-
Notifications
You must be signed in to change notification settings - Fork 0
/
02_15.tex
501 lines (462 loc) · 18.9 KB
/
02_15.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
\documentclass[10pt,letterpaper]{article}
\usepackage[utf8]{inputenc}
\usepackage[intlimits]{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{ragged2e}
\usepackage[letterpaper, margin=0.5in]{geometry}
\usepackage{graphicx}
\usepackage{cancel}
\usepackage{mathtools}
\usepackage{tabularx}
\usepackage{arydshln}
\usepackage{tensor}
\usepackage{array}
\usepackage{xcolor}
\usepackage[boxed]{algorithm}
\usepackage[noend]{algpseudocode}
\usepackage{listings}
\usepackage{textcomp}
% \usepackage[pdf,tmpdir,singlefile]{graphviz}
\usepackage{mathrsfs}
\usepackage{bbm}
\usepackage{tikz}
\usepackage{tikz-cd}
\usepackage{enumitem}
\usepackage{arydshln}
\usepackage{relsize}
\usepackage{multirow,multicol}
\usepackage{scalerel}
\usepackage{upgreek}
\usepackage{ifthen}
\usetikzlibrary{bayesnet}
\setlist{noitemsep}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Formatting commands
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\n}{\hfill\break}
\newcommand{\nn}{\vspace{0.5\baselineskip}\n}
\newcommand{\up}{\vspace{-\baselineskip}}
\newcommand{\hangblock}[2]{\par\noindent\settowidth{\hangindent}{\textbf{#1: }}\textbf{#1: }\nolinebreak#2}
\newcommand{\lemma}[1]{\hangblock{Lemma}{#1}}
\newcommand{\defn}[1]{\hangblock{Defn}{#1}}
\newcommand{\thm}[1]{\hangblock{Thm}{#1}}
\newcommand{\cor}[1]{\hangblock{Cor}{#1}}
\newcommand{\prop}[1]{\hangblock{Prop}{#1}}
\newcommand{\ex}[1]{\hangblock{Ex}{#1}}
\newcommand{\exer}[1]{\hangblock{Exer}{#1}}
\newcommand{\fact}[1]{\hangblock{Fact}{#1}}
\newcommand{\remark}[1]{\hangblock{Remark}{#1}}
\newcommand{\proven}{\;$\square$\n}
\newcommand{\problem}[1]{\par\noindent{\nolinebreak#1}\n}
\newcommand{\problempart}[2]{\par\noindent\indent{}\settowidth{\hangindent}{\textbf{(#1)} \indent{}}\textbf{(#1) }\nolinebreak#2\n}
\newcommand{\ptxt}[1]{\textrm{\textnormal{#1}}}
\newcommand{\inlineeq}[1]{\centerline{$\displaystyle #1$}}
\newcommand{\pageline}{\up\par\noindent\rule{\textwidth}{0.1pt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Math commands
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set Theory
\newcommand{\card}[1]{\left|#1\right|}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\setmid}{\;\middle|\;}
\newcommand{\ps}[1]{\mathcal{P}\left(#1\right)}
\newcommand{\pfinite}[1]{\mathcal{P}^{\ptxt{finite}}\left(#1\right)}
\newcommand{\naturals}{\mathbb{N}}
\newcommand{\N}{\naturals}
\newcommand{\integers}{\mathbb{Z}}
\newcommand{\Z}{\integers}
\newcommand{\rationals}{\mathbb{Q}}
\newcommand{\Q}{\rationals}
\newcommand{\reals}{\mathbb{R}}
\newcommand{\R}{\reals}
\newcommand{\complex}{\mathbb{C}}
\newcommand{\C}{\complex}
\newcommand{\halfPlane}{\mathbb{H}}
\let\HSym\H
\let\H\relax
\newcommand{\H}{\halfPlane}
\newcommand{\comp}{^{\complement}}
\DeclareMathOperator{\Hom}{Hom}
\newcommand{\Ind}{\mathbbm{1}}
\newcommand{\cut}{\setminus}
\DeclareMathOperator{\elem}{elem}
% Differentiable Manifolds
\newcommand{\RP}{\mathbb{RP}}
\newcommand{\CP}{\mathbb{RP}}
\newcommand{\osubset}{\overset{\mathclap{\scalebox{0.5}{\ptxt{open}}}}{\subset}}
\newcommand{\osubseteq}{\overset{\mathclap{\scalebox{0.5}{\ptxt{open}}}}{\subseteq}}
\newcommand{\osupset}{\overset{\mathclap{\scalebox{0.5}{\ptxt{open}}}}{\supset}}
\newcommand{\osupseteq}{\overset{\mathclap{\scalebox{0.5}{\ptxt{open}}}}{\supseteq}}
\newcommand{\pdat}[3]{\left.\pd{#1}{#2}\right|_{#3}}
\DeclareMathOperator{\so}{so}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\Diff}{Diff}
\let\dSym\d
\let\d\relax
\newcommand{\d}{\partial}
\DeclareMathOperator{\gl}{gl}
\DeclareMathOperator{\Ad}{Ad}
\newcommand{\comm}[1]{\left[#1\right]}
% Graph Theory
\let\deg\relax
\DeclareMathOperator{\deg}{deg}
\newcommand{\degp}{\ptxt{deg}^{+}}
\newcommand{\degn}{\ptxt{deg}^{-}}
\newcommand{\precdot}{\mathrel{\ooalign{$\prec$\cr\hidewidth\hbox{$\cdot\mkern0.5mu$}\cr}}}
\newcommand{\succdot}{\mathrel{\ooalign{$\cdot\mkern0.5mu$\cr\hidewidth\hbox{$\succ$}\cr\phantom{$\succ$}}}}
\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\affdim}{affdim}
% Probability
\newcommand{\parSymbol}{\P}
\newcommand{\Prob}{\mathbb{P}}
\renewcommand{\P}{\Prob}
\newcommand{\Avg}{\mathbb{E}}
\newcommand{\E}{\Avg}
\DeclareMathOperator{\Var}{Var}
\DeclareMathOperator{\cov}{cov}
\DeclareMathOperator{\Unif}{Unif}
\DeclareMathOperator{\Binom}{Binom}
\newcommand{\CI}{\mathrel{\text{\scalebox{1.07}{$\perp\mkern-10mu\perp$}}}}
\DeclareMathOperator{\Ber}{Ber}
\DeclareMathOperator{\Bin}{Bin}
\DeclareMathOperator{\Geom}{Geom}
\DeclareMathOperator{\Poisson}{Poisson}
\DeclareMathOperator{\Exp}{Exp}
\DeclareMathOperator{\Beta}{Beta}
\DeclareMathOperator{\Normal}{N}
% Standard Math
\newcommand{\inv}{^{-1}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\ceil}[1]{\left\lceil{}#1\right\rceil{}}
\newcommand{\floor}[1]{\left\lfloor{}#1\right\rfloor{}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\of}{\circ}
\newcommand{\tri}{\triangle}
\newcommand{\inj}{\hookrightarrow}
\newcommand{\surj}{\twoheadrightarrow}
\newcommand{\ndiv}{\nmid}
\renewcommand{\epsilon}{\varepsilon}
\newcommand{\divides}{\mid}
\newcommand{\ndivides}{\nmid}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\sgn}{sgn}
\newcommand{\map}[4]{\!\!\!\begin{array}[t]{rcl}#1 & \!\!\!\!\to & \!\!\!\!#2\\ {}#3 & \!\!\!\!\mapsto & \!\!\!\!#4\end{array}}
\newcommand{\bigsum}[2]{\smashoperator[lr]{\sum_{\scalebox{#1}{$#2$}}}}
\DeclareMathOperator{\gcf}{gcf}
\newcommand{\restr}[2]{\left.#1\right|_{#2}}
% Linear Algebra
\newcommand{\Id}{\textrm{\textnormal{Id}}}
\newcommand{\im}{\textrm{\textnormal{im}}}
\newcommand{\norm}[1]{\abs{\abs{#1}}}
\newcommand{\tpose}{^{T}\!}
\newcommand{\iprod}[1]{\left<#1\right>}
\newcommand{\giprod}{\iprod{\;\,,\;}}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\trace}{tr}
\newcommand{\chgBasMat}[3]{\!\!\tensor*[_{#1}]{\left[#2\right]}{_{#3}}}
\newcommand{\vecBas}[2]{\tensor*[]{\left[#1\right]}{_{#2}}}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\Mat}{Mat}
\DeclareMathOperator{\vspan}{span}
\DeclareMathOperator{\rank}{rank}
\newcommand{\V}[1]{\vec{#1}}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\compProj}{comp}
\DeclareMathOperator{\row}{row}
\newcommand{\smallPMatrix}[1]{\paren{\begin{smallmatrix}#1\end{smallmatrix}}}
\newcommand{\smallBMatrix}[1]{\brack{\begin{smallmatrix}#1\end{smallmatrix}}}
\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}
\newcommand{\bmat}[1]{\begin{bmatrix}#1\end{bmatrix}}
\newcommand{\dual}{^{*}}
\newcommand{\pinv}{^{\dagger}}
\newcommand{\horizontalMatrixLine}{\ptxt{\rotatebox[origin=c]{-90}{$|$}}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\Symm}{Symm}
\DeclareMathOperator{\SU}{SU}
\DeclareMathOperator{\U}{U}
% Multilinear Algebra
\let\Lsym\L
\let\L\relax
\DeclareMathOperator{\L}{\mathscr{L}}
\DeclareMathOperator{\A}{\mathcal{A}}
\DeclareMathOperator{\Alt}{Alt}
\DeclareMathOperator{\Sym}{Sym}
\newcommand{\ot}{\otimes}
\newcommand{\ox}{\otimes}
\DeclareMathOperator{\asc}{asc}
\DeclareMathOperator{\asSet}{set}
\DeclareMathOperator{\sort}{sort}
\DeclareMathOperator{\ringA}{\mathring{A}}
\DeclareMathOperator{\Sh}{Sh}
\DeclareMathOperator{\Bil}{Bil}
% Topology
\newcommand{\closure}[1]{\overline{#1}}
\newcommand{\uball}{\mathcal{U}}
\DeclareMathOperator{\Int}{Int}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\Bd}{Bd}
\DeclareMathOperator{\rInt}{rInt}
\DeclareMathOperator{\ch}{ch}
\DeclareMathOperator{\ah}{ah}
\newcommand{\LargerTau}{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\tau}}}}}
\newcommand{\Tau}{\mathcal{T}}
% Analysis
\DeclareMathOperator{\Graph}{Graph}
\DeclareMathOperator{\epi}{epi}
\DeclareMathOperator{\hypo}{hypo}
\DeclareMathOperator{\supp}{supp}
\newcommand{\lint}[2]{\underset{#1}{\overset{#2}{{\color{black}\underline{{\color{white}\overline{{\color{black}\int}}\color{black}}}}}}}
\newcommand{\uint}[2]{\underset{#1}{\overset{#2}{{\color{white}\underline{{\color{black}\overline{{\color{black}\int}}\color{black}}}}}}}
\newcommand{\alignint}[2]{\underset{#1}{\overset{#2}{{\color{white}\underline{{\color{white}\overline{{\color{black}\int}}\color{black}}}}}}}
\newcommand{\extint}{\ptxt{ext}\int}
\newcommand{\extalignint}[2]{\ptxt{ext}\alignint{#1}{#2}}
\newcommand{\conv}{\ast}
\newcommand{\pd}[2]{\frac{\partial{}#1}{\partial{}#2}}
\newcommand{\del}{\nabla}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\curl}{curl}
\let\div\relax
\DeclareMathOperator{\div}{div}
\DeclareMathOperator{\vol}{vol}
% Complex Analysis
\let\Re\relax
\DeclareMathOperator{\Re}{Re}
\let\Im\relax
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\Res}{Res}
% Abstract Algebra
\DeclareMathOperator{\ord}{ord}
\newcommand{\generated}[1]{\left<#1\right>}
\newcommand{\cycle}[1]{\smallPMatrix{#1}}
\newcommand{\id}{\ptxt{id}}
\newcommand{\iso}{\cong}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\op}{op}
\newcommand{\isom}[4]{\!\!\!\begin{array}[t]{rcl}#1 & \!\!\!\!\overset{\sim}{\to} & \!\!\!\!#2\\ #3 & \!\!\!\!\mapsto & \!\!\!\!#4\end{array}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\acts}{\;\reflectbox{\rotatebox[origin=c]{-90}{$\circlearrowright$}}\;}
\newcommand{\disjunion}{\mathrel{\text{\scalebox{1.07}{$\perp\mkern-10mu\perp$}}}}
\DeclareMathOperator{\SO}{SO}
\DeclareMathOperator{\stab}{stab}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\nsubgp}{\vartriangleleft}
\DeclareMathOperator{\notnsubgp}{\ntriangleleft}
\newcommand{\presentation}[2]{\left<#1\;\middle|\;#2\right>}
\DeclareMathOperator{\Char}{char}
\DeclareMathOperator{\fchar}{char}
\DeclareMathOperator{\triv}{triv}
\DeclareMathOperator{\reg}{reg}
\DeclareMathOperator{\std}{std}
\DeclareMathOperator{\Func}{Func}
\DeclareMathOperator{\End}{End}
% Convex Optimization
\let\sectionSymbol\S
\let\S\relax
\newcommand{\S}{\mathbb{S}}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\diag}{diag}
\DeclareMathOperator{\ones}{\mathbbm{1}}
\newcommand{\minimizeOver}[3]{\begin{array}{rl}\underset{#1}{\ptxt{minimize}} & #2\\ \ptxt{subject to} & #3\end{array}}
\newcommand{\maximizeOver}[3]{\begin{array}{rl}\underset{#1}{\ptxt{maximize}} & #2\\ \ptxt{subject to} & #3\end{array}}
\newcommand{\minimizationProblem}[2]{\minimizeOver{}{#1}{#2}}
\newcommand{\maximizationProblem}[2]{\maximizeOver{}{#1}{#2}}
\newcommand{\minimizeOverUnconstrained}[2]{\begin{array}{rl}\underset{#1}{\ptxt{minimize}} & #2\end{array}}
\newcommand{\maximizeOverUnconstrained}[2]{\begin{array}{rl}\underset{#1}{\ptxt{maximize}} & #2\end{array}}
\newcommand{\minimizationUnconstrained}[1]{\minimizeOverUnconstrained{}{#1}}
\newcommand{\maximizationUnconstrained}[1]{\maximizeOverUnconstrained{}{#1}}
\DeclareMathOperator{\argmin}{argmin}
\DeclareMathOperator{\argmax}{argmax}
% Proofs
\newcommand{\st}{s.t.}
\newcommand{\unique}{!}
\newcommand{\iffdef}{\overset{\ptxt{def}}{\Leftrightarrow}}
\newcommand{\eqVertical}{\rotatebox[origin=c]{90}{=}}
\newcommand{\mapsfrom}{\mathrel{\reflectbox{\ensuremath{\mapsto}}}}
\newcommand{\mapsdown}{\rotatebox[origin=c]{-90}{$\mapsto$}\mkern2mu}
\newcommand{\mapsup}{\rotatebox[origin=c]{90}{$\mapsto$}\mkern2mu}
\newcommand{\from}{\!\mathrel{\reflectbox{\ensuremath{\to}}}}
\newcommand{\labeledeq}[1]{\overset{\mathclap{\ptxt{#1}}}{=}}
\newcommand{\eqdef}{\labeledeq{def}}
% Brackets
\newcommand{\paren}[1]{\left(#1\right)}
\renewcommand{\brack}[1]{\left[#1\right]}
\renewcommand{\brace}[1]{\left\{#1\right\}}
\newcommand{\ang}[1]{\left<#1\right>}
% Algorithms
\algrenewcommand{\algorithmiccomment}[1]{\hskip 1em \texttt{// #1}}
\algrenewcommand\algorithmicrequire{\textbf{Input:}}
\algrenewcommand\algorithmicensure{\textbf{Output:}}
\newcommand{\algP}{\ptxt{\textbf{P}}}
\newcommand{\algNP}{\ptxt{\textbf{NP}}}
\newcommand{\algNPC}{\ptxt{\textbf{NP-Complete}}}
\newcommand{\algNPH}{\ptxt{\textbf{NP-Hard}}}
\newcommand{\algEXP}{\ptxt{\textbf{EXP}}}
\DeclareMathOperator{\fl}{fl}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Other commands and shorthand
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\flag}[1]{\textbf{\textcolor{red}{#1}}}
\let\uSym\u
\let\u\relax
\newcommand{\u}[1]{\underline{#1}}
\let\bSym\b
\let\b\relax
\newcommand{\b}[1]{\textbf{#1}}
\let\iSym\i
\let\i\relax
\newcommand{\i}[1]{\textit{#1}}
\let\scSym\sc
\let\sc\relax
\newcommand{\sc}[1]{\textsc{#1}}
\newcommand{\mf}[1]{\mathfrak{#1}}
\newcommand{\mc}[1]{\mathcal{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Make l's curvy in math environments %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mathcode`l="8000
\begingroup
\makeatletter
\lccode`\~=`\l
\DeclareMathSymbol{\lsb@l}{\mathalpha}{letters}{`l}
\lowercase{\gdef~{\ifnum\the\mathgroup=\m@ne \ell \else \lsb@l \fi}}%
\endgroup
%%%%%%%%%%%%%%%%%%%%%%%%%
% Fix \vdots and \ddots %
%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{letltxmacro}
\LetLtxMacro\orgvdots\vdots
\LetLtxMacro\orgddots\ddots
\makeatletter
\DeclareRobustCommand\vdots{%
\mathpalette\@vdots{}%
}
\newcommand*{\@vdots}[2]{%
% #1: math style
% #2: unused
\sbox0{$#1\cdotp\cdotp\cdotp\m@th$}%
\sbox2{$#1.\m@th$}%
\vbox{%
\dimen@=\wd0 %
\advance\dimen@ -3\ht2 %
\kern.5\dimen@
% remove side bearings
\dimen@=\wd2 %
\advance\dimen@ -\ht2 %
\dimen2=\wd0 %
\advance\dimen2 -\dimen@
\vbox to \dimen2{%
\offinterlineskip
\copy2 \vfill\copy2 \vfill\copy2 %
}%
}%
}
\DeclareRobustCommand\ddots{%
\mathinner{%
\mathpalette\@ddots{}%
\mkern\thinmuskip
}%
}
\newcommand*{\@ddots}[2]{%
% #1: math style
% #2: unused
\sbox0{$#1\cdotp\cdotp\cdotp\m@th$}%
\sbox2{$#1.\m@th$}%
\vbox{%
\dimen@=\wd0 %
\advance\dimen@ -3\ht2 %
\kern.5\dimen@
% remove side bearings
\dimen@=\wd2 %
\advance\dimen@ -\ht2 %
\dimen2=\wd0 %
\advance\dimen2 -\dimen@
\vbox to \dimen2{%
\offinterlineskip
\hbox{$#1\mathpunct{.}\m@th$}%
\vfill
\hbox{$#1\mathpunct{\kern\wd2}\mathpunct{.}\m@th$}%
\vfill
\hbox{$#1\mathpunct{\kern\wd2}\mathpunct{\kern\wd2}\mathpunct{.}\m@th$}%
}%
}%
}
\makeatother
\newcommand{\B}{
\begin{tikzpicture}
\filldraw [fill=red, draw=black] (0, 0) rectangle (0.37, 0.45);
\draw [line width=0.5mm, white ] (0.1,0.08) -- (0.1,0.38);
\draw[line width=0.5mm, white ] (0.1, 0.35) .. controls (0.2, 0.35) and (0.4, 0.2625) .. (0.1, 0.225);
\draw[line width=0.5mm, white ] (0.1, 0.225) .. controls (0.2, 0.225) and (0.4, 0.1625) .. (0.1, 0.1);
\end{tikzpicture}
}
% Allow custom symbols as arrows in tikz-cd
\tikzset{
symbol/.style={
draw=none,
every to/.append style={
edge node={node [sloped, allow upside down, auto=false]{$#1$}}}
}
}
% Example: \arrow[r,symbol=\cong]
% https://tex.stackexchange.com/questions/394154/how-to-include-inclusion-subgroup-relationship-in-tikz-cd-diagram
\author{Professor Alejandro Uribe-Ahumada\\ \small\i{Transcribed by Thomas Cohn}}
\title{Math 635 Lecture 12}
\date{2/15/21} % Can also use \today
\begin{document}
\maketitle
\setlength\RaggedRightParindent{\parindent}
\RaggedRight
\par\noindent
Recall:
\defn{
$\gamma:[a,b]\to{}M$ (for $M$ a Riemannian manifold) is a \u{geodesic} iff $\frac{D}{dt}\dot\gamma=0$.\n
}
\par\noindent
Recall: $\dot\gamma$ is the natural lift of $\gamma$ along $\gamma$. We say $\dot\gamma(t)=(\gamma(t),\dot\gamma(t))$, so there's some ambiguity in the notation.
\[
\begin{tikzcd}
& TM \arrow[d]\\
{[a,b]} \arrow[r,"\gamma"] \arrow[ur,"\dot\gamma"] & M
\end{tikzcd}
\]
\n
\par\noindent
Review: In coordinates on $U\subset{}M$, we write $\gamma(t)=(x^{1}(t),\ldots,x^{n}(t))$, with each $x^{i}\in{}C^{\infty}([a,b],M)$. Then $\gamma$ is a geodesic iff $\ddot{x}^{k}(t)=-\dot{x}^{i}(t)\dot{x}^{j}(t)\Gamma_{ij}^{k}(\gamma(t))$, where $\Gamma_{ij}^{k}:U\to\R$ are the Christoffel symbols.\n
\par\noindent
Observe: If $\nabla$ is trivial, i.e., the ``flat case'', then $\Gamma_{ij}^{k}=0$. So $\ddot{x}^{k}=0$, and $\forall{}k$, $x^{k}(t)=tv^{k}(0)+x^{k}(0)$. See Do Carmo, Chapter 3, \sectionSymbol{}2 for more details.\n
\par\noindent
We want to rewrite the geodesic equations, locally, as a first order system in twice as many unknowns. We introduce $v^{1},\ldots,v^{n}$, which we call the ``velocities'', such that $v_{k}\eqdef\dot{x}^{k}$, and $\dot{v}^{k}=-\Gamma_{ij}^{k}(\gamma(t))v^{i}v^{j}$ are the ``accelerations''.\n
\par\noindent
Note that time derivatives have been solved in all cases, so there is a unique solution (for a small time interval) given $x^{k}(0)$ and $v^{k}(0)$, for $k=1,\ldots,n$.\n
\lemma{
(Do Carmo 2.3) $\exists\unique{}G\in\mf{X}(TM)$ \st{} the integral curves of $G$ are precisely of the form $\dot\gamma(t)=(\gamma(t),\frac{d\gamma}{dt}(t))$, where $\gamma$ is a geodesic. In other words, the integral curves of $G$ are precisely the lifts to $TM$ of geodesics on $M$. (Integral curves of $G$ are locally solutions to the above system of differential equations.)\nn
Proof: First, we'll prove local existence and uniqueness of $G$ in coordinates. Let $V\subset{}M$ be a coordinate neighborhood, with coordinates $(x^{1},\ldots,x^{n})$, inducing coordinates $(x^{1},\ldots,x^{n},v^{1},\ldots,v^{n})$ on $TV$ by $v=\sum_{i=1}^{n}v^{i}\restr{\d_{x^{i}}}{p}$ for $(p,v)\in{}TV$. Then $G=\sum_{i=1}^{n}a_{i}\d_{x^{i}}+b_{i}\d_{v^{i}}$, for some $a_{i},b_{i}\in{}C^{\infty}(TV)$ (note that this is true for any vector field on $TV$).\nn
Now, comparing with the system of differential equations, we can see that we must have $a_{i}=v^{i}=\dot{x}^{i}$, $\forall{}i$. So $G(x,v)=v^{i}\d_{x^{i}}-\Gamma_{ij}^{k}(x)v^{i}v^{j}\d_{v^{k}}$ iff the integral curves of $V$ solve the system of equations.\nn
Finally, local existence and uniqueness implies global existence and uniqueness by covering $M$ with coordinate charts.\proven
}
\par\noindent
Observe: The vector field $G$ can be described using $T^{*}M$ and its symplectic form, and $TM\to{}T^{*}M$ by $T_{p}M\to{}T_{p}^{*}M$ using $\giprod{}_{p}$. In the future, we'll also consider the Hamiltonian picture...\n
\par\noindent
Now, we want to think about the flow of $G$ on $TM$. Let $X\in\mf{X}(M)$. Given any $m\in{}M$, there's a neighborhood $\mc{U}\subseteq{}M$ of $m$, $\delta>0$, and $\varphi:(-\delta,\delta)\times\mc{U}\to{}M$ smooth such that $\forall\mu\in\mc{U}$, $t\mapsto\varphi(t,\mu)$ is the integral curve of $X$ \st{} $\varphi(0,\mu)=X_{\mu}$, and $\forall{}t$, $\frac{d}{dt}\varphi(t,\mu)=X_{\varphi(t,\mu)}$.\n
\par\noindent
Now, apply this to $\mc{M}=TM$, $X=G$, and $m=(p,0)$ for $p\in{}M$. Then $\exists\mc{U}\subseteq\mc{M}$ and $\delta>0$ as in the theorem. So we have $\set{(q,0)\in{}TM:q\in{}M}\cong{}M$.\n
\par\noindent
Claim: $\exists{}V\subseteq{}M$, a neighborhood of $p$, and $\varepsilon>0$ \st{} $\set{(q,v)\in{}TM\mid{}q\in{}V,\norm{v}<\varepsilon}\subseteq\mc{U}$.\n
\par\noindent
We get
\[
\begin{tikzcd}
{(-\delta,\delta)\times\set{(q,v)\mid{}q\in{}V,\norm{v}<\varepsilon}} \arrow[r,"\varphi"] \arrow[dr,"\gamma\eqdef\pi\of\varphi", swap] & TM \arrow[d,"\pi"]\\
& M
\end{tikzcd}
\]
An important property of $\gamma$ is that $\forall(q,v)$, $t\mapsto\gamma(t,q,v)$ is \i{the unique} geodesic \st{} $\gamma(0,q,v)=q$ and $\displaystyle\restr{\frac{d}{dt}\gamma(t,q,v)}{t=0}=v$.\n
\lemma{
By reparameterizing geodesics by a constant factor in time, one can show (keeping the notation from our previous discussion) that, for $a>0$, then $\gamma(t,q,av)=\gamma(at,q,v)$, provided that both sies are defined.\nn
Proof: Check that both sides are geodesics, with the same initial conditions. Then by uniqueness of geodesics, they're equivalent.\proven
}
\end{document}