comments | difficulty | edit_url |
---|---|---|
true |
简单 |
输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3 / \ 9 20 / \ 15 7
返回 true
。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1 / \ 2 2 / \ 3 3 / \ 4 4
返回 false
。
限制:
0 <= 树的结点个数 <= 10000
注意:本题与主站 110 题相同:https://leetcode.cn/problems/balanced-binary-tree/
我们设计一个递归函数
函数
- 如果
$root$ 为空,返回$0$ 。 - 递归计算左右子树的深度,记为
$l$ 和$r$ 。 - 如果
$l$ 或$r$ 为$-1$ ,或者$l$ 和$r$ 的差的绝对值大于$1$ ,返回$-1$ 。 - 否则,返回
$max(l, r) + 1$ 。
如果 true
,否则返回 false
。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
def dfs(root):
if root is None:
return 0
l, r = dfs(root.left), dfs(root.right)
if l == -1 or r == -1 or abs(l - r) > 1:
return -1
return 1 + max(l, r)
return dfs(root) != -1
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
return dfs(root) != -1;
}
private int dfs(TreeNode root) {
if (root == null) {
return 0;
}
int l = dfs(root.left);
int r = dfs(root.right);
if (l == -1 || r == -1 || Math.abs(l - r) > 1) {
return -1;
}
return 1 + Math.max(l, r);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root) {
function<int(TreeNode*)> dfs = [&](TreeNode* root) -> int {
if (!root) {
return 0;
}
int l = dfs(root->left);
int r = dfs(root->right);
if (l == -1 || r == -1 || abs(l - r) > 1) {
return -1;
}
return 1 + max(l, r);
};
return dfs(root) != -1;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isBalanced(root *TreeNode) bool {
var dfs func(*TreeNode) int
dfs = func(root *TreeNode) int {
if root == nil {
return 0
}
l, r := dfs(root.Left), dfs(root.Right)
if l == -1 || r == -1 || abs(l-r) > 1 {
return -1
}
return 1 + max(l, r)
}
return dfs(root) != -1
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
match root {
None => 0,
Some(node) => {
let node = node.borrow();
1 + Self::dfs(&node.left).max(Self::dfs(&node.right))
}
}
}
pub fn is_balanced(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
match root {
None => true,
Some(node) => {
let mut node = node.borrow_mut();
let a = 10;
(Self::dfs(&node.left) - Self::dfs(&node.right)).abs() <= 1
&& Self::is_balanced(node.left.take())
&& Self::is_balanced(node.right.take())
}
}
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isBalanced = function (root) {
const dfs = root => {
if (!root) {
return 0;
}
const l = dfs(root.left);
const r = dfs(root.right);
if (l === -1 || r == -1 || Math.abs(l - r) > 1) {
return -1;
}
return 1 + Math.max(l, r);
};
return dfs(root) !== -1;
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public bool IsBalanced(TreeNode root) {
return dfs(root) != -1;
}
private int dfs(TreeNode root) {
if (root == null) {
return 0;
}
int l = dfs(root.left);
int r = dfs(root.right);
if (l == -1 || r == -1 || Math.Abs(l - r) > 1) {
return -1;
}
return 1 + Math.Max(l, r);
}
}
/* public class TreeNode {
* public var val: Int
* public var left: TreeNode?
* public var right: TreeNode?
* public init(_ val: Int) {
* self.val = val
* self.left = nil
* self.right = nil
* }
* }
*/
class Solution {
func isBalanced(_ root: TreeNode?) -> Bool {
return dfs(root) != -1
}
private func dfs(_ root: TreeNode?) -> Int {
guard let root = root else {
return 0
}
let leftDepth = dfs(root.left)
let rightDepth = dfs(root.right)
if leftDepth == -1 || rightDepth == -1 || abs(leftDepth - rightDepth) > 1 {
return -1
}
return 1 + max(leftDepth, rightDepth)
}
}