Skip to content

cvlab-yonsei/mixing-augmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mixing Augmentation

Pre-requisites

This repository uses the following libraries:

Getting Started

Datasets

Tiny-ImageNet

We use 100,000 training samples and 10,000 validation samples for Tiny-ImageNet. You can download the dataset by running the command tinyimagenet.sh in your terminal. Once the download is complete, ensure that the data is organized in the following directory structure:

└── /dataset/tiny-imagenet-200/
    ├── train/
    │   ├── n01443537/
    │   │   ├── n01443537_0.JPEG
    │   │   ├── ...
    │   │   └── n01443537_99.JPEG
    │   ├── n01443537/
    │   ├── ...
    │   └── n12267677/
    ├── val/
    │   ├── n01443537/
    │   │   ├── val_1230.JPEG
    │   │   ├── ...
    │   │   └── val_9949.JPEG
    │   ├── n01443537/
    │   ├── ...
    │   ├── n12267677/
    │   └── val_annotations.txt
    ├── test/
    └── wnids.txt

Quantitative results

CIFAR 100

Method ResNet18 ResNext50
Vanilla 77.73
(7h 49m)
80.58
(1d 4h 43m)
Mixup (p=1.0)
[ICLR '18]
79.22
(7h 53m)
81.42
(1d 4h 45m)
CutMix (p=0.5)
[ICCV '19]
80.30
(8h 00m)
81.23
(1d 4h 25m)
ResizeMix (p=0.5)
[arXiv '20]
79.79
(7h 46m)
80.24
(1d 4h 29m)
PuzzleMix (p=0.5)
[ICML '20]
80.87
(13h 12m)
83.43
(1d 23h 00m)
PuzzleMix (p=1.0)
[ICML '20]
81.10
(18h 42m)
80.94
(2d 13h 04m)

Tiny-ImageNet

Method ResNet18 ResNext50
Vanilla 63.01
(20h 16m)
65.91
(2d 5h 35m)
Mixup (p=1.0)
[ICLR '18]
64.47
(20h 13m)
67.48
(2d 4h 40m)
CutMix (p=0.5)
[ICCV '19]
65.41
(19h 40m)
67.83
(2d 8h 39m)
ResizeMix (p=0.5)
[arXiv '20]
65.34
(19h 41m)
67.86
(2d 2h 02m)
PuzzleMix (p=0.5)
[ICML '20]
65.26
(1d 8h 29m)
68.23
(3d 11h 48m)
PuzzleMix (p=1.0)
[ICML '20]
66.98
(1d 22h 14m)
69.19
(4d 22h 23m)

Training

CIFAR 100

  • CutMix with ResNet-18
#!/bin/bash
PORT="tcp://127.0.0.1:12345"
GPU=0
DATASET="cifar100"
SAVEDIR="saved/${DATASET}/R18"
NAME="cutmix"

python train.py -c configs/${DATASET}/resnet18/config_cutmix.json \
-d ${GPU} --dist_url ${PORT} --save_dir ${SAVEDIR} --name ${NAME} --dataset ${DATASET}

Tiny-ImageNet

  • PuzzleMix with ResNeXt-50
#!/bin/bash
PORT="tcp://127.0.0.1:12345"
GPU=0,1  # Using two GPUs
DATASET="tiny_imagenet"
SAVEDIR="saved/${DATASET}/R18"
NAME="puzzlemix"

python train.py -c configs/${DATASET}/resnext50-32x4d/config_puzzlemix.json \
-d ${GPU} --dist_url ${PORT} --save_dir ${SAVEDIR} --name ${NAME} --dataset ${DATASET}

Acknowledgements

License

  • This project is licensed under the GPL-3.0 license - see the LICENSE file for details

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •