-
Notifications
You must be signed in to change notification settings - Fork 99
/
utils.py
207 lines (171 loc) · 7.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
'''
Misc Utility functions
'''
from collections import OrderedDict
import os
import numpy as np
import torch
import random
import torchvision
def recursive_glob(rootdir='.', suffix=''):
"""Performs recursive glob with given suffix and rootdir
:param rootdir is the root directory
:param suffix is the suffix to be searched
"""
return [os.path.join(looproot, filename)
for looproot, _, filenames in os.walk(rootdir)
for filename in filenames if filename.endswith(suffix)]
def poly_lr_scheduler(optimizer, init_lr, iter, lr_decay_iter=1, max_iter=30000, power=0.9,):
"""Polynomial decay of learning rate
:param init_lr is base learning rate
:param iter is a current iteration
:param lr_decay_iter how frequently decay occurs, default is 1
:param max_iter is number of maximum iterations
:param power is a polymomial power
"""
if iter % lr_decay_iter or iter > max_iter:
return optimizer
for param_group in optimizer.param_groups:
param_group['lr'] = init_lr*(1 - iter/max_iter)**power
def adjust_learning_rate(optimizer, init_lr, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = init_lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def alpha_blend(input_image, segmentation_mask, alpha=0.5):
"""Alpha Blending utility to overlay RGB masks on RBG images
:param input_image is a np.ndarray with 3 channels
:param segmentation_mask is a np.ndarray with 3 channels
:param alpha is a float value
"""
blended = np.zeros(input_image.size, dtype=np.float32)
blended = input_image * alpha + segmentation_mask * (1 - alpha)
return blended
def convert_state_dict(state_dict):
"""Converts a state dict saved from a dataParallel module to normal
module state_dict inplace
:param state_dict is the loaded DataParallel model_state
"""
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
return new_state_dict
class ImagePool():
def __init__(self, pool_size):
self.pool_size = pool_size
if self.pool_size > 0:
self.num_imgs = 0
self.images = []
def query(self, images):
if self.pool_size == 0:
return images
return_images = []
for image in images:
image = torch.unsqueeze(image.data, 0)
if self.num_imgs < self.pool_size:
self.num_imgs = self.num_imgs + 1
self.images.append(image)
return_images.append(image)
else:
p = random.uniform(0, 1)
if p > 0.5:
random_id = random.randint(0, self.pool_size - 1) # randint is inclusive
tmp = self.images[random_id].clone()
self.images[random_id] = image
return_images.append(tmp)
else:
return_images.append(image)
return_images = torch.cat(return_images, 0)
return return_images
def set_requires_grad(nets, requires_grad=False):
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return float(param_group['lr'])
def visualize(epoch,model,layer):
#get conv layers
conv_layers=[]
for m in model.modules():
if isinstance(m,torch.nn.modules.conv.Conv2d):
conv_layers.append(m)
# print conv_layers[layer].weight.data.cpu().numpy().shape
tensor=conv_layers[layer].weight.data.cpu()
vistensor(tensor, epoch, ch=0, allkernels=False, nrow=8, padding=1)
def vistensor(tensor, epoch, ch=0, allkernels=False, nrow=8, padding=1):
'''
vistensor: visuzlization tensor
@ch: visualization channel
@allkernels: visualization all tensors
https://github.com/pedrodiamel/pytorchvision/blob/a14672fe4b07995e99f8af755de875daf8aababb/pytvision/visualization.py#L325
'''
n,c,w,h = tensor.shape
if allkernels: tensor = tensor.view(n*c,-1,w,h )
elif c != 3: tensor = tensor[:,ch,:,:].unsqueeze(dim=1)
rows = np.min( (tensor.shape[0]//nrow + 1, 64 ) )
# print rows
# print tensor.shape
grid = utils.make_grid(tensor, nrow=8, normalize=True, padding=padding)
# print grid.shape
plt.figure( figsize=(10,10), dpi=200 )
plt.imshow(grid.numpy().transpose((1, 2, 0)))
plt.savefig('./generated/filters_layer1_dwuv_'+str(epoch)+'.png')
plt.close()
def show_uloss(uwpred,uworg,inp_img, samples=7):
n,c,h,w=inp_img.shape
# print(labels.shape)
uwpred=uwpred.detach().cpu().numpy()
uworg=uworg.detach().cpu().numpy()
inp_img=inp_img.detach().cpu().numpy()
#NCHW->NHWC
uwpred=uwpred.transpose((0, 2, 3, 1))
uworg=uworg.transpose((0, 2, 3, 1))
choices=random.sample(range(n), min(n,samples))
f, axarr = plt.subplots(samples, 3)
for j in range(samples):
# print(np.min(labels[j]))
# print imgs[j].shape
img=inp_img[j].transpose(1,2,0)
axarr[j][0].imshow(img[:,:,::-1])
axarr[j][1].imshow(uworg[j])
axarr[j][2].imshow(uwpred[j])
plt.savefig('./generated/unwarp.png')
plt.close()
def show_uloss_visdom(vis,uwpred,uworg,labels_win,out_win,labelopts,outopts,args):
samples=7
n,c,h,w=uwpred.shape
uwpred=uwpred.detach().cpu().numpy()
uworg=uworg.detach().cpu().numpy()
out_arr=np.full((samples,3,args.img_rows,args.img_cols),0.0)
label_arr=np.full((samples,3,args.img_rows,args.img_cols),0.0)
choices=random.sample(range(n), min(n,samples))
idx=0
for c in choices:
out_arr[idx,:,:,:]=uwpred[c]
label_arr[idx,:,:,:]=uworg[c]
idx+=1
vis.images(out_arr,
win=out_win,
opts=outopts)
vis.images(label_arr,
win=labels_win,
opts=labelopts)
def show_unwarp_tnsboard(global_step,writer,uwpred,uworg,grid_samples,gt_tag,pred_tag):
idxs=torch.LongTensor(random.sample(range(images.shape[0]), min(grid_samples,images.shape[0])))
grid_uworg = torchvision.utils.make_grid(uworg[idxs],normalize=True, scale_each=True)
writer.add_image(gt_tag, grid_uworg, global_step)
grid_uwpr = torchvision.utils.make_grid(uwpred[idxs],normalize=True, scale_each=True)
writer.add_image(pred_tag, grid_uwpr, global_step)
def show_wc_tnsboard(global_step,writer,images,labels, pred, grid_samples,inp_tag, gt_tag, pred_tag):
idxs=torch.LongTensor(random.sample(range(images.shape[0]), min(grid_samples,images.shape[0])))
grid_inp = torchvision.utils.make_grid(images[idxs],normalize=True, scale_each=True)
writer.add_image(inp_tag, grid_inp, global_step)
grid_lbl = torchvision.utils.make_grid(labels[idxs],normalize=True, scale_each=True)
writer.add_image(gt_tag, grid_lbl, global_step)
grid_pred = torchvision.utils.make_grid(pred[idxs],normalize=True, scale_each=True)
writer.add_image(pred_tag, grid_pred, global_step)