Skip to content

Latest commit

 

History

History
443 lines (371 loc) · 10.1 KB

File metadata and controls

443 lines (371 loc) · 10.1 KB
comments difficulty edit_url tags
true
Medium
Array
Dynamic Programming

中文文档

Description

Given an integer array nums, return true if you can partition the array into two subsets such that the sum of the elements in both subsets is equal or false otherwise.

 

Example 1:

Input: nums = [1,5,11,5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:

Input: nums = [1,2,3,5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.

 

Constraints:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

Solutions

Solution 1: Dynamic Programming

First, we calculate the total sum $s$ of the array. If the total sum is odd, it cannot be divided into two subsets with equal sums, so we directly return false. If the total sum is even, we set the target subset sum to $m = \frac{s}{2}$. The problem is then transformed into: does there exist a subset whose element sum is $m$?

We define $f[i][j]$ to represent whether it is possible to select several numbers from the first $i$ numbers so that their sum is exactly $j$. Initially, $f[0][0] = true$ and the rest $f[i][j] = false$. The answer is $f[n][m]$.

Considering $f[i][j]$, if we select the $i$-th number $x$, then $f[i][j] = f[i - 1][j - x]$. If we do not select the $i$-th number $x$, then $f[i][j] = f[i - 1][j]$. Therefore, the state transition equation is:

$$ f[i][j] = f[i - 1][j] \textit{ or } f[i - 1][j - x] \textit{ if } j \geq x $$

The final answer is $f[n][m]$.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Where $m$ and $n$ are half of the total sum of the array and the length of the array, respectively.

Python3

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        m, mod = divmod(sum(nums), 2)
        if mod:
            return False
        n = len(nums)
        f = [[False] * (m + 1) for _ in range(n + 1)]
        f[0][0] = True
        for i, x in enumerate(nums, 1):
            for j in range(m + 1):
                f[i][j] = f[i - 1][j] or (j >= x and f[i - 1][j - x])
        return f[n][m]

Java

class Solution {
    public boolean canPartition(int[] nums) {
        // int s = Arrays.stream(nums).sum();
        int s = 0;
        for (int x : nums) {
            s += x;
        }
        if (s % 2 == 1) {
            return false;
        }
        int n = nums.length;
        int m = s >> 1;
        boolean[][] f = new boolean[n + 1][m + 1];
        f[0][0] = true;
        for (int i = 1; i <= n; ++i) {
            int x = nums[i - 1];
            for (int j = 0; j <= m; ++j) {
                f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
            }
        }
        return f[n][m];
    }
}

C++

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int s = accumulate(nums.begin(), nums.end(), 0);
        if (s % 2 == 1) {
            return false;
        }
        int n = nums.size();
        int m = s >> 1;
        bool f[n + 1][m + 1];
        memset(f, false, sizeof(f));
        f[0][0] = true;
        for (int i = 1; i <= n; ++i) {
            int x = nums[i - 1];
            for (int j = 0; j <= m; ++j) {
                f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
            }
        }
        return f[n][m];
    }
};

Go

func canPartition(nums []int) bool {
	s := 0
	for _, x := range nums {
		s += x
	}
	if s%2 == 1 {
		return false
	}
	n, m := len(nums), s>>1
	f := make([][]bool, n+1)
	for i := range f {
		f[i] = make([]bool, m+1)
	}
	f[0][0] = true
	for i := 1; i <= n; i++ {
		x := nums[i-1]
		for j := 0; j <= m; j++ {
			f[i][j] = f[i-1][j] || (j >= x && f[i-1][j-x])
		}
	}
	return f[n][m]
}

TypeScript

function canPartition(nums: number[]): boolean {
    const s = nums.reduce((a, b) => a + b, 0);
    if (s % 2 === 1) {
        return false;
    }
    const n = nums.length;
    const m = s >> 1;
    const f: boolean[][] = Array.from({ length: n + 1 }, () => Array(m + 1).fill(false));
    f[0][0] = true;
    for (let i = 1; i <= n; ++i) {
        const x = nums[i - 1];
        for (let j = 0; j <= m; ++j) {
            f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
        }
    }
    return f[n][m];
}

Rust

impl Solution {
    #[allow(dead_code)]
    pub fn can_partition(nums: Vec<i32>) -> bool {
        let mut sum = 0;
        for e in &nums {
            sum += *e;
        }

        if sum % 2 != 0 {
            return false;
        }

        let n = nums.len();
        let m = (sum / 2) as usize;
        let mut dp: Vec<Vec<bool>> = vec![vec![false; m + 1]; n + 1];

        // Initialize the dp vector
        dp[0][0] = true;

        // Begin the actual dp process
        for i in 1..=n {
            for j in 0..=m {
                dp[i][j] = if (nums[i - 1] as usize) > j {
                    dp[i - 1][j]
                } else {
                    dp[i - 1][j] || dp[i - 1][j - (nums[i - 1] as usize)]
                };
            }
        }

        dp[n][m]
    }
}

JavaScript

/**
 * @param {number[]} nums
 * @return {boolean}
 */
var canPartition = function (nums) {
    const s = nums.reduce((a, b) => a + b, 0);
    if (s % 2 === 1) {
        return false;
    }
    const n = nums.length;
    const m = s >> 1;
    const f = Array.from({ length: n + 1 }, () => Array(m + 1).fill(false));
    f[0][0] = true;
    for (let i = 1; i <= n; ++i) {
        const x = nums[i - 1];
        for (let j = 0; j <= m; ++j) {
            f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
        }
    }
    return f[n][m];
};

Solution 2: Dynamic Programming (Space Optimization)

We notice that in Solution 1, $f[i][j]$ is only related to $f[i - 1][\cdot]$. Therefore, we can compress the two-dimensional array into a one-dimensional array.

The time complexity is $O(n \times m)$, and the space complexity is $O(m)$. Where $n$ is the length of the array, and $m$ is half of the total sum of the array.

Python3

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        m, mod = divmod(sum(nums), 2)
        if mod:
            return False
        f = [True] + [False] * m
        for x in nums:
            for j in range(m, x - 1, -1):
                f[j] = f[j] or f[j - x]
        return f[m]

Java

class Solution {
    public boolean canPartition(int[] nums) {
        // int s = Arrays.stream(nums).sum();
        int s = 0;
        for (int x : nums) {
            s += x;
        }
        if (s % 2 == 1) {
            return false;
        }
        int m = s >> 1;
        boolean[] f = new boolean[m + 1];
        f[0] = true;
        for (int x : nums) {
            for (int j = m; j >= x; --j) {
                f[j] |= f[j - x];
            }
        }
        return f[m];
    }
}

C++

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int s = accumulate(nums.begin(), nums.end(), 0);
        if (s % 2 == 1) {
            return false;
        }
        int m = s >> 1;
        bool f[m + 1];
        memset(f, false, sizeof(f));
        f[0] = true;
        for (int& x : nums) {
            for (int j = m; j >= x; --j) {
                f[j] |= f[j - x];
            }
        }
        return f[m];
    }
};

Go

func canPartition(nums []int) bool {
	s := 0
	for _, x := range nums {
		s += x
	}
	if s%2 == 1 {
		return false
	}
	m := s >> 1
	f := make([]bool, m+1)
	f[0] = true
	for _, x := range nums {
		for j := m; j >= x; j-- {
			f[j] = f[j] || f[j-x]
		}
	}
	return f[m]
}

TypeScript

function canPartition(nums: number[]): boolean {
    const s = nums.reduce((a, b) => a + b, 0);
    if (s % 2 === 1) {
        return false;
    }
    const m = s >> 1;
    const f: boolean[] = Array(m + 1).fill(false);
    f[0] = true;
    for (const x of nums) {
        for (let j = m; j >= x; --j) {
            f[j] = f[j] || f[j - x];
        }
    }
    return f[m];
}

Rust

impl Solution {
    #[allow(dead_code)]
    pub fn can_partition(nums: Vec<i32>) -> bool {
        let mut sum = 0;
        for e in &nums {
            sum += *e;
        }

        if sum % 2 != 0 {
            return false;
        }

        let m = (sum >> 1) as usize;

        // Here dp[i] means if it can be sum up to `i` for all the number we've traversed through so far
        // Which is actually compressing the 2-D dp vector to 1-D
        let mut dp: Vec<bool> = vec![false; m + 1];

        // Initialize the dp vector
        dp[0] = true;

        // Begin the actual dp process
        for e in &nums {
            // For every num in nums vector
            for i in (*e as usize..=m).rev() {
                // Update the current status
                dp[i] |= dp[i - (*e as usize)];
            }
        }

        dp[m]
    }
}

JavaScript

/**
 * @param {number[]} nums
 * @return {boolean}
 */
var canPartition = function (nums) {
    const s = nums.reduce((a, b) => a + b, 0);
    if (s % 2 === 1) {
        return false;
    }
    const m = s >> 1;
    const f = Array(m + 1).fill(false);
    f[0] = true;
    for (const x of nums) {
        for (let j = m; j >= x; --j) {
            f[j] = f[j] || f[j - x];
        }
    }
    return f[m];
};