-
Notifications
You must be signed in to change notification settings - Fork 40
/
libfsst.cpp
641 lines (569 loc) · 28.2 KB
/
libfsst.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// this software is distributed under the MIT License (http://www.opensource.org/licenses/MIT):
//
// Copyright 2018-2020, CWI, TU Munich, FSU Jena
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
// (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// You can contact the authors via the FSST source repository : https://github.com/cwida/fsst
#include "libfsst.hpp"
Symbol concat(Symbol a, Symbol b) {
Symbol s;
u32 length = a.length()+b.length();
if (length > Symbol::maxLength) length = Symbol::maxLength;
s.set_code_len(FSST_CODE_MASK, length);
s.val.num = (b.val.num << (8*a.length())) | a.val.num;
return s;
}
namespace std {
template <>
class hash<QSymbol> {
public:
size_t operator()(const QSymbol& q) const {
uint64_t k = q.symbol.val.num;
const uint64_t m = 0xc6a4a7935bd1e995;
const int r = 47;
uint64_t h = 0x8445d61a4e774912 ^ (8*m);
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
h ^= h >> r;
h *= m;
h ^= h >> r;
return h;
}
};
}
bool isEscapeCode(u16 pos) { return pos < FSST_CODE_BASE; }
std::ostream& operator<<(std::ostream& out, const Symbol& s) {
for (u32 i=0; i<s.length(); i++)
out << s.val.str[i];
return out;
}
SymbolTable *buildSymbolTable(Counters& counters, vector<const u8*> line, const size_t len[], bool zeroTerminated=false) {
SymbolTable *st = new SymbolTable(), *bestTable = new SymbolTable();
int bestGain = (int) -FSST_SAMPLEMAXSZ; // worst case (everything exception)
size_t sampleFrac = 128;
// start by determining the terminator. We use the (lowest) most infrequent byte as terminator
st->zeroTerminated = zeroTerminated;
if (zeroTerminated) {
st->terminator = 0; // except in case of zeroTerminated mode, then byte 0 is terminator regardless frequency
} else {
u16 byteHisto[256];
memset(byteHisto, 0, sizeof(byteHisto));
for(size_t i=0; i<line.size(); i++) {
const u8* cur = line[i];
const u8* end = cur + len[i];
while(cur < end) byteHisto[*cur++]++;
}
u32 minSize = FSST_SAMPLEMAXSZ, i = st->terminator = 256;
while(i-- > 0) {
if (byteHisto[i] > minSize) continue;
st->terminator = i;
minSize = byteHisto[i];
}
}
assert(st->terminator != 256);
// a random number between 0 and 128
auto rnd128 = [&](size_t i) { return 1 + (FSST_HASH((i+1UL)*sampleFrac)&127); };
// compress sample, and compute (pair-)frequencies
auto compressCount = [&](SymbolTable *st, Counters &counters) { // returns gain
int gain = 0;
for(size_t i=0; i<line.size(); i++) {
const u8* cur = line[i], *start = cur;
const u8* end = cur + len[i];
if (sampleFrac < 128) {
// in earlier rounds (sampleFrac < 128) we skip data in the sample (reduces overall work ~2x)
if (rnd128(i) > sampleFrac) continue;
}
if (cur < end) {
u16 code2 = 255, code1 = st->findLongestSymbol(cur, end);
cur += st->symbols[code1].length();
gain += (int) (st->symbols[code1].length()-(1+isEscapeCode(code1)));
while (true) {
// count single symbol (i.e. an option is not extending it)
counters.count1Inc(code1);
// as an alternative, consider just using the next byte..
if (st->symbols[code1].length() != 1) // .. but do not count single byte symbols doubly
counters.count1Inc(*start);
if (cur==end) {
break;
}
// now match a new symbol
start = cur;
if (cur<end-7) {
u64 word = fsst_unaligned_load(cur);
size_t code = word & 0xFFFFFF;
size_t idx = FSST_HASH(code)&(st->hashTabSize-1);
Symbol s = st->hashTab[idx];
code2 = st->shortCodes[word & 0xFFFF] & FSST_CODE_MASK;
word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.icl);
if ((s.icl < FSST_ICL_FREE) & (s.val.num == word)) {
code2 = s.code();
cur += s.length();
} else if (code2 >= FSST_CODE_BASE) {
cur += 2;
} else {
code2 = st->byteCodes[word & 0xFF] & FSST_CODE_MASK;
cur += 1;
}
} else {
code2 = st->findLongestSymbol(cur, end);
cur += st->symbols[code2].length();
}
// compute compressed output size
gain += ((int) (cur-start))-(1+isEscapeCode(code2));
if (sampleFrac < 128) { // no need to count pairs in final round
// consider the symbol that is the concatenation of the two last symbols
counters.count2Inc(code1, code2);
// as an alternative, consider just extending with the next byte..
if ((cur-start) > 1) // ..but do not count single byte extensions doubly
counters.count2Inc(code1, *start);
}
code1 = code2;
}
}
}
return gain;
};
auto makeTable = [&](SymbolTable *st, Counters &counters) {
// hashmap of c (needed because we can generate duplicate candidates)
unordered_set<QSymbol> cands;
// artificially make terminater the most frequent symbol so it gets included
u16 terminator = st->nSymbols?FSST_CODE_BASE:st->terminator;
counters.count1Set(terminator,65535);
auto addOrInc = [&](unordered_set<QSymbol> &cands, Symbol s, u64 count) {
if (count < (5*sampleFrac)/128) return; // improves both compression speed (less candidates), but also quality!!
QSymbol q;
q.symbol = s;
q.gain = count * s.length();
auto it = cands.find(q);
if (it != cands.end()) {
q.gain += (*it).gain;
cands.erase(*it);
}
cands.insert(q);
};
// add candidate symbols based on counted frequency
for (u32 pos1=0; pos1<FSST_CODE_BASE+(size_t) st->nSymbols; pos1++) {
u32 cnt1 = counters.count1GetNext(pos1); // may advance pos1!!
if (!cnt1) continue;
// heuristic: promoting single-byte symbols (*8) helps reduce exception rates and increases [de]compression speed
Symbol s1 = st->symbols[pos1];
addOrInc(cands, s1, ((s1.length()==1)?8LL:1LL)*cnt1);
if (sampleFrac >= 128 || // last round we do not create new (combined) symbols
s1.length() == Symbol::maxLength || // symbol cannot be extended
s1.val.str[0] == st->terminator) { // multi-byte symbols cannot contain the terminator byte
continue;
}
for (u32 pos2=0; pos2<FSST_CODE_BASE+(size_t)st->nSymbols; pos2++) {
u32 cnt2 = counters.count2GetNext(pos1, pos2); // may advance pos2!!
if (!cnt2) continue;
// create a new symbol
Symbol s2 = st->symbols[pos2];
Symbol s3 = concat(s1, s2);
if (s2.val.str[0] != st->terminator) // multi-byte symbols cannot contain the terminator byte
addOrInc(cands, s3, cnt2);
}
}
// insert candidates into priority queue (by gain)
auto cmpGn = [](const QSymbol& q1, const QSymbol& q2) { return (q1.gain < q2.gain) || (q1.gain == q2.gain && q1.symbol.val.num > q2.symbol.val.num); };
priority_queue<QSymbol,vector<QSymbol>,decltype(cmpGn)> pq(cmpGn);
for (auto& q : cands)
pq.push(q);
// Create new symbol map using best candidates
st->clear();
while (st->nSymbols < 255 && !pq.empty()) {
QSymbol q = pq.top();
pq.pop();
st->add(q.symbol);
}
};
u8 bestCounters[512*sizeof(u16)];
#ifdef NONOPT_FSST
for(size_t frac : {127, 127, 127, 127, 127, 127, 127, 127, 127, 128}) {
sampleFrac = frac;
#else
for(sampleFrac=8; true; sampleFrac += 30) {
#endif
memset(&counters, 0, sizeof(Counters));
long gain = compressCount(st, counters);
if (gain >= bestGain) { // a new best solution!
counters.backup1(bestCounters);
*bestTable = *st; bestGain = gain;
}
if (sampleFrac >= 128) break; // we do 5 rounds (sampleFrac=8,38,68,98,128)
makeTable(st, counters);
}
delete st;
counters.restore1(bestCounters);
makeTable(bestTable, counters);
bestTable->finalize(zeroTerminated); // renumber codes for more efficient compression
return bestTable;
}
static inline size_t compressSIMD(SymbolTable &symbolTable, u8* symbolBase, size_t nlines, const size_t len[], const u8* line[], size_t size, u8* dst, size_t lenOut[], u8* strOut[], int unroll) {
size_t curLine = 0, inOff = 0, outOff = 0, batchPos = 0, empty = 0, budget = size;
u8 *lim = dst + size, *codeBase = symbolBase + (1<<18); // 512KB temp space for compressing 512 strings
SIMDjob input[512]; // combined offsets of input strings (cur,end), and string #id (pos) and output (dst) pointer
SIMDjob output[512]; // output are (pos:9,dst:19) end pointers (compute compressed length from this)
size_t jobLine[512]; // for which line in the input sequence was this job (needed because we may split a line into multiple jobs)
while (curLine < nlines && outOff <= (1<<19)) {
size_t prevLine = curLine, chunk, curOff = 0;
// bail out if the output buffer cannot hold the compressed next string fully
if (((len[curLine]-curOff)*2 + 7) > budget) break; // see below for the +7
else budget -= (len[curLine]-curOff)*2;
strOut[curLine] = (u8*) 0;
lenOut[curLine] = 0;
do {
do {
chunk = len[curLine] - curOff;
if (chunk > 511) {
chunk = 511; // large strings need to be chopped up into segments of 511 bytes
}
// create a job in this batch
SIMDjob job;
job.cur = inOff;
job.end = job.cur + chunk;
job.pos = batchPos;
job.out = outOff;
// worst case estimate for compressed size (+7 is for the scatter that writes extra 7 zeros)
outOff += 7 + 2*(size_t)(job.end - job.cur); // note, total size needed is 512*(511*2+7) bytes.
if (outOff > (1<<19)) break; // simdbuf may get full, stop before this chunk
// register job in this batch
input[batchPos] = job;
jobLine[batchPos] = curLine;
if (chunk == 0) {
empty++; // detect empty chunks -- SIMD code cannot handle empty strings, so they need to be filtered out
} else {
// copy string chunk into temp buffer
memcpy(symbolBase + inOff, line[curLine] + curOff, chunk);
inOff += chunk;
curOff += chunk;
symbolBase[inOff++] = (u8) symbolTable.terminator; // write an extra char at the end that will not be encoded
}
if (++batchPos == 512) break;
} while(curOff < len[curLine]);
if ((batchPos == 512) || (outOff > (1<<19)) || (++curLine >= nlines)) { // cannot accumulate more?
if (batchPos-empty >= 32) { // if we have enough work, fire off fsst_compressAVX512 (32 is due to max 4x8 unrolling)
// radix-sort jobs on length (longest string first)
// -- this provides best load balancing and allows to skip empty jobs at the end
u16 sortpos[513];
memset(sortpos, 0, sizeof(sortpos));
// calculate length histo
for(size_t i=0; i<batchPos; i++) {
size_t len = input[i].end - input[i].cur;
sortpos[512UL - len]++;
}
// calculate running sum
for(size_t i=1; i<=512; i++)
sortpos[i] += sortpos[i-1];
// move jobs to their final destination
SIMDjob inputOrdered[512];
for(size_t i=0; i<batchPos; i++) {
size_t len = input[i].end - input[i].cur;
size_t pos = sortpos[511UL - len]++;
inputOrdered[pos] = input[i];
}
// finally.. SIMD compress max 256KB of simdbuf into (max) 512KB of simdbuf (but presumably much less..)
for(size_t done = fsst_compressAVX512(symbolTable, codeBase, symbolBase, inputOrdered, output, batchPos-empty, unroll);
done < batchPos; done++) output[done] = inputOrdered[done];
} else {
memcpy(output, input, batchPos*sizeof(SIMDjob));
}
// finish encoding (unfinished strings in process, plus the few last strings not yet processed)
for(size_t i=0; i<batchPos; i++) {
SIMDjob job = output[i];
if (job.cur < job.end) { // finish encoding this string with scalar code
u8* cur = symbolBase + job.cur;
u8* end = symbolBase + job.end;
u8* out = codeBase + job.out;
while (cur < end) {
u64 word = fsst_unaligned_load(cur);
size_t code = symbolTable.shortCodes[word & 0xFFFF];
size_t pos = word & 0xFFFFFF;
size_t idx = FSST_HASH(pos)&(symbolTable.hashTabSize-1);
Symbol s = symbolTable.hashTab[idx];
out[1] = (u8) word; // speculatively write out escaped byte
word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.icl);
if ((s.icl < FSST_ICL_FREE) && s.val.num == word) {
*out++ = (u8) s.code(); cur += s.length();
} else {
// could be a 2-byte or 1-byte code, or miss
// handle everything with predication
*out = (u8) code;
out += 1+((code&FSST_CODE_BASE)>>8);
cur += (code>>FSST_LEN_BITS);
}
}
job.out = out - codeBase;
}
// postprocess job info
job.cur = 0;
job.end = job.out - input[job.pos].out; // misuse .end field as compressed size
job.out = input[job.pos].out; // reset offset to start of encoded string
input[job.pos] = job;
}
// copy out the result data
for(size_t i=0; i<batchPos; i++) {
size_t lineNr = jobLine[i]; // the sort must be order-preserving, as we concatenate results string in order
size_t sz = input[i].end; // had stored compressed lengths here
if (!strOut[lineNr]) strOut[lineNr] = dst; // first segment will be the strOut pointer
lenOut[lineNr] += sz; // add segment (lenOut starts at 0 for this reason)
memcpy(dst, codeBase+input[i].out, sz);
dst += sz;
}
// go for the next batch of 512 chunks
inOff = outOff = batchPos = empty = 0;
budget = (size_t) (lim - dst);
}
} while (curLine == prevLine && outOff <= (1<<19));
}
return curLine;
}
// optimized adaptive *scalar* compression method
static inline size_t compressBulk(SymbolTable &symbolTable, size_t nlines, const size_t lenIn[], const u8* strIn[], size_t size, u8* out, size_t lenOut[], u8* strOut[], bool noSuffixOpt, bool avoidBranch) {
const u8 *cur = NULL, *end = NULL, *lim = out + size;
size_t curLine, suffixLim = symbolTable.suffixLim;
u8 byteLim = symbolTable.nSymbols + symbolTable.zeroTerminated - symbolTable.lenHisto[0];
u8 buf[512+8] = {}; /* +8 sentinel is to avoid 8-byte unaligned-loads going beyond 511 out-of-bounds */
// three variants are possible. dead code falls away since the bool arguments are constants
auto compressVariant = [&](bool noSuffixOpt, bool avoidBranch) {
while (cur < end) {
u64 word = fsst_unaligned_load(cur);
size_t code = symbolTable.shortCodes[word & 0xFFFF];
if (noSuffixOpt && ((u8) code) < suffixLim) {
// 2 byte code without having to worry about longer matches
*out++ = (u8) code; cur += 2;
} else {
size_t pos = word & 0xFFFFFF;
size_t idx = FSST_HASH(pos)&(symbolTable.hashTabSize-1);
Symbol s = symbolTable.hashTab[idx];
out[1] = (u8) word; // speculatively write out escaped byte
word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.icl);
if ((s.icl < FSST_ICL_FREE) && s.val.num == word) {
*out++ = (u8) s.code(); cur += s.length();
} else if (avoidBranch) {
// could be a 2-byte or 1-byte code, or miss
// handle everything with predication
*out = (u8) code;
out += 1+((code&FSST_CODE_BASE)>>8);
cur += (code>>FSST_LEN_BITS);
} else if ((u8) code < byteLim) {
// 2 byte code after checking there is no longer pattern
*out++ = (u8) code; cur += 2;
} else {
// 1 byte code or miss.
*out = (u8) code;
out += 1+((code&FSST_CODE_BASE)>>8); // predicated - tested with a branch, that was always worse
cur++;
}
}
}
};
for(curLine=0; curLine<nlines; curLine++) {
size_t chunk, curOff = 0;
strOut[curLine] = out;
do {
cur = strIn[curLine] + curOff;
chunk = lenIn[curLine] - curOff;
if (chunk > 511) {
chunk = 511; // we need to compress in chunks of 511 in order to be byte-compatible with simd-compressed FSST
}
if ((2*chunk+7) > (size_t) (lim-out)) {
return curLine; // out of memory
}
// copy the string to the 511-byte buffer
memcpy(buf, cur, chunk);
buf[chunk] = (u8) symbolTable.terminator;
cur = buf;
end = cur + chunk;
// based on symboltable stats, choose a variant that is nice to the branch predictor
if (noSuffixOpt) {
compressVariant(true,false);
} else if (avoidBranch) {
compressVariant(false,true);
} else {
compressVariant(false, false);
}
} while((curOff += chunk) < lenIn[curLine]);
lenOut[curLine] = (size_t) (out - strOut[curLine]);
}
return curLine;
}
#define FSST_SAMPLELINE ((size_t) 512)
// quickly select a uniformly random set of lines such that we have between [FSST_SAMPLETARGET,FSST_SAMPLEMAXSZ) string bytes
vector<const u8*> makeSample(u8* sampleBuf, const u8* strIn[], const size_t **lenRef, size_t nlines) {
size_t totSize = 0;
const size_t *lenIn = *lenRef;
vector<const u8*> sample;
for(size_t i=0; i<nlines; i++)
totSize += lenIn[i];
if (totSize < FSST_SAMPLETARGET) {
for(size_t i=0; i<nlines; i++)
sample.push_back(strIn[i]);
} else {
size_t sampleRnd = FSST_HASH(4637947);
const u8* sampleLim = sampleBuf + FSST_SAMPLETARGET;
size_t *sampleLen = new size_t[nlines + FSST_SAMPLEMAXSZ/FSST_SAMPLELINE];
*lenRef = sampleLen;
size_t* sampleLenLim = sampleLen + nlines + FSST_SAMPLEMAXSZ/FSST_SAMPLELINE;
while(sampleBuf < sampleLim && sampleLen < sampleLenLim) {
// choose a non-empty line
sampleRnd = FSST_HASH(sampleRnd);
size_t linenr = sampleRnd % nlines;
while (lenIn[linenr] == 0)
if (++linenr == nlines) linenr = 0;
// choose a chunk
size_t chunks = 1 + ((lenIn[linenr]-1) / FSST_SAMPLELINE);
sampleRnd = FSST_HASH(sampleRnd);
size_t chunk = FSST_SAMPLELINE*(sampleRnd % chunks);
// add the chunk to the sample
size_t len = min(lenIn[linenr]-chunk,FSST_SAMPLELINE);
memcpy(sampleBuf, strIn[linenr]+chunk, len);
sample.push_back(sampleBuf);
sampleBuf += *sampleLen++ = len;
}
}
return sample;
}
extern "C" fsst_encoder_t* fsst_create(size_t n, const size_t lenIn[], const u8 *strIn[], int zeroTerminated) {
u8* sampleBuf = new u8[FSST_SAMPLEMAXSZ];
const size_t *sampleLen = lenIn;
vector<const u8*> sample = makeSample(sampleBuf, strIn, &sampleLen, n?n:1); // careful handling of input to get a right-size and representative sample
Encoder *encoder = new Encoder();
encoder->symbolTable = shared_ptr<SymbolTable>(buildSymbolTable(encoder->counters, sample, sampleLen, zeroTerminated));
if (sampleLen != lenIn) delete[] sampleLen;
delete[] sampleBuf;
return (fsst_encoder_t*) encoder;
}
/* create another encoder instance, necessary to do multi-threaded encoding using the same symbol table */
extern "C" fsst_encoder_t* fsst_duplicate(fsst_encoder_t *encoder) {
Encoder *e = new Encoder();
e->symbolTable = ((Encoder*)encoder)->symbolTable; // it is a shared_ptr
return (fsst_encoder_t*) e;
}
// export a symbol table in compact format.
extern "C" u32 fsst_export(fsst_encoder_t *encoder, u8 *buf) {
Encoder *e = (Encoder*) encoder;
// In ->version there is a versionnr, but we hide also suffixLim/terminator/nSymbols there.
// This is sufficient in principle to *reconstruct* a fsst_encoder_t from a fsst_decoder_t
// (such functionality could be useful to append compressed data to an existing block).
//
// However, the hash function in the encoder hash table is endian-sensitive, and given its
// 'lossy perfect' hashing scheme is *unable* to contain other-endian-produced symbol tables.
// Doing a endian-conversion during hashing will be slow and self-defeating.
//
// Overall, we could support reconstructing an encoder for incremental compression, but
// should enforce equal-endianness. Bit of a bummer. Not going there now.
//
// The version field is now there just for future-proofness, but not used yet
// version allows keeping track of fsst versions, track endianness, and encoder reconstruction
u64 version = (FSST_VERSION << 32) | // version is 24 bits, most significant byte is 0
(((u64) e->symbolTable->suffixLim) << 24) |
(((u64) e->symbolTable->terminator) << 16) |
(((u64) e->symbolTable->nSymbols) << 8) |
FSST_ENDIAN_MARKER; // least significant byte is nonzero
/* do not assume unaligned reads here */
memcpy(buf, &version, 8);
buf[8] = e->symbolTable->zeroTerminated;
for(u32 i=0; i<8; i++)
buf[9+i] = (u8) e->symbolTable->lenHisto[i];
u32 pos = 17;
// emit only the used bytes of the symbols
for(u32 i = e->symbolTable->zeroTerminated; i < e->symbolTable->nSymbols; i++)
for(u32 j = 0; j < e->symbolTable->symbols[i].length(); j++)
buf[pos++] = e->symbolTable->symbols[i].val.str[j]; // serialize used symbol bytes
return pos; // length of what was serialized
}
#define FSST_CORRUPT 32774747032022883 /* 7-byte number in little endian containing "corrupt" */
extern "C" u32 fsst_import(fsst_decoder_t *decoder, u8 *buf) {
u64 version = 0;
u32 code, pos = 17;
u8 lenHisto[8];
// version field (first 8 bytes) is now there just for future-proofness, unused still (skipped)
memcpy(&version, buf, 8);
if ((version>>32) != FSST_VERSION) return 0;
decoder->zeroTerminated = buf[8]&1;
memcpy(lenHisto, buf+9, 8);
// in case of zero-terminated, first symbol is "" (zero always, may be overwritten)
decoder->len[0] = 1;
decoder->symbol[0] = 0;
// we use lenHisto[0] as 1-byte symbol run length (at the end)
code = decoder->zeroTerminated;
if (decoder->zeroTerminated) lenHisto[0]--; // if zeroTerminated, then symbol "" aka 1-byte code=0, is not stored at the end
// now get all symbols from the buffer
for(u32 l=1; l<=8; l++) { /* l = 1,2,3,4,5,6,7,8 */
for(u32 i=0; i < lenHisto[(l&7) /* 1,2,3,4,5,6,7,0 */]; i++, code++) {
decoder->len[code] = (l&7)+1; /* len = 2,3,4,5,6,7,8,1 */
decoder->symbol[code] = 0;
for(u32 j=0; j<decoder->len[code]; j++)
((u8*) &decoder->symbol[code])[j] = buf[pos++]; // note this enforces 'little endian' symbols
}
}
if (decoder->zeroTerminated) lenHisto[0]++;
// fill unused symbols with text "corrupt". Gives a chance to detect corrupted code sequences (if there are unused symbols).
while(code<255) {
decoder->symbol[code] = FSST_CORRUPT;
decoder->len[code++] = 8;
}
return pos;
}
// runtime check for simd
inline size_t _compressImpl(Encoder *e, size_t nlines, const size_t lenIn[], const u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd) {
#ifndef NONOPT_FSST
if (simd && fsst_hasAVX512())
return compressSIMD(*e->symbolTable, e->simdbuf, nlines, lenIn, strIn, size, output, lenOut, strOut, simd);
#endif
(void) simd;
return compressBulk(*e->symbolTable, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch);
}
size_t compressImpl(Encoder *e, size_t nlines, const size_t lenIn[], const u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd) {
return _compressImpl(e, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch, simd);
}
// adaptive choosing of scalar compression method based on symbol length histogram
inline size_t _compressAuto(Encoder *e, size_t nlines, const size_t lenIn[], const u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], int simd) {
bool avoidBranch = false, noSuffixOpt = false;
if (100*e->symbolTable->lenHisto[1] > 65*e->symbolTable->nSymbols && 100*e->symbolTable->suffixLim > 95*e->symbolTable->lenHisto[1]) {
noSuffixOpt = true;
} else if ((e->symbolTable->lenHisto[0] > 24 && e->symbolTable->lenHisto[0] < 92) &&
(e->symbolTable->lenHisto[0] < 43 || e->symbolTable->lenHisto[6] + e->symbolTable->lenHisto[7] < 29) &&
(e->symbolTable->lenHisto[0] < 72 || e->symbolTable->lenHisto[2] < 72)) {
avoidBranch = true;
}
return _compressImpl(e, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch, simd);
}
size_t compressAuto(Encoder *e, size_t nlines, const size_t lenIn[], const u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], int simd) {
return _compressAuto(e, nlines, lenIn, strIn, size, output, lenOut, strOut, simd);
}
// the main compression function (everything automatic)
extern "C" size_t fsst_compress(fsst_encoder_t *encoder, size_t nlines, const size_t lenIn[], const u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[]) {
// to be faster than scalar, simd needs 64 lines or more of length >=12; or fewer lines, but big ones (totLen > 32KB)
size_t totLen = accumulate(lenIn, lenIn+nlines, 0);
int simd = totLen > nlines*12 && (nlines > 64 || totLen > (size_t) 1<<15);
return _compressAuto((Encoder*) encoder, nlines, lenIn, strIn, size, output, lenOut, strOut, 3*simd);
}
/* deallocate encoder */
extern "C" void fsst_destroy(fsst_encoder_t* encoder) {
Encoder *e = (Encoder*) encoder;
delete e;
}
/* very lazy implementation relying on export and import */
extern "C" fsst_decoder_t fsst_decoder(fsst_encoder_t *encoder) {
u8 buf[sizeof(fsst_decoder_t)];
u32 cnt1 = fsst_export(encoder, buf);
fsst_decoder_t decoder;
u32 cnt2 = fsst_import(&decoder, buf);
assert(cnt1 == cnt2); (void) cnt1; (void) cnt2;
return decoder;
}