Definition - Ideal of
$$ I \subseteq \mathbb{Z}$$is an ideal $$\iff \forall \ a, b \in I \text{ and} , z\ \in \mathbb{Z}$$we have
Example:
Remarks:
- $$\forall a, b \in \mathbb{Z}$$we have
$$b \in a\mathbb{Z} \iff a | b$$ -
$$I_1 + I_2 = {a_1 + a_2 \ : \ a_1 \in I_1 , a_2 \in I_2}$$ is an ideal
Example: Consider
Greatest common divisor
Let
$$a, b \in \mathbb{Z}$$ be 2 integers. If$$d = \gcd(a, b) \Rightarrow a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$$