Skip to content

Latest commit

 

History

History
25 lines (12 loc) · 864 Bytes

ideals.md

File metadata and controls

25 lines (12 loc) · 864 Bytes

Ideals

Example: Ideals of the integers

Definition - Ideal of $$\mathbb{Z}$$****

$$ I \subseteq \mathbb{Z}$$is an ideal $$\iff \forall \ a, b \in I \text{ and} , z\ \in \mathbb{Z}$$we have

$$a + b \in I \text{ and } az \in I$$

Example: $$a\mathbb{Z} = {az \ : \ z \in \mathbb{Z} } \to 2\mathbb{Z}, 3\mathbb{Z}, 4\mathbb{Z}, \dots$$ - multiples of $$a$$

Remarks:

  1. $$\forall a, b \in \mathbb{Z}$$we have $$b \in a\mathbb{Z} \iff a | b$$
  2. $$I_1 + I_2 = {a_1 + a_2 \ : \ a_1 \in I_1 , a_2 \in I_2}$$ is an ideal

Example: Consider $$18\mathbb{Z} + 12\mathbb{Z}$$. This ideal contains $$6 = 18 \cdot 1 + 12 \cdot (-1) \Rightarrow 18\mathbb{Z} + 12\mathbb{Z} = 6\mathbb{Z}$$

Greatest common divisor

Let $$a, b \in \mathbb{Z}$$ be 2 integers. If $$d = \gcd(a, b) \Rightarrow a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$$