes[i] = byteCodes[i&0xFF];
// replace the symbols in the hash table
for(u32 i=0; i<hashTabSize; i++)
if (hashTab[i].icl < FSST_ICL_FREE)
hashTab[i] = symbols[newCode[(u8) hashTab[i].code()]];
}
};
#ifdef NONOPT_FSST
struct Counters {
u16 count1[FSST_CODE_MAX]; // array to count frequency of symbols as they occur in the sample
u16 count2[FSST_CODE_MAX][FSST_CODE_MAX]; // array to count subsequent combinations of two symbols in the sample
void count1Set(u32 pos1, u16 val) {
count1[pos1] = val;
}
void count1Inc(u32 pos1) {
count1[pos1]++;
}
void count2Inc(u32 pos1, u32 pos2) {
count2[pos1][pos2]++;
}
u32 count1GetNext(u32 &pos1) {
return count1[pos1];
}
u32 count2GetNext(u32 pos1, u32 &pos2) {
return count2[pos1][pos2];
}
void backup1(u8 *buf) {
memcpy(buf, count1, FSST_CODE_MAX*sizeof(u16));
}
void restore1(u8 *buf) {
memcpy(count1, buf, FSST_CODE_MAX*sizeof(u16));
}
};
#else
// we keep two counters count1[pos] and count2[pos1][pos2] of resp 16 and 12-bits. Both are split into two columns for performance reasons
// first reason is to make the column we update the most during symbolTable construction (the low bits) thinner, thus reducing CPU cache pressure.
// second reason is that when scanning the array, after seeing a 64-bits 0 in the high bits column, we can quickly skip over many codes (15 or 7)
struct Counters {
// high arrays come before low arrays, because our GetNext() methods may overrun their 64-bits reads a few bytes
u8 count1High[FSST_CODE_MAX]; // array to count frequency of symbols as they occur in the sample (16-bits)
u8 count1Low[FSST_CODE_MAX]; // it is split in a low and high byte: cnt = count1High*256 + count1Low
u8 count2High[FSST_CODE_MAX][FSST_CODE_MAX/2]; // array to count subsequent combinations of two symbols in the sample (12-bits: 8-bits low, 4-bits high)
u8 count2Low[FSST_CODE_MAX][FSST_CODE_MAX]; // its value is (count2High*256+count2Low) -- but high is 4-bits (we put two numbers in one, hence /2)
// 385KB -- but hot area likely just 10 + 30*4 = 130 cache lines (=8KB)
void count1Set(u32 pos1, u16 val) {
count1Low[pos1] = val&255;
count1High[pos1] = val>>8;
}
void count1Inc(u32 pos1) {
if (!count1Low[pos1]++) // increment high early (when low==0, not when low==255). This means (high > 0) <=> (cnt > 0)
count1High[pos1]++; //(0,0)->(1,1)->..->(255,1)->(0,1)->(1,2)->(2,2)->(3,2)..(255,2)->(0,2)->(1,3)->(2,3)...
}
void count2Inc(u32 pos1, u32 pos2) {
if (!count2Low[pos1][pos2]++) // increment high early (when low==0, not when low==255). This means (high > 0) <=> (cnt > 0)
// inc 4-bits high counter with 1<<0 (1) or 1<<4 (16) -- depending on whether pos2 is even or odd, repectively
count2High[pos1][(pos2)>>1] += 1 << (((pos2)&1)<<2); // we take our chances with overflow.. (4K maxval, on a 8K sample)
}
u32 count1GetNext(u32 &pos1) { // note: we will advance pos1 to the next nonzero counter in register range
// read 16-bits single symbol counter, split into two 8-bits numbers (count1Low, count1High), while skipping over zeros
u64 high = fsst_unaligned_load(&count1High[pos1]); // note: this reads 8 subsequent counters [pos1..pos1+7]
u32 zero = high?(__builtin_ctzl(high)>>3):7UL; // number of zero bytes
high = (high >> (zero << 3)) & 255; // advance to nonzero counter
if (((pos1 += zero) >= FSST_CODE_MAX) || !high) // SKIP! advance pos2
return 0; // all zero
u32 low = count1Low[pos1];
if (low) high--; // high is incremented early and low late, so decrement high (unless low==0)
return (u32) ((high << 8) + low);
}
u32 count2GetNext(u32 pos1, u32 &pos2) { // note: we will advance pos2 to the next nonzero counter in register range
// read 12-bits pairwise symbol counter, split into low 8-bits and high 4-bits number while skipping over zeros
u64 high = fsst_unaligned_load(&count2High[pos1][pos2>>1]); // note: this reads 16 subsequent counters [pos2..pos2+15]
high >>= ((pos2&1) << 2); // odd pos2: ignore the lowest 4 bits & we see only 15 counters
u32 zero = high?(__builtin_ctzl(high)>>2):(15UL-(pos2&1UL)); // number of zero 4-bits counters
high = (high >> (zero << 2)) & 15; // advance to nonzero counter
if (((pos2 += zero) >= FSST_CODE_MAX) || !high) // SKIP! advance pos2
return 0UL; // all zero
u32 low = count2Low[pos1][pos2];
if (low) high--; // high is incremented early and low late, so decrement high (unless low==0)
return (u32) ((high << 8) + low);
}
void backup1(u8 *buf) {
memcpy(buf, count1High, FSST_CODE_MAX);
memcpy(buf+FSST_CODE_MAX, count1Low, FSST_CODE_MAX);
}
void restore1(u8 *buf) {
memcpy(count1High, buf, FSST_CODE_MAX);
memcpy(count1Low, buf+FSST_CODE_MAX, FSST_CODE_MAX);
}
};
#endif
#define FSST_BUFSZ (3<<19) // 768KB
// an encoder is a symbolmap plus some bufferspace, needed during map construction as well as compression
struct Encoder {
shared_ptr<SymbolTable> symbolTable; // symbols, plus metadata and data structures for quick compression (shortCode,hashTab, etc)
union {
Counters counters; // for counting symbol occurences during map construction
u8 simdbuf[FSST_BUFSZ]; // for compression: SIMD string staging area 768KB = 256KB in + 512KB out (worst case for 256KB in)
};
};
// job control integer representable in one 64bits SIMD lane: cur/end=input, out=output, pos=which string (2^9=512 per call)
struct SIMDjob {
u64 out:19,pos:9,end:18,cur:18; // cur/end is input offsets (2^18=256KB), out is output offset (2^19=512KB)
};
extern bool
fsst_hasAVX512(); // runtime check for avx512 capability
extern size_t
fsst_compressAVX512(
SymbolTable &symbolTable,
u8* codeBase, // IN: base address for codes, i.e. compression output (points to simdbuf+256KB)
u8* symbolBase, // IN: base address for string bytes, i.e. compression input (points to simdbuf)
SIMDjob* input, // IN: input array (size n) with job information: what to encode, where to store it.
SIMDjob* output, // OUT: output array (size n) with job information: how much got encoded, end output pointer.
size_t n, // IN: size of arrays input and output (should be max 512)
size_t unroll); // IN: degree of SIMD unrolling
// C++ fsst-compress function with some more control of how the compression happens (algorithm flavor, simd unroll degree)
size_t compressImpl(Encoder *encoder, size_t n, size_t lenIn[], u8 *strIn[], size_t size, u8 * output, size_t *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd);
size_t compressAuto(Encoder *encoder, size_t n, size_t lenIn[], u8 *strIn[], size_t size, u8 * output, size_t *lenOut, u8 *strOut[], int simd);