-
Notifications
You must be signed in to change notification settings - Fork 0
/
paraExpLin.py
121 lines (108 loc) · 5.05 KB
/
paraExpLin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import exponentialIntegrators
from mpi4py import MPI
import numpy as np
import sys
from scipy import integrate, interpolate
class solStruct:
def __init__(self,t,y):
self.t = t
self.y = y
class paraExpIntegrator:
def __init__(self,T,A,costIntegrand,costIntegranddq,equationdf,inhomPart):
self.T = T
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
self.tMin = rank*self.T/size
self.tMax = (rank+1)*self.T/size
self.A = A
if(rank==0):
print('## Time partition for the inhomogeneous equations ##')
print('rank =',rank,' : ', 't∈[',self.tMin,',',self.tMax,']')
self.inhomPart = inhomPart
self.costIntegrand = costIntegrand
self.costIntegranddq = costIntegranddq
self.equationdf = equationdf
self.y0 = np.zeros(self.A.shape[0])
def costFunctional(self,solDir):
costIntegrand = np.array([self.costIntegrand(t,q) for t,q in zip(solDir.t,solDir.y.T)])
cost = np.trapz(costIntegrand,solDir.t,axis=0)
return cost
def calculateGradient(self,solAdj):
gradientIntegrand = np.array([qAdj*self.equationdf(t,self.y0) for t,qAdj in zip(solAdj.t,solAdj.y.T)])
grad = np.trapz(gradientIntegrand,solAdj.t,axis=0)
return grad
def directAdjointLoop(self,f):
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
if(size==1):
## Direct ##
dirInhom = lambda t , qDir : self.A@qDir + self.inhomPart(t,f)
solDir = integrate.solve_ivp( dirInhom, (self.tMin,self.tMax), self.y0, method='RK45')
cost = self.costFunctional(solDir)
qDir = interpolate.interp1d(solDir.t,solDir.y)
## Adjoint ##
adjInhom = lambda t , qAdj : self.A.T@qAdj + self.costIntegranddq(self.T-t,qDir(self.T-t))
solAdj = integrate.solve_ivp( adjInhom, (self.tMin,self.tMax), self.y0, method='RK45')
# Change from τ back to t and reverse order
solAdj.t = self.T-solAdj.t
solAdj.t = solAdj.t[::-1]
solAdj.y = solAdj.y[:,::-1]
grad = self.calculateGradient(solAdj)
else:
## Direct ##
# Solve the inhomogeneous equation
dirInhom = lambda t , qDir : self.A@qDir + self.inhomPart(t,f)
solInhom = integrate.solve_ivp( dirInhom, (self.tMin,self.tMax), self.y0, method='RK45')
homInit = solInhom.y[:,-1]
if(rank != size-1):
comm.Send(homInit, dest=rank+1)
homSum = 0
dirHom = lambda t , qDir : self.A@qDir
# Solve the homogeneous equations (no equations for rank=0)
if(rank!=0):
for block in range(1,rank+1):
comm.Recv(homInit,source=rank-1)
solHom = exponentialIntegrators.expEuler(dirHom,homInit,self.tMin,self.tMax)
homTime = solHom.t
homStates = solHom.y
homInterp = interpolate.interp1d(homTime,homStates)
homSum += homInterp(solInhom.t)
if(rank!=size-1):
comm.Send(homStates[:,-1], dest=rank+1)
solTot = solInhom.y + homSum
solDir = solStruct(solInhom.t,solTot)
qDir = interpolate.interp1d(solInhom.t,solTot,bounds_error=False,fill_value=(solDir.y[:,0],solDir.y[:,-1]))
## Adjoint solve ##
# Inhomogeneous
adjInhom = lambda t , qAdj : self.A.T@qAdj + self.costIntegranddq(self.tMin+self.tMax-t,qDir(self.tMin+self.tMax-t))
solInHomAdj = integrate.solve_ivp( adjInhom, (self.tMin,self.tMax), self.y0, method='RK45')
# Homogeneous
adjHomSum = 0
adjHomInit = solInHomAdj.y[:,-1]
if rank != 0:
comm.Send(adjHomInit , dest=rank-1)
adjHom = lambda t , qAdj : self.A.T@qAdj
if(rank!=(size-1)):
for block in range(1,size - rank):
comm.Recv(adjHomInit,source=rank+1)
solAdjHom = exponentialIntegrators.expEuler(adjHom,adjHomInit,self.tMin,self.tMax)
homTime = solAdjHom.t
homStates = solAdjHom.y
adjHomInterp = interpolate.interp1d(homTime,homStates)
adjHomSum += adjHomInterp(solInHomAdj.t)
if(rank!=0):
comm.Send(homStates[:,-1], dest=rank-1)
solTotAdj = adjHomSum + solInHomAdj.y
solAdj = solStruct(solInHomAdj.t,solTotAdj)
# Revert back to t from τ
solAdj.t = self.tMin+self.tMax-solAdj.t
solAdj.t = solAdj.t[::-1]
solAdj.y = solAdj.y[:,::-1]
## Calculate the cost functional and the gradient
cost = self.costFunctional(solDir)
cost = comm.allreduce(cost,op=MPI.SUM)
grad = self.calculateGradient(solAdj)
grad = comm.allreduce(grad,op=MPI.SUM)
return cost, grad