-
Notifications
You must be signed in to change notification settings - Fork 8
/
main.py
executable file
·163 lines (138 loc) · 7.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import tensorflow as tf
import random
from dataloader import Gen_Data_loader, Rank_Data_loader
from generator import Generator
from ranker import Ranker
from rollout import ROLLOUT
from target_lstm import TARGET_LSTM
from opt import *
import cPickle
import logging
import argparse
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
SEED = 88
parser = argparse.ArgumentParser()
parser.add_argument('--gen_pre_batch_size', type = int, default = 64, help = 'batch size for generator in pre-training')
parser.add_argument('--gen_batch_size', type = int, default = 32, help = 'batch size for generator in ad learning')
parser.add_argument('--rank_batch_size', type = int, default = 64, help = 'batch size for ranker')
parser.add_argument('--ref_size', type = int, default = 16, help = 'Reference size in ranker')
parser.add_argument('--pre_g_epoch', type = int, default = 120, help = 'pretrain epochs for generator with MLE')
parser.add_argument('--pre_r_epoch', type = int, default = 50, help = 'pretrain epochs for rankder')
parser.add_argument('--pre_g_lr', type = float, default = 0.01, help = 'learning rate for generator MLE pretrain')
parser.add_argument('--ad_g_lr', type = float, default = 0.01, help = 'learning rate for generator MLE pretrain')
parser.add_argument('--rank_lr', type = float, default = 0.0001, help = 'learning rate for ranker')
parser.add_argument('--epoch', type = float, default = 200, help = 'training epoch for adversarial training.')
parser.add_argument('--g_step', type = int, default = 1, help = 'step for training generator in one epoch')
parser.add_argument('--r_step', type = int, default = 5, help = 'step for training ranker in one epoch')
parser.add_argument('--rollout_ratio', type = float, default = 0.8, help = 'Ratio for rollout model update')
parser.add_argument('--rollout_num', type = int, default = 16, help = 'rollout number')
parser.add_argument('--save_model', type = bool, default = False, help = "whether save model")
parser.add_argument('--restore_model', type = bool, default = False, help = "whether restore model")
parser.add_argument('--prefix', type = str, default = 'model', help = "prefix name for model save and log")
FLAGS = parser.parse_args()
def main():
opt = Options()
create_logging(FLAGS)
random.seed(SEED)
np.random.seed(SEED)
# data loader
gen_data_loader = Gen_Data_loader(FLAGS.gen_pre_batch_size)
likelihood_data_loader = Gen_Data_loader(FLAGS.gen_pre_batch_size) # For testing
rank_data_loader = Rank_Data_loader(FLAGS.rank_batch_size, FLAGS.ref_size)
# network initialization
generator = Generator(opt, FLAGS, pretrain = True)
target_params = cPickle.load(open(opt.target_path))
target_lstm = TARGET_LSTM(opt, FLAGS, target_params, pretrain = True) # The oracle model
ranker = Ranker(opt, FLAGS)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
# create positive files for MLE training
generate_samples(sess, target_lstm, FLAGS.gen_pre_batch_size, opt.generated_num, opt.positive_file)
gen_data_loader.create_batches(opt.positive_file)
#################################################################pretraining with MLE
# pre-train generator
logging.info('Start pre-training generator')
for epoch in xrange(FLAGS.pre_g_epoch):
loss = pre_train_epoch(sess, generator, gen_data_loader)
if epoch % 5 == 0:
generate_samples(sess, generator, FLAGS.gen_pre_batch_size, opt.generated_num, opt.eval_file)
likelihood_data_loader.create_batches(opt.eval_file)
test_loss = target_loss(sess, target_lstm, likelihood_data_loader)
logging.info("Pretrain generator epoch: %d, test_loss: %0.4f" % (epoch, test_loss))
logging.info('Start pre-training rankder')
# Train 3 epoch on the generated data and do this for 50 times
for epoch in range(FLAGS.pre_r_epoch):
generate_samples(sess, generator, FLAGS.gen_pre_batch_size, opt.generated_num, opt.negative_file)
rank_data_loader.load_train_data(opt.positive_file, opt.negative_file)
for _ in range(3):
rank_data_loader.reset_pointer()
for it in xrange(rank_data_loader.num_batch):
x_batch, y_batch, ref = rank_data_loader.next_batch()
feed = {
ranker.input_x: x_batch,
ranker.input_y: y_batch,
ranker.input_ref: ref,
ranker.dropout_keep_prob: opt.dropout_ratio
}
_, loss = sess.run([ranker.train_op, ranker.loss], feed)
if epoch % 5 == 0:
logging.info("Pretrain ranker epoch: %d, training loss: %0.4f" % (epoch, loss))
# # # Save all params to disk.
save_path = saver.save(sess, "./save/pre_model.ckpt")
print("pretrain Model saved in file: %s" % save_path)
# modify generator batch size for adversarial training
tf.reset_default_graph()
generator = Generator(opt, FLAGS, pretrain = False)
ranker = Ranker(opt, FLAGS)
target_params = cPickle.load(open('save/target_params.pkl'))
target_lstm = TARGET_LSTM(opt, FLAGS, target_params, pretrain = False) # The oracle model
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
# load parameters
saver.restore(sess, "./save/pre_model.ckpt")
likelihood_data_loader = Gen_Data_loader(FLAGS.gen_batch_size) # For testing
print("Model restored.")
rollout = ROLLOUT(generator, FLAGS.rollout_ratio, FLAGS.rollout_num)
logging.info('#########################################################################')
logging.info('Start adversarial training.')
for epoch in range(FLAGS.epoch):
# Train the generator for one step
for it in range(FLAGS.g_step):
samples = generator.generate(sess)
generate_samples(sess, generator, FLAGS.gen_batch_size, opt.generated_num, opt.negative_file)
rank_data_loader.load_train_data(opt.positive_file, opt.negative_file)
rewards = rollout.get_reward(sess, samples, FLAGS.rollout_num, ranker, rank_data_loader)
feed = {generator.x: samples, generator.rewards: rewards}
_ = sess.run(generator.g_updates, feed_dict=feed)
# Testing
if epoch % 5 == 0 or epoch == epoch - 1:
generate_samples(sess, generator, FLAGS.gen_batch_size, opt.generated_num, opt.eval_file)
likelihood_data_loader.create_batches(opt.eval_file)
test_loss = target_loss(sess, target_lstm, likelihood_data_loader)
logging.info("Epoch: %d, test_loss: %0.4f" % (epoch, test_loss))
# Update roll-out parameters
rollout.update_params()
# Train the ranker
for idx in range(FLAGS.r_step):
generate_samples(sess, generator, FLAGS.gen_batch_size, opt.generated_num, opt.negative_file)
rank_data_loader.load_train_data(opt.positive_file, opt.negative_file)
for it in xrange(rank_data_loader.num_batch):
x_batch, y_batch, ref = rank_data_loader.next_batch()
feed = {
ranker.input_x: x_batch,
ranker.input_y: y_batch,
ranker.input_ref: ref,
ranker.dropout_keep_prob: opt.dropout_ratio
}
_ = sess.run(ranker.train_op, feed)
if __name__ == '__main__':
main()