From 1abba4a694cb18a3ad965ce1b5ddb55b536fc328 Mon Sep 17 00:00:00 2001 From: John Senneker Date: Mon, 21 Nov 2016 18:36:20 -0500 Subject: [PATCH 001/553] Initial commit --- wrap/io_trimesh/export_obj.h | 2 +- wrap/io_trimesh/import_obj.h | 9 ++++++++- 2 files changed, 9 insertions(+), 2 deletions(-) diff --git a/wrap/io_trimesh/export_obj.h b/wrap/io_trimesh/export_obj.h index effb733f6..98fc30532 100644 --- a/wrap/io_trimesh/export_obj.h +++ b/wrap/io_trimesh/export_obj.h @@ -205,7 +205,7 @@ class ExporterOBJ { if((mask & Mask::IOM_FACECOLOR) || (mask & Mask::IOM_WEDGTEXCOORD) || (mask & Mask::IOM_VERTTEXCOORD)) { - int index = Materials::CreateNewMaterial(m,materialVec,material_num,fi); + int index = (*fi).mInd; if(index == (int)materialVec.size())//inserts a new element material { diff --git a/wrap/io_trimesh/import_obj.h b/wrap/io_trimesh/import_obj.h index 84c06cba7..9debd1425 100644 --- a/wrap/io_trimesh/import_obj.h +++ b/wrap/io_trimesh/import_obj.h @@ -51,6 +51,8 @@ namespace vcg { template class ImporterOBJ { + private: + std::vector materials; public: static int &MRGBLineCount(){static int _MRGBLineCount=0; return _MRGBLineCount;} @@ -113,6 +115,7 @@ namespace vcg { int tInd; bool edge[3];// useless if the face is a polygon, no need to have variable length array Color4b c; + int mInd; }; struct ObjEdge @@ -254,7 +257,9 @@ namespace vcg { stream.close(); return E_CANTOPEN; } - std::vector materials; // materials vector + typename OpenMeshType::template PerMeshAttributeHandle> hMaterial = + vcg::tri::Allocator:: template GetPerMeshAttribute>(m, std::string("materials")); + std::vector materials = hMaterial(); // materials vector std::vector texCoords; // texture coordinates std::vector normals; // vertex normals std::vector indexedFaces; @@ -585,6 +590,8 @@ namespace vcg { // assigning face color if( oi.mask & vcg::tri::io::Mask::IOM_FACECOLOR) ff.c = currentColor; + ff.mInd = currentMaterialIdx; + ++numTriangles; indexedFaces.push_back(ff); } From dc3f714b3424d6fc24a6013f9440b4bfdaf9ffda Mon Sep 17 00:00:00 2001 From: John Senneker Date: Tue, 22 Nov 2016 16:21:57 -0500 Subject: [PATCH 002/553] Add a per-mesh attribute in OBJ importer to hold a std::vector, and a per-face attribute to hold an index into that vector. --- wrap/io_trimesh/export_obj.h | 32 +++++++++++--------------------- wrap/io_trimesh/import_obj.h | 18 ++++++++++++++---- 2 files changed, 25 insertions(+), 25 deletions(-) diff --git a/wrap/io_trimesh/export_obj.h b/wrap/io_trimesh/export_obj.h index 98fc30532..dc1dfc461 100644 --- a/wrap/io_trimesh/export_obj.h +++ b/wrap/io_trimesh/export_obj.h @@ -28,7 +28,6 @@ #include #include -#include "io_material.h" #include #include #include @@ -129,7 +128,8 @@ class ExporterOBJ int current = 0; int totalPrimitives = m.vn+m.fn; - std::vector materialVec; + typename SaveMeshType::template PerMeshAttributeHandle> materialsHandle = + vcg::tri::Allocator::template FindPerMeshAttribute>(m, "materials"); std::string fn(filename); int LastSlash=fn.size()-1; @@ -197,29 +197,19 @@ class ExporterOBJ fprintf(fp,"# %d vertices, %d vertices normals\n\n",m.vn,int(NormalVertex.size())); //faces + texture coords + typename SaveMeshType::template PerFaceAttributeHandle mIndHandle = + vcg::tri::Allocator::template FindPerFaceAttribute(m, "mInd"); std::map CoordIndexTexture; - unsigned int material_num = 0; - int mem_index = 0; //var temporany int curTexCoordIndex = 1; + int curMatIndex = -1; for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi) if( !(*fi).IsD() ) { if((mask & Mask::IOM_FACECOLOR) || (mask & Mask::IOM_WEDGTEXCOORD) || (mask & Mask::IOM_VERTTEXCOORD)) { - int index = (*fi).mInd; - - if(index == (int)materialVec.size())//inserts a new element material - { - material_num++; - fprintf(fp,"\nusemtl material_%d\n",materialVec[index-1].index); - mem_index = index-1; - } - else - { - if(index != mem_index)//inserts old name elemente material - { - fprintf(fp,"\nusemtl material_%d\n",materialVec[index].index); - mem_index=index; - } + int index = mIndHandle[fi]; + if(index != curMatIndex) { + fprintf(fp,"\nusemtl material_%d\n", index); + curMatIndex = index; } } @@ -281,7 +271,7 @@ class ExporterOBJ int errCode = E_NOERROR; if((mask & Mask::IOM_WEDGTEXCOORD) || (mask & Mask::IOM_FACECOLOR) || (mask & Mask::IOM_VERTTEXCOORD) ) - errCode = WriteMaterials(materialVec, filename,cb);//write material + errCode = WriteMaterials(materialsHandle(), filename,cb);//write material if(errCode!= E_NOERROR) return errCode; @@ -382,7 +372,7 @@ class ExporterOBJ else { /* fclose(fp); return E_ABORTED; */ } - fprintf(fp,"newmtl material_%d\n",materialVec[i].index); + fprintf(fp,"newmtl material_%d\n",i); fprintf(fp,"Ka %f %f %f\n",materialVec[i].Ka[0],materialVec[i].Ka[1],materialVec[i].Ka[2]); fprintf(fp,"Kd %f %f %f\n",materialVec[i].Kd[0],materialVec[i].Kd[1],materialVec[i].Kd[2]); fprintf(fp,"Ks %f %f %f\n",materialVec[i].Ks[0],materialVec[i].Ks[1],materialVec[i].Ks[2]); diff --git a/wrap/io_trimesh/import_obj.h b/wrap/io_trimesh/import_obj.h index 9debd1425..8f374ddaf 100644 --- a/wrap/io_trimesh/import_obj.h +++ b/wrap/io_trimesh/import_obj.h @@ -51,8 +51,6 @@ namespace vcg { template class ImporterOBJ { - private: - std::vector materials; public: static int &MRGBLineCount(){static int _MRGBLineCount=0; return _MRGBLineCount;} @@ -257,9 +255,12 @@ namespace vcg { stream.close(); return E_CANTOPEN; } - typename OpenMeshType::template PerMeshAttributeHandle> hMaterial = + + typename OpenMeshType::template PerMeshAttributeHandle> materialsHandle = vcg::tri::Allocator:: template GetPerMeshAttribute>(m, std::string("materials")); - std::vector materials = hMaterial(); // materials vector + typename OpenMeshType::template PerFaceAttributeHandle mIndHandle = + vcg::tri::Allocator:: template GetPerFaceAttribute(m, std::string("mInd")); + std::vector& materials = materialsHandle(); // materials vector std::vector texCoords; // texture coordinates std::vector normals; // vertex normals std::vector indexedFaces; @@ -707,6 +708,7 @@ namespace vcg { if (((oi.mask & vcg::tri::io::Mask::IOM_FACECOLOR) != 0) && (HasPerFaceColor(m))) { m.face[i].C() = indexedFaces[i].c; + mIndHandle[i] = indexedFaces[i].mInd; } if (((oi.mask & vcg::tri::io::Mask::IOM_WEDGNORMAL) != 0) && (HasPerWedgeNormal(m))) @@ -953,7 +955,15 @@ namespace vcg { materials.clear(); Material currentMaterial; + + // Fill in some default values for the material currentMaterial.index = (unsigned int)(-1); + currentMaterial.Ka = Point3f(0.2, 0.2, 0.2); + currentMaterial.Kd = Point3f(1, 1, 1); + currentMaterial.Ks = Point3f(1, 1, 1); + currentMaterial.Tr = 1; + currentMaterial.Ns = 0; + currentMaterial.illum = 2; bool first = true; while (!stream.eof()) From 7fdfd7423f3d0809b037904d09eb6faac6a01216 Mon Sep 17 00:00:00 2001 From: John Senneker Date: Tue, 22 Nov 2016 16:44:36 -0500 Subject: [PATCH 003/553] Add back deleted include in obj exporter --- wrap/io_trimesh/export_obj.h | 1 + 1 file changed, 1 insertion(+) diff --git a/wrap/io_trimesh/export_obj.h b/wrap/io_trimesh/export_obj.h index dc1dfc461..cb878a24e 100644 --- a/wrap/io_trimesh/export_obj.h +++ b/wrap/io_trimesh/export_obj.h @@ -28,6 +28,7 @@ #include #include +#include #include #include #include From 0ee03d276d88a77b690bf6b5b508e10595f4a230 Mon Sep 17 00:00:00 2001 From: John Senneker Date: Mon, 12 Dec 2016 18:07:20 -0500 Subject: [PATCH 004/553] Fix clang compiler errors (">>" -> "> >") --- wrap/io_trimesh/export_obj.h | 4 ++-- wrap/io_trimesh/import_obj.h | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/wrap/io_trimesh/export_obj.h b/wrap/io_trimesh/export_obj.h index cb878a24e..6e00ca5ff 100644 --- a/wrap/io_trimesh/export_obj.h +++ b/wrap/io_trimesh/export_obj.h @@ -129,8 +129,8 @@ class ExporterOBJ int current = 0; int totalPrimitives = m.vn+m.fn; - typename SaveMeshType::template PerMeshAttributeHandle> materialsHandle = - vcg::tri::Allocator::template FindPerMeshAttribute>(m, "materials"); + typename SaveMeshType::template PerMeshAttributeHandle > materialsHandle = + vcg::tri::Allocator::template FindPerMeshAttribute >(m, "materials"); std::string fn(filename); int LastSlash=fn.size()-1; diff --git a/wrap/io_trimesh/import_obj.h b/wrap/io_trimesh/import_obj.h index 8f374ddaf..7b6a3bde2 100644 --- a/wrap/io_trimesh/import_obj.h +++ b/wrap/io_trimesh/import_obj.h @@ -256,8 +256,8 @@ namespace vcg { return E_CANTOPEN; } - typename OpenMeshType::template PerMeshAttributeHandle> materialsHandle = - vcg::tri::Allocator:: template GetPerMeshAttribute>(m, std::string("materials")); + typename OpenMeshType::template PerMeshAttributeHandle > materialsHandle = + vcg::tri::Allocator:: template GetPerMeshAttribute >(m, std::string("materials")); typename OpenMeshType::template PerFaceAttributeHandle mIndHandle = vcg::tri::Allocator:: template GetPerFaceAttribute(m, std::string("mInd")); std::vector& materials = materialsHandle(); // materials vector From 825d90157cdc876cd67de39cd1ee1c9a46bb28bf Mon Sep 17 00:00:00 2001 From: ganovelli Date: Fri, 13 Jan 2017 12:14:56 +0100 Subject: [PATCH 005/553] const missing GetFrustum does not chang ethe object, it's const --- vcg/math/camera.h | 4 ++-- wrap/gl/camera.h | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/vcg/math/camera.h b/vcg/math/camera.h index e45021976..4cbe63d63 100644 --- a/vcg/math/camera.h +++ b/vcg/math/camera.h @@ -229,7 +229,7 @@ class Camera vcg::Matrix44 GetMatrix(S nearVal, S farVal); /// returns the frustum - inline void GetFrustum(S & sx, S & dx, S & bt, S & tp, S & nr); + inline void GetFrustum (S & sx, S & dx, S & bt, S & tp, S & nr) const; //--- Space transformation methods @@ -549,7 +549,7 @@ void Camera::SetIsometric(S sx, S dx, S bt, S tp, S Focal, vcg::Point2 V /// returns the frustum template -void Camera:: GetFrustum( S & sx, S & dx, S & bt, S & tp, S & nr) +void Camera:: GetFrustum ( S & sx, S & dx, S & bt, S & tp, S & nr)const { dx = CenterPx.X()* PixelSizeMm.X(); //scaled center sx = -( (S)ViewportPx.X() - CenterPx.X() ) * PixelSizeMm.X(); diff --git a/wrap/gl/camera.h b/wrap/gl/camera.h index a72d15d46..6802385e7 100644 --- a/wrap/gl/camera.h +++ b/wrap/gl/camera.h @@ -139,7 +139,7 @@ static void SetGLIsometricProj(float x1, float x2, float y1, float y2, float z1, } /// get OpenGL-like frustum from a vcg camera (intrinsics) -static void GetFrustum(vcg::Camera & intrinsics, S & sx,S & dx,S & bt,S & tp,S & f) +static void GetFrustum(vcg::Camera & intrinsics, S & sx,S & dx,S & bt,S & tp,S & f) const { intrinsics.GetFrustum(sx,dx,bt,tp,f); } From fce8b02767f956491cda03b4165483782277daaf Mon Sep 17 00:00:00 2001 From: ganovelli Date: Fri, 13 Jan 2017 13:34:55 +0100 Subject: [PATCH 006/553] Revert "const missing" This reverts commit 825d90157cdc876cd67de39cd1ee1c9a46bb28bf. --- vcg/math/camera.h | 4 ++-- wrap/gl/camera.h | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/vcg/math/camera.h b/vcg/math/camera.h index 4cbe63d63..e45021976 100644 --- a/vcg/math/camera.h +++ b/vcg/math/camera.h @@ -229,7 +229,7 @@ class Camera vcg::Matrix44 GetMatrix(S nearVal, S farVal); /// returns the frustum - inline void GetFrustum (S & sx, S & dx, S & bt, S & tp, S & nr) const; + inline void GetFrustum(S & sx, S & dx, S & bt, S & tp, S & nr); //--- Space transformation methods @@ -549,7 +549,7 @@ void Camera::SetIsometric(S sx, S dx, S bt, S tp, S Focal, vcg::Point2 V /// returns the frustum template -void Camera:: GetFrustum ( S & sx, S & dx, S & bt, S & tp, S & nr)const +void Camera:: GetFrustum( S & sx, S & dx, S & bt, S & tp, S & nr) { dx = CenterPx.X()* PixelSizeMm.X(); //scaled center sx = -( (S)ViewportPx.X() - CenterPx.X() ) * PixelSizeMm.X(); diff --git a/wrap/gl/camera.h b/wrap/gl/camera.h index 6802385e7..a72d15d46 100644 --- a/wrap/gl/camera.h +++ b/wrap/gl/camera.h @@ -139,7 +139,7 @@ static void SetGLIsometricProj(float x1, float x2, float y1, float y2, float z1, } /// get OpenGL-like frustum from a vcg camera (intrinsics) -static void GetFrustum(vcg::Camera & intrinsics, S & sx,S & dx,S & bt,S & tp,S & f) const +static void GetFrustum(vcg::Camera & intrinsics, S & sx,S & dx,S & bt,S & tp,S & f) { intrinsics.GetFrustum(sx,dx,bt,tp,f); } From 67621588d291a82d7cbd5de6f08e423bbe6c21d9 Mon Sep 17 00:00:00 2001 From: ganovelli Date: Thu, 19 Jan 2017 10:37:47 +0100 Subject: [PATCH 007/553] const added added const to GetFrustum --- vcg/math/camera.h | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/vcg/math/camera.h b/vcg/math/camera.h index e45021976..a185f5851 100644 --- a/vcg/math/camera.h +++ b/vcg/math/camera.h @@ -229,7 +229,7 @@ class Camera vcg::Matrix44 GetMatrix(S nearVal, S farVal); /// returns the frustum - inline void GetFrustum(S & sx, S & dx, S & bt, S & tp, S & nr); + inline void GetFrustum(S & sx, S & dx, S & bt, S & tp, S & nr) const; //--- Space transformation methods @@ -549,7 +549,7 @@ void Camera::SetIsometric(S sx, S dx, S bt, S tp, S Focal, vcg::Point2 V /// returns the frustum template -void Camera:: GetFrustum( S & sx, S & dx, S & bt, S & tp, S & nr) +void Camera:: GetFrustum( S & sx, S & dx, S & bt, S & tp, S & nr) const { dx = CenterPx.X()* PixelSizeMm.X(); //scaled center sx = -( (S)ViewportPx.X() - CenterPx.X() ) * PixelSizeMm.X(); From ee9c3894182d03d96dd00f76b0a7fcf6f2c71b05 Mon Sep 17 00:00:00 2001 From: Paolo Cignoni Date: Sun, 22 Jan 2017 00:32:44 +0100 Subject: [PATCH 008/553] Rewrote the RemoveUnreferenceVertex to not use bit flags. --- vcg/complex/algorithms/clean.h | 39 ++++++++++++++++------------------ 1 file changed, 18 insertions(+), 21 deletions(-) diff --git a/vcg/complex/algorithms/clean.h b/vcg/complex/algorithms/clean.h index c8f62c683..fe21552fe 100644 --- a/vcg/complex/algorithms/clean.h +++ b/vcg/complex/algorithms/clean.h @@ -316,41 +316,38 @@ class Clean } - /** This function removes that are not referenced by any face. The function updates the vn counter. + /** This function removes that are not referenced by any face or by any edge. @param m The mesh + @param DeleteVertexFlag if false prevent the vertex deletion and just count it. @return The number of removed vertices */ static int RemoveUnreferencedVertex( MeshType& m, bool DeleteVertexFlag=true) // V1.0 { - FaceIterator fi; - EdgeIterator ei; - VertexIterator vi; - int referredBit = VertexType::NewBitFlag(); - - int j; + tri::RequirePerVertexFlags(m); + + std::vector referredVec(m.vert.size(),false); int deleted = 0; - for(vi=m.vert.begin();vi!=m.vert.end();++vi) - (*vi).ClearUserBit(referredBit); - - for(fi=m.face.begin();fi!=m.face.end();++fi) + for(auto fi=m.face.begin();fi!=m.face.end();++fi) if( !(*fi).IsD() ) - for(j=0;j<(*fi).VN();++j) - (*fi).V(j)->SetUserBit(referredBit); + for(auto j=0;j<(*fi).VN();++j) + referredVec[tri::Index(m,(*fi).V(j))]=true; - for(ei=m.edge.begin();ei!=m.edge.end();++ei) + for(auto ei=m.edge.begin();ei!=m.edge.end();++ei) if( !(*ei).IsD() ){ - (*ei).V(0)->SetUserBit(referredBit); - (*ei).V(1)->SetUserBit(referredBit); + referredVec[tri::Index(m,(*ei).V(0))]=true; + referredVec[tri::Index(m,(*ei).V(1))]=true; } - - for(vi=m.vert.begin();vi!=m.vert.end();++vi) - if( (!(*vi).IsD()) && (!(*vi).IsUserBit(referredBit))) + + if(!DeleteVertexFlag) + return std::count(referredVec.begin(),referredVec.end(),true); + + for(auto vi=m.vert.begin();vi!=m.vert.end();++vi) + if( (!(*vi).IsD()) && (!referredVec[tri::Index(m,*vi)]) ) { - if(DeleteVertexFlag) Allocator::DeleteVertex(m,*vi); + Allocator::DeleteVertex(m,*vi); ++deleted; } - VertexType::DeleteBitFlag(referredBit); return deleted; } From 8c2dcdffe8d8542541973b31f9a3fef6202ce23b Mon Sep 17 00:00:00 2001 From: nico Date: Mon, 23 Jan 2017 16:17:19 +0100 Subject: [PATCH 009/553] added VertexQualityTaubin function --- vcg/complex/algorithms/smooth.h | 44 ++++++++++++++++++++++++++++++--- 1 file changed, 41 insertions(+), 3 deletions(-) diff --git a/vcg/complex/algorithms/smooth.h b/vcg/complex/algorithms/smooth.h index b87a371d0..bae8d95d4 100644 --- a/vcg/complex/algorithms/smooth.h +++ b/vcg/complex/algorithms/smooth.h @@ -401,6 +401,44 @@ static void VertexCoordTaubin(MeshType &m, int step, float lambda, float mu, boo } // end for step } +static void VertexQualityTaubin(MeshType &m, int step, float lambda, float mu, bool SmoothSelected=false, vcg::CallBackPos * cb=0) +{ + SimpleTempData OldQ(m.vert,0); + + VertexIterator vi; + for(int i=0;iQ(); @@ -701,7 +739,7 @@ static void VertexQualityLaplacian(MeshType &m, int step=1, bool SmoothSelected= // si azzaera i dati per i vertici di bordo for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) - for(int j=0;j<3;++j) + for(int j=0;j<(*fi).VN();++j) if((*fi).IsB(j)) { TD[(*fi).V(j)]=lpz; @@ -711,7 +749,7 @@ static void VertexQualityLaplacian(MeshType &m, int step=1, bool SmoothSelected= // se l'edge j e' di bordo si deve mediare solo con gli adiacenti for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) - for(int j=0;j<3;++j) + for(int j=0;j<(*fi).VN();++j) if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->Q(); From bffc61bc7ce6a6eccdd3033b17aab7a7cea578e9 Mon Sep 17 00:00:00 2001 From: nico Date: Mon, 23 Jan 2017 16:18:52 +0100 Subject: [PATCH 010/553] correct one compile error in TriangleSegmentDistance --- vcg/space/distance3.h | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/vcg/space/distance3.h b/vcg/space/distance3.h index 2f00a542b..7c1b7548d 100644 --- a/vcg/space/distance3.h +++ b/vcg/space/distance3.h @@ -472,11 +472,11 @@ void TriangleSegmentDistance(const vcg::Triangle3 &t, ///project endpoints and see if they fall into the triangle vcg::Plane3 pl3; pl3.Init(t.P(0),t.P(1),t.P(2)); - CoordType pj0=pl3.Projection(s.P(0)); - CoordType pj1=pl3.Projection(s.P(1)); + CoordType pj0=pl3.Projection(s.P0()); + CoordType pj1=pl3.Projection(s.P1()); ///take distances - ScalarType dpj0=(pj0-s.P(0)).Norm(); - ScalarType dpj1=(pj1-s.P(1)).Norm(); + ScalarType dpj0=(pj0-s.P0()).Norm(); + ScalarType dpj1=(pj1-s.P1()).Norm(); ///test if they fall inside the triangle CoordType bary0,bary1; From f5795556ba1847a6adb9b0d91942a82f8bb9fcd6 Mon Sep 17 00:00:00 2001 From: nico Date: Mon, 23 Jan 2017 16:19:19 +0100 Subject: [PATCH 011/553] removed some unused variable --- vcg/space/intersection2.h | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/vcg/space/intersection2.h b/vcg/space/intersection2.h index 13dc2474c..115992a68 100644 --- a/vcg/space/intersection2.h +++ b/vcg/space/intersection2.h @@ -293,8 +293,7 @@ namespace vcg { BB.Add(polygon[i].P1()); } if (!BB.IsIn(p))return false; - ScalarType size=BB.Diag(); - ///take 4 directions + //take 4 directions int inside_test=0; for (int dir=0;dir<4;dir++) { From 03f41fd1175ead7f1a9751323641e9474159e1e0 Mon Sep 17 00:00:00 2001 From: nico Date: Mon, 23 Jan 2017 16:20:22 +0100 Subject: [PATCH 012/553] restructured a bit the code --- wrap/gl/gl_field.h | 108 ++++++++++++++++++++++++++++----------------- 1 file changed, 68 insertions(+), 40 deletions(-) diff --git a/wrap/gl/gl_field.h b/wrap/gl/gl_field.h index 121d9ae44..f48f0530d 100644 --- a/wrap/gl/gl_field.h +++ b/wrap/gl/gl_field.h @@ -18,59 +18,86 @@ class GLField public: static void GLDrawField(CoordType dir[4], - CoordType center, - ScalarType &size, - bool onlyPD1=false, - bool oneside=false) - { + const CoordType ¢er, + const ScalarType &size, + const ScalarType &Width0, + const ScalarType &Width1, + const vcg::Color4b &Color0, + const vcg::Color4b &Color1, + bool oneside, + bool onlyPD1) + { + CoordType dirN[4]; + for (size_t i=0;i<4;i++) + { + dirN[i]=dir[i]; + dirN[i].Normalize(); + } + ScalarType size1=size; - ScalarType size2=size; - if (oneside)size2=0; + if (oneside)size1=0; - glLineWidth(2); - //vcg::glColor(vcg::Color4b(0,0,255,255)); - vcg::glColor(vcg::Color4b(0,0,0,255)); + glLineWidth(Width0); + vcg::glColor(Color0); glBegin(GL_LINES); - glVertex(center+dir[0]*size1); - glVertex(center-dir[0]*size2); + glVertex(center+dirN[0]*size); + glVertex(center+dirN[2]*size1); glEnd(); if (onlyPD1)return; - glLineWidth(2); - //vcg::glColor(vcg::Color4b(0,255,0,255)); - vcg::glColor(vcg::Color4b(0,0,0,255)); + + glLineWidth(Width1); + vcg::glColor(Color1); glBegin(GL_LINES); - glVertex(center+dir[1]*size1); - glVertex(center-dir[1]*size2); + glVertex(center+dirN[1]*size); + glVertex(center+dirN[3]*size1); glEnd(); } - ///draw the cross field of a given face in a given position - static void GLDrawSingleFaceField(const FaceType &f, - CoordType pos, - ScalarType &size, - bool onlyPD1=false, - bool oneside=false) - { - CoordType center=pos; - CoordType normal=f.cN(); - CoordType dir[4]; - vcg::tri::CrossField::CrossVector(f,dir); - GLDrawField(dir,center,size,onlyPD1,oneside); - } +// ///draw the cross field of a given face in a given position +// static void GLDrawSingleFaceField(const FaceType &f, +// CoordType pos, +// ScalarType &size, +// bool onlyPD1, +// bool oneside) +// { +// CoordType center=pos; +// CoordType normal=f.cN(); +// CoordType dir[4]; +// vcg::tri::CrossField::CrossVector(f,dir); +// GLDrawField(dir,center,size,onlyPD1,oneside); +// } ///draw the cross field of a given face static void GLDrawSingleFaceField(const FaceType &f, - ScalarType &size, - bool onlyPD1=false, - bool oneside=false) + const ScalarType &size, + const bool oneside, + const bool onlyPD1, + const ScalarType maxN) { CoordType center=(f.cP(0)+f.cP(1)+f.cP(2))/3; CoordType normal=f.cN(); CoordType dir[4]; vcg::tri::CrossField::CrossVector(f,dir); - GLDrawField(dir,center,size,onlyPD1,oneside); + + if (maxN<=0) + GLDrawField(dir,center,size,2,2,vcg::Color4b(0,0,0,255),vcg::Color4b(0,0,0,255),oneside,onlyPD1); + else + { + ScalarType Norm0=dir[0].Norm(); + ScalarType Norm1=dir[1].Norm(); + ScalarType MaxW=6; + ScalarType MinW=0.5; + ScalarType IntervW=MaxW-MinW; + if (Norm0>maxN)Norm0=maxN; + if (Norm1>maxN)Norm1=maxN; + vcg::Color4b Col0=vcg::Color4b::ColorRamp(0,maxN,Norm0); + vcg::Color4b Col1=vcg::Color4b::ColorRamp(0,maxN,Norm1); + ScalarType W0=(Norm0/maxN)*IntervW+MinW; + ScalarType W1=(Norm1/maxN)*IntervW+MinW; + GLDrawField(dir,center,size,W0,W1,Col0,Col1,oneside,onlyPD1); + } } // static void GLDrawFaceSeams(const FaceType &f, @@ -97,14 +124,15 @@ class GLField CoordType normal=v.cN(); CoordType dir[4]; vcg::tri::CrossField::CrossVector(v,dir); - GLDrawField(dir,center,size); + GLDrawField(dir,center,size,2,2,vcg::Color4b(0,0,0,255),vcg::Color4b(0,0,0,255),false,false); } static void GLDrawFaceField(const MeshType &mesh, - bool onlyPD1=false, - bool oneside=false, - ScalarType scale=0.002) + bool onlyPD1, + bool oneside, + ScalarType GlobalScale=0.002, + const ScalarType maxN=0) { glPushAttrib(GL_ALL_ATTRIB_BITS); @@ -112,11 +140,11 @@ class GLField glEnable(GL_COLOR_MATERIAL); glDisable(GL_LIGHTING); glDisable(GL_BLEND); - ScalarType size=mesh.bbox.Diag()*scale; + ScalarType size=mesh.bbox.Diag()*GlobalScale; for (unsigned int i=0;i Date: Mon, 23 Jan 2017 16:23:30 +0100 Subject: [PATCH 013/553] added LoadCSVField function --- wrap/io_trimesh/import_field.h | 116 +++++++++++++++++++++------------ 1 file changed, 74 insertions(+), 42 deletions(-) diff --git a/wrap/io_trimesh/import_field.h b/wrap/io_trimesh/import_field.h index 46d333a7b..80b45f336 100644 --- a/wrap/io_trimesh/import_field.h +++ b/wrap/io_trimesh/import_field.h @@ -82,7 +82,7 @@ class ImporterFIELD } static bool LoadNDF(MeshType &mesh, - const char *path) + const char *path) { FILE *f = fopen(path,"rt"); if (!f) @@ -99,8 +99,8 @@ class ImporterFIELD printf("%s\n",skipstr); }while(strcmp(skipstr,"[Pjumps]")!=0); -// fscanf(f,"%s\"",skipstr); -// printf("%s\n",skipstr); + // fscanf(f,"%s\"",skipstr); + // printf("%s\n",skipstr); fseek(f, 7, SEEK_CUR); char final[1]; do{ @@ -112,37 +112,37 @@ class ImporterFIELD printf("%s\n",&final[0]); }while(strcmp(final,"\"")!=0); -// printf("%s\n",skipstr); + // printf("%s\n",skipstr); fflush(stdout); -// for (int i=0;i UV[3]; -// UV[0]= vcg::Point2(u0,v0); -// UV[1]= vcg::Point2(u1,v1); -// UV[2]= vcg::Point2(u2,v2); -// CoordType dir1; -// CoordType dir2; -// vcg::tri::CrossField::GradientToCross(mesh.face[i],UV[0],UV[1],UV[2],dir1,dir2); -// dir1.Normalize(); -// dir2.Normalize(); -// mesh.face[i].PD1()=dir1; -// mesh.face[i].PD2()=dir2; -// } -// fclose(f); -// return true; + // for (int i=0;i UV[3]; + // UV[0]= vcg::Point2(u0,v0); + // UV[1]= vcg::Point2(u1,v1); + // UV[2]= vcg::Point2(u2,v2); + // CoordType dir1; + // CoordType dir2; + // vcg::tri::CrossField::GradientToCross(mesh.face[i],UV[0],UV[1],UV[2],dir1,dir2); + // dir1.Normalize(); + // dir2.Normalize(); + // mesh.face[i].PD1()=dir1; + // mesh.face[i].PD2()=dir2; + // } + // fclose(f); + // return true; } ///load a field on the mesh, it could be a vfield file (per vertex) ///or an ffield file (per face) static bool LoadFFIELD(MeshType &mesh, - const char *path, - bool per_vertex=false) + const char *path, + bool per_vertex=false) { FILE *f = fopen(path,"rt"); @@ -188,13 +188,13 @@ class ImporterFIELD vcg::Point3 u,v; float a,b; if (fscanf(f, - "%f %f %f %f %f %f %f %f", - &a,&b, - &(v.X()),&(v.Y()),&(v.Z()), - &(u.X()),&(u.Y()),&(u.Z()) - )!=8) { - //if (errorMsg) sprintf(errorMsg,"Format error reading vertex n. %d",i); - return false; + "%f %f %f %f %f %f %f %f", + &a,&b, + &(v.X()),&(v.Y()),&(v.Z()), + &(u.X()),&(u.Y()),&(u.Z()) + )!=8) { + //if (errorMsg) sprintf(errorMsg,"Format error reading vertex n. %d",i); + return false; } u.Normalize(); @@ -202,13 +202,13 @@ class ImporterFIELD if (per_vertex) { - mesh.vert[i].PD1().Import(u); - mesh.vert[i].PD2().Import(v); + mesh.vert[i].PD1().Import(u); + mesh.vert[i].PD2().Import(v); } else { - mesh.face[i].PD1().Import(u); - mesh.face[i].PD2().Import(v); + mesh.face[i].PD1().Import(u); + mesh.face[i].PD2().Import(v); } } } @@ -220,9 +220,9 @@ class ImporterFIELD ///Interactive Visualization of Rotational Symmetry Fields on Surfaces ///Jonathan Palacios and Eugene Zhang static void Load4ROSY(MeshType &mesh, - const char *path) + const char *path) { - FILE *f = fopen(path,"rt"); + FILE *f = fopen(path,"rt"); int num,symm; fscanf(f,"%d",&num); assert(num==mesh.vn); @@ -317,7 +317,7 @@ class ImporterFIELD //Load a 4 rosy format file as pair of angles static bool Load2AngleFace(MeshType &mesh, - const char *path) + const char *path) { FILE *f = fopen(path,"rt"); if (f==NULL)return false; @@ -335,6 +335,38 @@ class ImporterFIELD return true; } + static bool LoadCSVField(MeshType &mesh, + const std::string &field_1, + const std::string &field_2, + bool Normalize=true) + { + FILE *f1=NULL; + FILE *f2=NULL; + f1=fopen(field_1.c_str(),"rt"); + if(f1==NULL)return false; + f2=fopen(field_2.c_str(),"rt"); + if(f2==NULL)return false; + for (size_t i=0;i Date: Mon, 23 Jan 2017 16:23:58 +0100 Subject: [PATCH 014/553] solved minor warnings --- vcg/space/polygon3.h | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/vcg/space/polygon3.h b/vcg/space/polygon3.h index 591d733be..1016b03fd 100644 --- a/vcg/space/polygon3.h +++ b/vcg/space/polygon3.h @@ -79,7 +79,7 @@ typename CoordType::ScalarType Area(const std::vector &Pos) { typedef typename CoordType::ScalarType ScalarType; CoordType bary=CoordType(0,0,0); - for (int i=0;i Date: Mon, 23 Jan 2017 16:24:29 +0100 Subject: [PATCH 015/553] added expectedValence function and solved minor bugs --- .../parametrization/tangent_field_operators.h | 32 +++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/vcg/complex/algorithms/parametrization/tangent_field_operators.h b/vcg/complex/algorithms/parametrization/tangent_field_operators.h index 3da1a33a9..2f035ea49 100644 --- a/vcg/complex/algorithms/parametrization/tangent_field_operators.h +++ b/vcg/complex/algorithms/parametrization/tangent_field_operators.h @@ -1289,6 +1289,13 @@ class CrossField } } + static bool IsSingular(MeshType &mesh,const VertexType &v) + { + assert(vcg::tri::HasPerVertexAttribute(mesh,std::string("Singular"))); + typename MeshType::template PerVertexAttributeHandle Handle_Singular; + Handle_Singular = vcg::tri::Allocator::template GetPerVertexAttribute(mesh,std::string("Singular")); + return (Handle_Singular[v]); + } static void GradientToCross(const FaceType &f, const vcg::Point2 &UV0, @@ -1514,6 +1521,31 @@ class CrossField OrientDirectionFaceCoherently(mesh); } + static size_t expectedValence(MeshType &mesh, + const VertexType &v) { + + // query if an attribute is present or not + assert(vcg::tri::HasPerVertexAttribute(mesh,std::string("Singular"))); + assert(vcg::tri::HasPerVertexAttribute(mesh,std::string("SingularIndex"))); + typename MeshType::template PerVertexAttributeHandle Handle_Singular; + Handle_Singular = vcg::tri::Allocator::template GetPerVertexAttribute(mesh,std::string("Singular")); + typename MeshType::template PerVertexAttributeHandle Handle_SingularIndex; + Handle_SingularIndex = vcg::tri::Allocator::template GetPerVertexAttribute(mesh,std::string("SingularIndex")); + if (!Handle_Singular[v]) + return 4; + switch (Handle_SingularIndex[v]) { + case 1: + return 5; + case 2: + return 6; + case 3: + return 3; + case 4: + return 2; + default: + return 4; + } + } };///end class } //End Namespace Tri } // End Namespace vcg From b482aa3cbed5489f43aa97921c3603c6e69971fc Mon Sep 17 00:00:00 2001 From: nico Date: Mon, 23 Jan 2017 17:22:44 +0100 Subject: [PATCH 016/553] first version of Dual meshing with sample application --- .../polygonmesh_dual/polygonmesh_dual.cpp | 121 ++++++++++ .../polygonmesh_dual/polygonmesh_dual.pro | 7 + vcg/complex/algorithms/dual_meshing.h | 207 ++++++++++++++++++ 3 files changed, 335 insertions(+) create mode 100644 apps/sample/polygonmesh_dual/polygonmesh_dual.cpp create mode 100644 apps/sample/polygonmesh_dual/polygonmesh_dual.pro create mode 100644 vcg/complex/algorithms/dual_meshing.h diff --git a/apps/sample/polygonmesh_dual/polygonmesh_dual.cpp b/apps/sample/polygonmesh_dual/polygonmesh_dual.cpp new file mode 100644 index 000000000..4bd9b0c30 --- /dev/null +++ b/apps/sample/polygonmesh_dual/polygonmesh_dual.cpp @@ -0,0 +1,121 @@ +/**************************************************************************** +* VCGLib o o * +* Visual and Computer Graphics Library o o * +* _ O _ * +* Copyright(C) 2004-2016 \/)\/ * +* Visual Computing Lab /\/| * +* ISTI - Italian National Research Council | * +* \ * +* All rights reserved. * +* * +* This program is free software; you can redistribute it and/or modify * +* it under the terms of the GNU General Public License as published by * +* the Free Software Foundation; either version 2 of the License, or * +* (at your option) any later version. * +* * +* This program is distributed in the hope that it will be useful, * +* but WITHOUT ANY WARRANTY; without even the implied warranty of * +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * +* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * +* for more details. * +* * +****************************************************************************/ + +#include + +/*include the algorithms for updating: */ +#include +#include +#include + +#include +#include + +#include +#include + +#include + +#include + +using namespace vcg; +using namespace std; + +// forward declarations +class TFace; +class TVertex; + +struct TUsedTypes: public vcg::UsedTypes< vcg::Use::AsVertexType, vcg::Use::AsFaceType >{}; + +/* Definition of a mesh of triangles +*/ +class TVertex : public Vertex< TUsedTypes, + vertex::BitFlags, + vertex::Coord3f, + vertex::Normal3f, + vertex::Mark >{}; + +class TFace : public Face< TUsedTypes, + face::VertexRef, // three pointers to vertices + face::Normal3f, // normal + face::BitFlags, // flags + face::FFAdj // three pointers to adjacent faces +> {}; + +/* the mesh is a container of vertices and a container of faces */ +class TMesh : public vcg::tri::TriMesh< vector, vector > {}; + + +/* Definition of a mesh of polygons that also supports half-edges +*/ +class PFace; +class PVertex; + +struct PUsedTypes: public vcg::UsedTypes ::AsVertexType, + vcg::Use ::AsFaceType>{}; + +class PVertex:public vcg::Vertex< PUsedTypes, + vcg::vertex::Coord3f, + vcg::vertex::Normal3f, + vcg::vertex::Mark, + vcg::vertex::BitFlags>{} ; + +class PFace:public vcg::Face< + PUsedTypes + ,vcg::face::PolyInfo // this is necessary if you use component in vcg/simplex/face/component_polygon.h + // It says "this class is a polygon and the memory for its components (e.g. pointer to its vertices + // will be allocated dynamically") + ,vcg::face::PFVAdj // Pointer to the vertices (just like FVAdj ) + ,vcg::face::PFVAdj + ,vcg::face::PFFAdj // Pointer to edge-adjacent face (just like FFAdj ) + ,vcg::face::BitFlags // bit flags + ,vcg::face::Normal3f // normal +> {}; + +class PMesh: public + vcg::tri::TriMesh< + std::vector, // the vector of vertices + std::vector // the vector of faces + >{}; + +TMesh primalT; +PMesh primal,dual; + +int main(int argc, char *argv[]) +{ + (void)argc; + (void)argv; + + vcg::tri::Sphere(primalT,2); + vcg::tri::PolygonSupport::ImportFromTriMesh(primal,primalT); + + vcg::tri::DualMeshing::MakeDual(primal,dual); + vcg::tri::io::ExporterOBJ::Save(dual,"./dual.obj",vcg::tri::io::Mask::IOM_BITPOLYGONAL); + + vcg::tri::DualMeshing::MakeDual(dual,primal); + vcg::tri::io::ExporterOBJ::Save(primal,"./dual_dual.obj",vcg::tri::io::Mask::IOM_BITPOLYGONAL); + +} + + + diff --git a/apps/sample/polygonmesh_dual/polygonmesh_dual.pro b/apps/sample/polygonmesh_dual/polygonmesh_dual.pro new file mode 100644 index 000000000..e92bf0b3f --- /dev/null +++ b/apps/sample/polygonmesh_dual/polygonmesh_dual.pro @@ -0,0 +1,7 @@ +\macx: QMAKE_MACOSX_DEPLOYMENT_TARGET = 10.9 +QMAKE_MAC_SDK = macosx10.9 +CONFIG += c++11 + +include(../common.pri) +TARGET = polygonmesh_base +SOURCES += polygonmesh_dual.cpp ../../../wrap/ply/plylib.cpp diff --git a/vcg/complex/algorithms/dual_meshing.h b/vcg/complex/algorithms/dual_meshing.h new file mode 100644 index 000000000..8d15673a1 --- /dev/null +++ b/vcg/complex/algorithms/dual_meshing.h @@ -0,0 +1,207 @@ +/**************************************************************************** +* VCGLib o o * +* Visual and Computer Graphics Library o o * +* _ O _ * +* Copyright(C) 2004-2016 \/)\/ * +* Visual Computing Lab /\/| * +* ISTI - Italian National Research Council | * +* \ * +* All rights reserved. * +* * +* This program is free software; you can redistribute it and/or modify * +* it under the terms of the GNU General Public License as published by * +* the Free Software Foundation; either version 2 of the License, or * +* (at your option) any later version. * +* * +* This program is distributed in the hope that it will be useful, * +* but WITHOUT ANY WARRANTY; without even the implied warranty of * +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * +* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * +* for more details. * +* * +****************************************************************************/ +#ifndef __VCGLIB_DUAL_MESH +#define __VCGLIB_DUAL_MESH + +#include +#include +#include +#include + +namespace vcg { +namespace tri { + +template +class DualMeshing +{ + + typedef typename PolyMeshType::VertexType VertexType; + typedef typename PolyMeshType::FaceType FaceType; + typedef typename PolyMeshType::CoordType CoordType; + typedef typename PolyMeshType::ScalarType ScalarType; + + static void ComposeFace(VertexType &startV, + FaceType &startF, + std::map, int> &EdgeMap, + const std::vector &FaceMap, + const PolyMeshType &primal, + std::vector &vertSeq) + { + vcg::face::Pos startP(&startF,&startV); + + //get the star of pos + std::vector > posVec; + vcg::face::VFOrderedStarFF(startP,posVec); + + for (size_t i=0;i firstPos=posVec[0]; + firstPos.FlipE(); + assert(firstPos.IsBorder()); + + int indexVt0=vcg::tri::Index(primal,firstPos.V()); + int indexVt1=vcg::tri::Index(primal,firstPos.VFlip()); + std::pair key(std::min(indexVt0,indexVt1), + std::max(indexVt0,indexVt1)); + assert(EdgeMap.count(key)>0); + int indexV0=EdgeMap[key]; + + vcg::face::Pos lastPos=posVec.back(); + assert(lastPos.IsBorder()); + + indexVt0=vcg::tri::Index(primal,lastPos.V()); + indexVt1=vcg::tri::Index(primal,lastPos.VFlip()); + key=std::pair (std::min(indexVt0,indexVt1), + std::max(indexVt0,indexVt1)); + assert(EdgeMap.count(key)>0); + int indexV1=EdgeMap[key]; + + vertSeq.push_back(indexV1); + vertSeq.push_back(indexV0); + } + } + + static void CreateBorderEdgeVert(PolyMeshType &primal, + PolyMeshType &dual, + std::map, int> &VertMap) + { + VertMap.clear(); + vcg::tri::UpdateFlags::VertexClearB(primal); + + for (size_t i=0;iSetB(); + v1->SetB(); + + int V0Index=vcg::tri::Index(primal,v0); + int V1Index=vcg::tri::Index(primal,v1); + CoordType pos=(v0->P()+v1->P())/2; + vcg::tri::Allocator::AddVertex(dual,pos); + std::pair key(std::min(V0Index,V1Index), + std::max(V0Index,V1Index)); + + VertMap[key]=dual.vert.size()-1; + } + } + + static void CreateFaceVert(PolyMeshType &primal, + PolyMeshType &dual, + std::vector &VertMap, + std::vector &VertFace, + bool snapBorder) + { + VertMap.clear(); + VertMap.resize(primal.face.size(),-1); + VertFace.clear(); + VertFace.resize(primal.vert.size(),-1); + for (size_t i=0;i BorderPos; + for (int j=0;jIsB())continue; + pos+=primal.face[i].P(j); + num++; + } + if (num>0) + pos/=num; + } + + if (num==0) + { + for (int j=0;jP(); + int indexV=vcg::tri::Index(primal,primal.face[i].V(j)); + if (VertFace[indexV]!=-1)continue; + VertFace[indexV]=i; + } + pos/=(ScalarType)primal.face[i].VN(); + } + vcg::tri::Allocator::AddVertex(dual,pos); + VertMap[i]=dual.vert.size()-1; + } + } + +public: + + static void MakeDual(PolyMeshType &primal, + PolyMeshType &dual, + bool snapBorder=true) + { + dual.Clear(); + + vcg::tri::RequirePolygonalMesh(primal); + vcg::tri::RequirePolygonalMesh(dual); + vcg::tri::RequireFFAdjacency(primal); + + vcg::tri::UpdateTopology::FaceFace(primal); + + std::map, int> VertEdgeMap; + CreateBorderEdgeVert(primal,dual,VertEdgeMap); + + std::vector VertFaceMap,VertFace; + CreateFaceVert(primal,dual,VertFaceMap,VertFace,snapBorder); + + for (size_t i=0;i VertSeq; + ComposeFace(primal.vert[i],*firstF,VertEdgeMap,VertFaceMap,primal,VertSeq); + vcg::tri::Allocator::AddFaces(dual,1); + dual.face.back().Alloc(VertSeq.size()); + for (size_t j=0;j::RemoveUnreferencedVertex(dual); + } + +}; + +} +} +#endif // __VCGLIB_DUAL_MESH From 4b29ec5ef6cd50849138ad1a9fbf9c4f3459a467 Mon Sep 17 00:00:00 2001 From: nico Date: Wed, 25 Jan 2017 17:25:26 +0100 Subject: [PATCH 017/553] first release version of polygonal algorithms methods --- .gitignore | 25 +- vcg/complex/algorithms/polygonal_algorithms.h | 957 ++++++++++++++++++ 2 files changed, 981 insertions(+), 1 deletion(-) create mode 100644 vcg/complex/algorithms/polygonal_algorithms.h diff --git a/.gitignore b/.gitignore index caf98bf35..a624d444f 100644 --- a/.gitignore +++ b/.gitignore @@ -9,4 +9,27 @@ release/ /docs/Doxygen/html/ # Intermediate Files -*.bc \ No newline at end of file +*.bc +apps/sample/polygonmesh_dual/polygonmesh_base + +*.stash + +apps/sample/polygonmesh_dual/dual_dual.obj + +apps/sample/polygonmesh_dual/dual.obj + +apps/sample/polygonmesh_dual/Makefile + +apps/sample/polygonmesh_dual/plylib.o + +*.o + +*.ply + +*.obj + +apps/sample/polygonmesh_optimize/polygonmesh_base + +apps/sample/polygonmesh_optimize/Makefile + +vcg/complex/algorithms/polygonal_algorithmsOLD.h diff --git a/vcg/complex/algorithms/polygonal_algorithms.h b/vcg/complex/algorithms/polygonal_algorithms.h new file mode 100644 index 000000000..d25fd4001 --- /dev/null +++ b/vcg/complex/algorithms/polygonal_algorithms.h @@ -0,0 +1,957 @@ +/**************************************************************************** +* VCGLib o o * +* Visual and Computer Graphics Library o o * +* _ O _ * +* Copyright(C) 2004-2016 \/)\/ * +* Visual Computing Lab /\/| * +* ISTI - Italian National Research Council | * +* \ * +* All rights reserved. * +* * +* This program is free software; you can redistribute it and/or modify * +* it under the terms of the GNU General Public License as published by * +* the Free Software Foundation; either version 2 of the License, or * +* (at your option) any later version. * +* * +* This program is distributed in the hope that it will be useful, * +* but WITHOUT ANY WARRANTY; without even the implied warranty of * +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * +* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * +* for more details. * +* * +****************************************************************************/ +#ifndef __VCGLIB_POLY_MESH_ALGORITHM +#define __VCGLIB_POLY_MESH_ALGORITHM + +#include +#include +#include +#include +#include +#include +#include + +//define a temporary triangle mesh type +class TempFace; +class TempVertex; + +struct TempUsedTypes: public vcg::UsedTypes::AsVertexType, + vcg::Use::AsFaceType>{}; + +class TempVertex:public vcg::Vertex +{}; + +class TempFace:public vcg::Face +{}; + + +class TempMesh: public vcg::tri::TriMesh< std::vector,std::vector > +{}; + +namespace vcg{ + +/*! +\ingroup PolyMeshType + +\headerfile color.h vcg/complex/algorithms/polygonal_algorithms.h + +\brief processing and optimization of generic polygonal meshes. + +This class is used to performs varisous kind of geometric optimization on generic polygonal mesh such as flattengin or imptove the shape of polygons. +*/ + +template +class PolygonalAlgorithm +{ + typedef typename PolyMeshType::FaceType FaceType; + typedef typename PolyMeshType::VertexType VertexType; + typedef typename PolyMeshType::CoordType CoordType; + typedef typename PolyMeshType::ScalarType ScalarType; + + + static bool CollapseBorderSmallEdgesStep(PolyMeshType &poly_m, + const ScalarType edge_limit) + { + bool collapsed=false; + + //update topology + vcg::tri::UpdateTopology::FaceFace(poly_m); + + //update border vertices + //UpdateBorderVertexFromPFFAdj(poly_m); + vcg::tri::UpdateFlags::VertexBorderFromFaceAdj(poly_m); + + //get border edges + std::vector > IsBorder; + BorderEdgeFromPFFAdj(poly_m,IsBorder); + + //deselect all vertices + vcg::tri::UpdateFlags::VertexClearS(poly_m); + + //this set how to remap the vertices after deletion + std::map VertexRemap; + + //go over all faces and check the ones needed to be deleted + for (size_t i=0;iIsB(); + bool IsBV1=v1->IsB(); + + //in these cases is not possible to collapse + if ((!IsBV0)&&(!IsBV1))continue; + if ((!IsBorder[i][j])&&(IsBV0)&&(IsBV1))continue; + if (v0->IsS())continue; + if (v1->IsS())continue; + + assert((IsBV0)||(IsBV1)); + CoordType pos0=v0->P(); + CoordType pos1=v1->P(); + ScalarType currL=(pos0-pos1).Norm(); + if (currL>edge_limit)continue; + + //then collapse the point + CoordType InterpPos; + if ((IsBV0)&&(!IsBV1))InterpPos=pos0; + if ((!IsBV0)&&(IsBV1))InterpPos=pos1; + if ((IsBV0)&&(IsBV1))InterpPos=(pos0+pos1)/2.0; + + //put on the same position + v0->P()=InterpPos; + v1->P()=InterpPos; + + //select the the two vertices + v0->SetS(); + v1->SetS(); + + //set the remap + VertexRemap[v1]=v0; + + collapsed=true; + } + } + + //then remap vertices + for (size_t i=0;i FaceV; + for (int j=0;j &AvVert) + { + //cumulate step + AvVert.clear(); + AvVert.resize(poly_m.vert.size(),CoordType(0,0,0)); + std::vector AvSum(poly_m.vert.size(),0); + for (size_t i=0;iP(); + //cumulate over other positions + ScalarType W=vcg::PolyArea(poly_m.face[i]); + //assert(W!=0); + for (size_t k=0;k<(size_t)poly_m.face[i].VN();k++) + { + if (k==j)continue; + int IndexV=vcg::tri::Index(poly_m,poly_m.face[i].V(k)); + AvVert[IndexV]+=currP*W; + AvSum[IndexV]+=W; + } + } + + //average step + for (size_t i=0;i PlF; + PlF=PolyFittingPlane(F); + if ((PlF.Direction()*F.N())<0) + F.N()=-PlF.Direction(); + else + F.N()=PlF.Direction(); + } + +public: + +// static void GetFaceNormals(FaceType &F, +// std::vector &Norms) +// { +// Norms.clear(); +// if (F.VN()<=2) return; +// for (int i=0;i &IsBorder) +// { +// IsBorder.resize(F.VN(),false); +// for (int j=0;j > &IsBorder) +// { +// IsBorder.resize(poly_m.face.size()); +// for (size_t i=0;i > IsBorderE; +// BorderEdgeFromPFFAdj(poly_m,IsBorderE); + +// //then update per vertex +// vcg::tri::UpdateFlags::VertexClearB(poly_m); +// for (size_t i=0;iSetB(); +// poly_m.face[i].V1(j)->SetB(); +// } +// } +// } + +// //METTERE IN QUALITY -> update quality +// static void PerVertexValence(PolyMeshType &poly_m, +// std::vector &Valence) +// { +// Valence.resize(poly_m.vert.size(),0); +// for (size_t i=0;i::PerFaceQualityRamp(poly_m); +// } + +// static void ColorScatterByQuality(PolyMeshType &poly_m) +// { +// //get the max of quality +// ScalarType MaxQ=0; +// for (size_t i=0;imaxV; +// for (size_t i=0;itestMax)val=testMax; +// if (!to_swap) +// poly_m.face[i].C()=vcg::Color4b::ColorRamp(testMin,testMax,poly_m.face[i].Q()); +// else +// poly_m.face[i].C()=vcg::Color4b::ColorRamp(testMax,testMin,poly_m.face[i].Q()); + +// } +// } + +// //DELETE +// static void ColorUniformly(PolyMeshType &poly_m, +// vcg::Color4b col=vcg::Color4b(200,200,200,255)) +// { +// vcg::tri::UpdateColor::PerFaceConstant(poly_m,col); +// } + + /*! \brief given a face this function returns the template positions as in "Statics Aware Grid Shells" + */ + static void GetRotatedTemplatePos(FaceType &f, + std::vector &TemplatePos) + { + vcg::GetPolyTemplatePos(f,TemplatePos,true); + + CoordType NormT=Normal(TemplatePos); + //get the normal of vertices + CoordType AVN(0,0,0); + CoordType Origin(0,0,0); + for (int j=0;jN(); + + for (size_t j=0;j Rot=vcg::RotationMatrix(NormT,AVN); + + //apply transformation + for (size_t j=0;j avgPos(poly_m.vert.size(),CoordType(0,0,0)); + std::vector weightSum(poly_m.vert.size(),0); + //then compute the templated positions + for (size_t i=0;i TemplatePos; + GetRotatedTemplatePos(poly_m.face[i],TemplatePos); + //then cumulate the position per vertex + ScalarType val=vcg::PolyArea(poly_m.face[i]); + if (val<(AvgArea*0.00001)) + val=(AvgArea*0.00001); + ScalarType W=1.0/val;//poly_m.face[i].Q(); + //ScalarType W=1; + + for (size_t j=0;j AvVert; + LaplacianPos(poly_m,AvVert); + //then update the position + for (size_t i=0;i1)alpha=1; + // if (isnan(alpha))alpha=1; + CoordType newP=avgPos[i]/weightSum[i]; + newP=newP*(1-alpha)+AvVert[i]*alpha; + if ((fixB)&&(poly_m.vert[i].IsB()))continue; + if ((fixIrr)&&(poly_m.vert[i].IsS()))continue; + poly_m.vert[i].P()=poly_m.vert[i].P()*Damp+ + newP*(1-Damp); + } + } + } + + /*! \brief This function smooth the borders of the polygonal mesh and reproject back to the triangolar one + * except the vertices that are considered as corner wrt the angleDeg threshold + */ + template + static void LaplacianReprojectBorder(PolyMeshType &poly_m, + TriMeshType &tri_mesh, + int nstep=100, + ScalarType Damp=0.5, + ScalarType angleDeg=100) + { + typedef typename TriMeshType::FaceType FaceType; + + //first select corners + vcg::tri::UpdateFlags::VertexClearS(poly_m); + + //update topology + vcg::tri::UpdateTopology::FaceFace(poly_m); + + //update border vertices + vcg::tri::UpdateFlags::VertexBorderFromFaceAdj(poly_m); + + //select corner vertices on the border + ScalarType angleRad=angleDeg * M_PI / 180; + vcg::tri::UpdateFlags::SelectVertexCornerBorder(poly_m,angleRad); + + for (int s=0;s AvVert; + LaplacianPos(poly_m,AvVert); + + for (size_t i=0;i::max(); + CoordType closPos; + for (size_t j=0;j Seg(P0,P1); + ScalarType testD; + CoordType closTest; + vcg::SegmentPointDistance(Seg,testPos,closTest,testD); + if (testD>minD)continue; + minD=testD; + closPos=closTest; + } + poly_m.vert[i].P()=closPos; + } + } + } + + /*! \brief This function smooth the borders of the polygonal mesh and reproject back to its border + */ + static void LaplacianReprojectBorder(PolyMeshType &poly_m, + int nstep=100, + ScalarType Damp=0.5) + { + //transform into triangular + TempMesh GuideSurf; + vcg::tri::PolygonSupport::ImportFromPolyMesh(GuideSurf,poly_m); + vcg::tri::UpdateBounding::Box(GuideSurf); + vcg::tri::UpdateNormal::PerVertexNormalizedPerFace(GuideSurf); + vcg::tri::UpdateTopology::FaceFace(GuideSurf); + vcg::tri::UpdateFlags::FaceBorderFromFF(GuideSurf); + + LaplacianReprojectBorder(poly_m,GuideSurf,nstep,Damp); + } + + /*! \brief This function performs the reprojection of the polygonal mesh onto a triangular one passed as input parameter + */ + template + static void LaplacianReproject(PolyMeshType &poly_m, + TriMeshType &tri_mesh, + bool fixIrr=false, + int nstep=100, + ScalarType Damp=0.5) + { + typedef typename TriMeshType::FaceType FaceType; + typedef vcg::GridStaticPtr TriMeshGrid; + TriMeshGrid grid; + + //initialize the grid + grid.Set(tri_mesh.face.begin(),tri_mesh.face.end()); + + ScalarType MaxD=tri_mesh.bbox.Diag(); + + if (fixIrr) + poly_m.NumIrregular(true); + for (int s=0;s AvVert; + LaplacianPos(poly_m,AvVert); + + for (size_t i=0;i + static void SmoothReprojectPCA(PolyMeshType &poly_m, + TriMeshType &tri_mesh, + int relaxStep=100, + bool fixIrr=false, + ScalarType Damp=0.5) + { + vcg::tri::UpdateTopology::FaceFace(poly_m); + + //UpdateBorderVertexFromPFFAdj(poly_m); + vcg::tri::UpdateFlags::VertexBorderFromFaceAdj(poly_m); + + typedef typename TriMeshType::FaceType FaceType; + typedef vcg::GridStaticPtr TriMeshGrid; + TriMeshGrid grid; + + //initialize the grid + grid.Set(tri_mesh.face.begin(),tri_mesh.face.end()); + + ScalarType MaxD=tri_mesh.bbox.Diag(); + + // //update quality as area + // for (size_t i=0;i::ImportFromPolyMesh(GuideSurf,poly_m); + vcg::tri::UpdateBounding::Box(GuideSurf); + vcg::tri::UpdateNormal::PerVertexNormalizedPerFace(GuideSurf); + vcg::tri::UpdateTopology::FaceFace(GuideSurf); + vcg::tri::UpdateFlags::FaceBorderFromFF(GuideSurf); + + //optimize it + vcg::PolygonalAlgorithm::SmoothReprojectPCA(poly_m,GuideSurf,relaxStep,fixIrr,Damp); + } + + /*! \brief This function return average edge size + */ + static ScalarType AverageEdge(PolyMeshType &poly_m) + { + ScalarType AvL=0; + size_t numE=0; + for (size_t i=0;iP(); + CoordType pos1=poly_m.face[i].V((j+1)%NumV)->P(); + AvL+=(pos0-pos1).Norm(); + numE++; + } + } + AvL/=numE; + return AvL; + } + + + /*! \brief This function remove valence 2 faces from the mesh + */ + static void RemoveValence2Faces(PolyMeshType &poly_m) + { + for (size_t i=0;i=3)continue; + vcg::tri::Allocator::DeleteFace(poly_m,poly_m.face[i]); + } + + //then remove unreferenced vertices + vcg::tri::Clean::RemoveUnreferencedVertex(poly_m); + vcg::tri::Allocator::CompactEveryVector(poly_m); + + } + + /*! \brief This function remove valence 2 vertices on the border by considering the degree threshold + * bacause there could be eventually some corner that should be preserved + */ + static void RemoveValence2BorderVertices(PolyMeshType &poly_m, + ScalarType corner_degree=25) + { + //update topology + vcg::tri::UpdateTopology::FaceFace(poly_m); + + //update border vertices + //UpdateBorderVertexFromPFFAdj(poly_m); + vcg::tri::UpdateFlags::VertexBorderFromFaceAdj(poly_m); + + vcg::tri::UpdateFlags::VertexClearS(poly_m); + + //select corners + for (size_t i=0;iIsB())||(!v1->IsB())||(!v2->IsB()))continue; + CoordType dir0=(v0->P()-v1->P()); + CoordType dir1=(v2->P()-v1->P()); + dir0.Normalize(); + dir1.Normalize(); + ScalarType testDot=(dir0*dir1); + if (testDot>(-cos(corner_degree* (M_PI / 180.0)))) + v1->SetS(); + } + } + + typename PolyMeshType::template PerVertexAttributeHandle valenceVertH = + vcg::tri::Allocator:: template GetPerVertexAttribute (poly_m); + + //initialize to zero + for (size_t i=0;i FaceV; + for (size_t j=0;jIsD()); + if ((!v->IsS()) && (v->IsB()) && (valenceVertH[v]==1)) continue; + FaceV.push_back(v); + } + + //then deallocate face + if (FaceV.size()==NumV)continue; + + //otherwise deallocate and set new vertices + poly_m.face[i].Dealloc(); + poly_m.face[i].Alloc(FaceV.size()); + for (size_t j=0;j::RemoveUnreferencedVertex(poly_m); + vcg::tri::Allocator::CompactEveryVector(poly_m); + + vcg::tri::Allocator::DeletePerVertexAttribute(poly_m,valenceVertH); + } + + /*! \brief This function collapse small edges which are on the boundary of the mesh + * this is sometimes useful to remove small edges coming out from a quadrangulation which is not + * aligned to boundaries + */ + static void CollapseBorderSmallEdges(PolyMeshType &poly_m,const ScalarType perc_average=0.3) + { + //compute the average edge + ScalarType AvEdge=AverageEdge(poly_m); + ScalarType minLimit=AvEdge*perc_average; + + while(CollapseBorderSmallEdgesStep(poly_m,minLimit)){}; + + RemoveValence2Faces(poly_m); + + RemoveValence2BorderVertices(poly_m); + } + + /*! \brief This function use a local global approach to flatten polygonal faces + * the approach is similar to "Shape-Up: Shaping Discrete Geometry with Projections" + */ + static ScalarType FlattenFaces(PolyMeshType &poly_m, size_t steps=100,bool OnlySFaces=false) + { + ScalarType MaxDispl=0; + for (size_t s=0;s > VertPos(poly_m.vert.size()); + + for (size_t i=0;i FacePos; + for (int j=0;jIsD()); + FacePos.push_back(v->P()); + } + + //then fit the plane + vcg::Plane3 FitPl; + vcg::FitPlaneToPointSet(FacePos,FitPl); + + //project each point onto fitting plane + for (int j=0;jP()); + VertPos[IndexV].push_back(ProjP); + } + } + + for (size_t i=0;i Date: Wed, 25 Jan 2017 17:26:19 +0100 Subject: [PATCH 018/553] first example of small program that use polygonal optimization routines --- .../polygonmesh_optimize.cpp | 181 ++++++++++++++++++ .../polygonmesh_optimize.pro | 7 + 2 files changed, 188 insertions(+) create mode 100644 apps/sample/polygonmesh_optimize/polygonmesh_optimize.cpp create mode 100644 apps/sample/polygonmesh_optimize/polygonmesh_optimize.pro diff --git a/apps/sample/polygonmesh_optimize/polygonmesh_optimize.cpp b/apps/sample/polygonmesh_optimize/polygonmesh_optimize.cpp new file mode 100644 index 000000000..93a730a2e --- /dev/null +++ b/apps/sample/polygonmesh_optimize/polygonmesh_optimize.cpp @@ -0,0 +1,181 @@ +/**************************************************************************** +* VCGLib o o * +* Visual and Computer Graphics Library o o * +* _ O _ * +* Copyright(C) 2004-2016 \/)\/ * +* Visual Computing Lab /\/| * +* ISTI - Italian National Research Council | * +* \ * +* All rights reserved. * +* * +* This program is free software; you can redistribute it and/or modify * +* it under the terms of the GNU General Public License as published by * +* the Free Software Foundation; either version 2 of the License, or * +* (at your option) any later version. * +* * +* This program is distributed in the hope that it will be useful, * +* but WITHOUT ANY WARRANTY; without even the implied warranty of * +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * +* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * +* for more details. * +* * +****************************************************************************/ + +#include + +/*include the algorithms for updating: */ +#include +#include +#include + +#include +#include + +#include +#include + +#include + +#include + +#include + +#include + +using namespace vcg; +using namespace std; + +// forward declarations +class TFace; +class TVertex; + +struct TUsedTypes: public vcg::UsedTypes< vcg::Use::AsVertexType, vcg::Use::AsFaceType >{}; + +/* Definition of a mesh of triangles +*/ +class TVertex : public Vertex< TUsedTypes, + vertex::BitFlags, + vertex::Coord3f, + vertex::Normal3f, + vertex::Mark >{}; + +class TFace : public Face< TUsedTypes, + face::VertexRef, // three pointers to vertices + face::Normal3f, // normal + face::BitFlags, // flags + face::FFAdj // three pointers to adjacent faces +> {}; + +/* the mesh is a container of vertices and a container of faces */ +class TMesh : public vcg::tri::TriMesh< vector, vector > {}; + + +/* Definition of a mesh of polygons that also supports half-edges +*/ +class PFace; +class PVertex; + +struct PUsedTypes: public vcg::UsedTypes ::AsVertexType, + vcg::Use ::AsFaceType>{}; + +class PVertex:public vcg::Vertex< PUsedTypes, + vcg::vertex::Coord3f, + vcg::vertex::Normal3f, + vcg::vertex::Mark, + vcg::vertex::BitFlags>{} ; + +class PFace:public vcg::Face< + PUsedTypes + ,vcg::face::PolyInfo // this is necessary if you use component in vcg/simplex/face/component_polygon.h + // It says "this class is a polygon and the memory for its components (e.g. pointer to its vertices + // will be allocated dynamically") + ,vcg::face::PFVAdj // Pointer to the vertices (just like FVAdj ) + ,vcg::face::PFVAdj + ,vcg::face::PFFAdj // Pointer to edge-adjacent face (just like FFAdj ) + ,vcg::face::BitFlags // bit flags + ,vcg::face::Normal3f // normal + ,face::Qualityd // face quality +> {}; + +class PMesh: public + vcg::tri::TriMesh< + std::vector, // the vector of vertices + std::vector // the vector of faces + >{}; + +TMesh primalT; +PMesh primal,dual,dual_opt,dual_flat; + +int main(int argc, char *argv[]) +{ + assert(argc>1); + + std::cout<<"Opening file " << argv[0] << std::endl; + + int res=vcg::tri::io::ImporterPLY::Open(primalT,argv[1]); + assert(res==vcg::ply::E_NOERROR); + vcg::tri::PolygonSupport::ImportFromTriMesh(primal,primalT); + + vcg::tri::DualMeshing::MakeDual(primal,dual); + vcg::tri::io::ExporterOBJ::Save(dual,"./dual_no_optimized.obj",vcg::tri::io::Mask::IOM_BITPOLYGONAL); + + //copy the mesh + vcg::tri::Append::Mesh(dual_opt,dual); + vcg::tri::Append::Mesh(dual_flat,dual); + + vcg::PolygonalAlgorithm::SmoothReprojectPCA(dual_opt); + + vcg::tri::io::ExporterOBJ::Save(dual_opt,"./dual_optimized.obj",vcg::tri::io::Mask::IOM_BITPOLYGONAL); + + vcg::PolygonalAlgorithm::FlattenFaces(dual_flat); + vcg::tri::io::ExporterOBJ::Save(dual_flat,"./dual_flattened.obj",vcg::tri::io::Mask::IOM_BITPOLYGONAL); + + //update the quality as template + std::pair minmax_dual,minmax_dual_opt,minmax_dual_flat; + typename PMesh::ScalarType Avg_dual,Avg_dual_opt,Avg_dual_flat; + + vcg::PolygonalAlgorithm::UpdateQuality(dual,PolygonalAlgorithm::QTemplate); + minmax_dual=tri::Stat::ComputePerFaceQualityMinMax(dual); + Avg_dual=tri::Stat::ComputePerFaceQualityAvg(dual); + + vcg::PolygonalAlgorithm::UpdateQuality(dual_opt,PolygonalAlgorithm::QTemplate); + minmax_dual_opt=tri::Stat::ComputePerFaceQualityMinMax(dual_opt); + Avg_dual_opt=tri::Stat::ComputePerFaceQualityAvg(dual_opt); + + vcg::PolygonalAlgorithm::UpdateQuality(dual_flat,PolygonalAlgorithm::QTemplate); + minmax_dual_flat=tri::Stat::ComputePerFaceQualityMinMax(dual_flat); + Avg_dual_flat=tri::Stat::ComputePerFaceQualityAvg(dual_flat); + + std::cout<::UpdateQuality(dual,PolygonalAlgorithm::QPlanar); + minmax_dual=tri::Stat::ComputePerFaceQualityMinMax(dual); + Avg_dual=tri::Stat::ComputePerFaceQualityAvg(dual); + + vcg::PolygonalAlgorithm::UpdateQuality(dual_opt,PolygonalAlgorithm::QPlanar); + minmax_dual_opt=tri::Stat::ComputePerFaceQualityMinMax(dual_opt); + Avg_dual_opt=tri::Stat::ComputePerFaceQualityAvg(dual_opt); + + vcg::PolygonalAlgorithm::UpdateQuality(dual_flat,PolygonalAlgorithm::QPlanar); + minmax_dual_flat=tri::Stat::ComputePerFaceQualityMinMax(dual_flat); + Avg_dual_flat=tri::Stat::ComputePerFaceQualityAvg(dual_flat); + + std::cout<<"Flatness Quality No Optimized min / max " < Date: Wed, 25 Jan 2017 17:26:57 +0100 Subject: [PATCH 019/553] moved VertexBorderCorner function in updating flags --- vcg/complex/algorithms/point_sampling.h | 44 ++++++++++++++----------- vcg/complex/algorithms/update/flag.h | 30 +++++++++++++++++ 2 files changed, 55 insertions(+), 19 deletions(-) diff --git a/vcg/complex/algorithms/point_sampling.h b/vcg/complex/algorithms/point_sampling.h index f7275dfc9..522a693b6 100644 --- a/vcg/complex/algorithms/point_sampling.h +++ b/vcg/complex/algorithms/point_sampling.h @@ -848,27 +848,33 @@ static void EdgeMeshUniform(MeshType &m, VertexSampler &ps, float radius, bool c /// static void VertexBorderCorner(MeshType & m, VertexSampler &ps, float angleRad) { - typename MeshType::template PerVertexAttributeHandle angleSumH = tri::Allocator:: template GetPerVertexAttribute (m); - - for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) - angleSumH[vi]=0; - - for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) - { - for(int i=0;i<3;++i) +// typename MeshType::template PerVertexAttributeHandle angleSumH = tri::Allocator:: template GetPerVertexAttribute (m); + +// for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) +// angleSumH[vi]=0; + +// for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) +// { +// for(int i=0;i<3;++i) +// { +// angleSumH[fi->V(i)] += vcg::Angle(fi->P2(i) - fi->P0(i),fi->P1(i) - fi->P0(i)); +// } +// } + +// for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) +// { +// if((angleSumH[vi]IsB())|| +// (angleSumH[vi]>(360-angleRad) && vi->IsB())) +// ps.AddVert(*vi); +// } + +// tri::Allocator:: template DeletePerVertexAttribute (m,angleSumH); + vcg::tri::UpdateFlags::FaceClearS(m); + vcg::tri::UpdateFlags::SelectVertexCornerBorder(m,angleRad); + for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) { - angleSumH[fi->V(i)] += vcg::Angle(fi->P2(i) - fi->P0(i),fi->P1(i) - fi->P0(i)); + if(vi->IsS())ps.AddVert(*vi); } - } - - for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) - { - if((angleSumH[vi]IsB())|| - (angleSumH[vi]>(360-angleRad) && vi->IsB())) - ps.AddVert(*vi); - } - - tri::Allocator:: template DeletePerVertexAttribute (m,angleSumH); } /// \brief Sample all the border vertices diff --git a/vcg/complex/algorithms/update/flag.h b/vcg/complex/algorithms/update/flag.h index 4640577b0..817ba6629 100644 --- a/vcg/complex/algorithms/update/flag.h +++ b/vcg/complex/algorithms/update/flag.h @@ -443,6 +443,36 @@ class UpdateFlags FaceFauxSignedCrease(m,-AngleRad,AngleRad); } + /// \brief Select the border vertices that form a corner along the boder + /// with an angle that is below a certain threshold + static void SelectVertexCornerBorder(MeshType &m,typename MeshType::ScalarType &angleRad) + { + typedef typename MeshType::ScalarType ScalarType; + + //get corner vertices + typename MeshType::template PerVertexAttributeHandle angleSumH = tri::Allocator:: template GetPerVertexAttribute (m); + + for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) + angleSumH[vi]=0; + + for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) + { + for(int i=0;i<(*fi).VN();++i) + { + typename MeshType::CoordType P0=fi->P(i); + typename MeshType::CoordType P1=fi->P((i+1)%(*fi).VN()); + typename MeshType::CoordType P2=fi->P((i+2)%(*fi).VN()); + angleSumH[fi->V(i)] += vcg::Angle(P2 - P0,P1 - P0); + } + } + + for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) + { + if(angleSumH[vi]IsB()) + (*vi).SetS(); + } + } + }; // end class } // End namespace tri From 555fd55b35613fec0b9906c86d3464137b364aee Mon Sep 17 00:00:00 2001 From: nico Date: Wed, 25 Jan 2017 17:27:25 +0100 Subject: [PATCH 020/553] added VertexValence function --- vcg/complex/algorithms/update/quality.h | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) diff --git a/vcg/complex/algorithms/update/quality.h b/vcg/complex/algorithms/update/quality.h index ba7a6afc2..504c0089c 100644 --- a/vcg/complex/algorithms/update/quality.h +++ b/vcg/complex/algorithms/update/quality.h @@ -56,6 +56,7 @@ class UpdateQuality typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; + /** Assign to each vertex of the mesh a constant quality value. Useful for initialization. */ static void VertexConstant(MeshType &m, ScalarType q) @@ -65,6 +66,23 @@ static void VertexConstant(MeshType &m, ScalarType q) (*vi).Q()=q; } +/** Assign to each vertex of the mesh the valence of faces. +*/ +static void VertexValence(UpdateMeshType &m) +{ + VertexConstant(m,0); + for (size_t i=0;iQ()+=1; + } + } +} + /** Clamp each vertex of the mesh with a range of values. */ static void VertexClamp(MeshType &m, From 8eda1c1d2fce115460747c9c9e637af0a6e6f1c1 Mon Sep 17 00:00:00 2001 From: nico Date: Wed, 25 Jan 2017 17:27:46 +0100 Subject: [PATCH 021/553] added ComputePerFaceQualityAvg function --- vcg/complex/algorithms/stat.h | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) diff --git a/vcg/complex/algorithms/stat.h b/vcg/complex/algorithms/stat.h index 7131fc5ec..60a5689ba 100644 --- a/vcg/complex/algorithms/stat.h +++ b/vcg/complex/algorithms/stat.h @@ -100,6 +100,22 @@ class Stat return minmax; } + static ScalarType ComputePerFaceQualityAvg( MeshType & m) + { + tri::RequirePerFaceQuality(m); + ScalarType AvgQ = 0; + + FaceIterator fi; + size_t num=0; + for(fi = m.face.begin(); fi != m.face.end(); ++fi) + { + if((*fi).IsD())continue; + AvgQ+= (*fi).Q(); + num++; + } + return (AvgQ/(ScalarType)num); + } + static std::pair ComputePerEdgeQualityMinMax( MeshType & m) { tri::RequirePerEdgeQuality(m); From 424b74bfcdb2e4c0a9fa9ff56424e8b2db5ea443 Mon Sep 17 00:00:00 2001 From: gianpaolopalma Date: Wed, 25 Jan 2017 20:02:43 +0100 Subject: [PATCH 022/553] Bug fixed in the xyYtoXYZ and XYZtoxyY functions --- vcg/space/colorspace.h | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/vcg/space/colorspace.h b/vcg/space/colorspace.h index 956fe5060..7e774e2a3 100644 --- a/vcg/space/colorspace.h +++ b/vcg/space/colorspace.h @@ -1900,9 +1900,9 @@ class ColorSpace // CIE xyY --> CIE XYZ static void xyYtoXYZ(double x, double y, double _Y, double &X, double &Y, double &Z) { - X = x * (Y / y); + X = x * (_Y / y); Y = _Y; - Z = (1.0 - x - y) * (Y / y); + Z = (1.0 - x - y) * (_Y / y); } static Color4 XYZtoxyY(const Color4 & color) @@ -1916,11 +1916,11 @@ class ColorSpace } // CIE XYZ --> CIE xyY - static void XYZtoxyY(double X, double _Y, double Z, double &x, double &y, double &Y) + static void XYZtoxyY(double X, double Y, double Z, double &x, double &y, double &_Y) { x = X / (X + Y + Z); y = Y / (X + Y + Z); - Y = _Y; + _Y = Y; } // XYZ (Illuminant src) --> XYZ (Illuminant dest) - [ILLUMINANT CHANGE] From f82d3e63fe509b939a96af90758dac7acbe8dfc0 Mon Sep 17 00:00:00 2001 From: Paolo Cignoni Date: Wed, 25 Jan 2017 20:03:12 +0100 Subject: [PATCH 023/553] Cleaned up .gitignore --- .gitignore | 26 ++++---------------------- 1 file changed, 4 insertions(+), 22 deletions(-) diff --git a/.gitignore b/.gitignore index a624d444f..5e7adf177 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,7 @@ +# Please do not add here all kind of intermediate files just by extension. +# Try whenever possible to match folder and to try to use +# building rules that put all the generated files into separate folders + # QTCreator user prefs *.user @@ -10,26 +14,4 @@ release/ # Intermediate Files *.bc -apps/sample/polygonmesh_dual/polygonmesh_base - -*.stash - -apps/sample/polygonmesh_dual/dual_dual.obj - -apps/sample/polygonmesh_dual/dual.obj - -apps/sample/polygonmesh_dual/Makefile - -apps/sample/polygonmesh_dual/plylib.o - -*.o - -*.ply - -*.obj - -apps/sample/polygonmesh_optimize/polygonmesh_base - -apps/sample/polygonmesh_optimize/Makefile -vcg/complex/algorithms/polygonal_algorithmsOLD.h From 3a6c2879cd0e02ffa1edc955391e8005564e9df3 Mon Sep 17 00:00:00 2001 From: Paolo Cignoni Date: Wed, 25 Jan 2017 20:05:31 +0100 Subject: [PATCH 024/553] Updated EigenLib to the latest stable version 3.3.2 --- eigenlib/Eigen/Array | 11 - eigenlib/Eigen/CMakeLists.txt | 2 +- eigenlib/Eigen/Cholesky | 17 +- eigenlib/Eigen/CholmodSupport | 13 +- eigenlib/Eigen/Core | 286 +- eigenlib/Eigen/Eigen | 2 +- eigenlib/Eigen/Eigen2Support | 95 - eigenlib/Eigen/Eigenvalues | 15 +- eigenlib/Eigen/Geometry | 61 +- eigenlib/Eigen/Householder | 7 + eigenlib/Eigen/IterativeLinearSolvers | 24 +- eigenlib/Eigen/Jacobi | 7 + eigenlib/Eigen/LU | 21 +- eigenlib/Eigen/LeastSquares | 32 - eigenlib/Eigen/MetisSupport | 7 + eigenlib/Eigen/OrderingMethods | 7 + eigenlib/Eigen/PaStiXSupport | 12 +- eigenlib/Eigen/PardisoSupport | 9 +- eigenlib/Eigen/QR | 26 +- eigenlib/Eigen/QtAlignedMalloc | 6 + eigenlib/Eigen/SPQRSupport | 11 +- eigenlib/Eigen/SVD | 26 +- eigenlib/Eigen/Sparse | 13 +- eigenlib/Eigen/SparseCholesky | 2 - eigenlib/Eigen/SparseCore | 35 +- eigenlib/Eigen/SparseLU | 3 - eigenlib/Eigen/SparseQR | 10 +- eigenlib/Eigen/StdDeque | 2 +- eigenlib/Eigen/StdList | 2 +- eigenlib/Eigen/StdVector | 2 +- eigenlib/Eigen/SuperLUSupport | 13 +- eigenlib/Eigen/UmfPackSupport | 12 +- eigenlib/Eigen/src/CMakeLists.txt | 7 - eigenlib/Eigen/src/Cholesky/CMakeLists.txt | 6 - eigenlib/Eigen/src/Cholesky/LDLT.h | 270 +- eigenlib/Eigen/src/Cholesky/LLT.h | 170 +- .../src/Cholesky/{LLT_MKL.h => LLT_LAPACKE.h} | 45 +- .../Eigen/src/CholmodSupport/CMakeLists.txt | 6 - .../Eigen/src/CholmodSupport/CholmodSupport.h | 284 +- eigenlib/Eigen/src/Core/Array.h | 151 +- eigenlib/Eigen/src/Core/ArrayBase.h | 72 +- eigenlib/Eigen/src/Core/ArrayWrapper.h | 145 +- eigenlib/Eigen/src/Core/Assign.h | 540 +- eigenlib/Eigen/src/Core/AssignEvaluator.h | 918 + eigenlib/Eigen/src/Core/Assign_MKL.h | 256 +- eigenlib/Eigen/src/Core/BandMatrix.h | 61 +- eigenlib/Eigen/src/Core/Block.h | 254 +- eigenlib/Eigen/src/Core/BooleanRedux.h | 42 +- eigenlib/Eigen/src/Core/CMakeLists.txt | 10 - eigenlib/Eigen/src/Core/CommaInitializer.h | 40 +- eigenlib/Eigen/src/Core/ConditionEstimator.h | 175 + eigenlib/Eigen/src/Core/CoreEvaluators.h | 1673 ++ eigenlib/Eigen/src/Core/CoreIterators.h | 140 +- eigenlib/Eigen/src/Core/CwiseBinaryOp.h | 165 +- eigenlib/Eigen/src/Core/CwiseNullaryOp.h | 252 +- eigenlib/Eigen/src/Core/CwiseTernaryOp.h | 197 + eigenlib/Eigen/src/Core/CwiseUnaryOp.h | 111 +- eigenlib/Eigen/src/Core/CwiseUnaryView.h | 81 +- eigenlib/Eigen/src/Core/DenseBase.h | 378 +- eigenlib/Eigen/src/Core/DenseCoeffsBase.h | 279 +- eigenlib/Eigen/src/Core/DenseStorage.h | 456 +- eigenlib/Eigen/src/Core/Diagonal.h | 64 +- eigenlib/Eigen/src/Core/DiagonalMatrix.h | 140 +- eigenlib/Eigen/src/Core/DiagonalProduct.h | 106 +- eigenlib/Eigen/src/Core/Dot.h | 160 +- eigenlib/Eigen/src/Core/EigenBase.h | 48 +- eigenlib/Eigen/src/Core/Flagged.h | 140 - eigenlib/Eigen/src/Core/ForceAlignedAccess.h | 24 +- eigenlib/Eigen/src/Core/Functors.h | 1026 - eigenlib/Eigen/src/Core/Fuzzy.h | 13 +- eigenlib/Eigen/src/Core/GeneralProduct.h | 513 +- eigenlib/Eigen/src/Core/GenericPacketMath.h | 349 +- eigenlib/Eigen/src/Core/GlobalFunctions.h | 161 +- eigenlib/Eigen/src/Core/IO.h | 35 +- eigenlib/Eigen/src/Core/Inverse.h | 118 + eigenlib/Eigen/src/Core/Map.h | 110 +- eigenlib/Eigen/src/Core/MapBase.h | 104 +- eigenlib/Eigen/src/Core/MathFunctions.h | 864 +- eigenlib/Eigen/src/Core/MathFunctionsImpl.h | 78 + eigenlib/Eigen/src/Core/Matrix.h | 248 +- eigenlib/Eigen/src/Core/MatrixBase.h | 322 +- eigenlib/Eigen/src/Core/NestByValue.h | 35 +- eigenlib/Eigen/src/Core/NoAlias.h | 62 +- eigenlib/Eigen/src/Core/NumTraits.h | 136 +- eigenlib/Eigen/src/Core/PermutationMatrix.h | 364 +- eigenlib/Eigen/src/Core/PlainObjectBase.h | 425 +- eigenlib/Eigen/src/Core/Product.h | 186 + eigenlib/Eigen/src/Core/ProductBase.h | 290 - eigenlib/Eigen/src/Core/ProductEvaluators.h | 1099 ++ eigenlib/Eigen/src/Core/Random.h | 58 +- eigenlib/Eigen/src/Core/Redux.h | 215 +- eigenlib/Eigen/src/Core/Ref.h | 202 +- eigenlib/Eigen/src/Core/Replicate.h | 95 +- eigenlib/Eigen/src/Core/ReturnByValue.h | 50 +- eigenlib/Eigen/src/Core/Reverse.h | 209 +- eigenlib/Eigen/src/Core/Select.h | 22 +- eigenlib/Eigen/src/Core/SelfAdjointView.h | 292 +- eigenlib/Eigen/src/Core/SelfCwiseBinaryOp.h | 178 +- eigenlib/Eigen/src/Core/Solve.h | 188 + eigenlib/Eigen/src/Core/SolveTriangular.h | 76 +- eigenlib/Eigen/src/Core/SolverBase.h | 130 + eigenlib/Eigen/src/Core/StableNorm.h | 53 +- eigenlib/Eigen/src/Core/Stride.h | 25 +- eigenlib/Eigen/src/Core/Swap.h | 149 +- eigenlib/Eigen/src/Core/Transpose.h | 184 +- eigenlib/Eigen/src/Core/Transpositions.h | 245 +- eigenlib/Eigen/src/Core/TriangularMatrix.h | 1102 +- eigenlib/Eigen/src/Core/VectorBlock.h | 27 +- eigenlib/Eigen/src/Core/VectorwiseOp.h | 339 +- eigenlib/Eigen/src/Core/Visitor.h | 74 +- eigenlib/Eigen/src/Core/arch/AVX/Complex.h | 483 + .../Eigen/src/Core/arch/AVX/MathFunctions.h | 439 + eigenlib/Eigen/src/Core/arch/AVX/PacketMath.h | 633 + .../Eigen/src/Core/arch/AVX/TypeCasting.h | 51 + .../src/Core/arch/AVX512/MathFunctions.h | 396 + .../Eigen/src/Core/arch/AVX512/PacketMath.h | 1316 ++ .../src/Core/arch/AltiVec/CMakeLists.txt | 6 - .../Eigen/src/Core/arch/AltiVec/Complex.h | 352 +- .../src/Core/arch/AltiVec/MathFunctions.h | 322 + .../Eigen/src/Core/arch/AltiVec/PacketMath.h | 796 +- eigenlib/Eigen/src/Core/arch/CMakeLists.txt | 4 - eigenlib/Eigen/src/Core/arch/CUDA/Complex.h | 103 + eigenlib/Eigen/src/Core/arch/CUDA/Half.h | 585 + .../Eigen/src/Core/arch/CUDA/MathFunctions.h | 91 + .../Eigen/src/Core/arch/CUDA/PacketMath.h | 333 + .../Eigen/src/Core/arch/CUDA/PacketMathHalf.h | 1123 ++ .../Eigen/src/Core/arch/CUDA/TypeCasting.h | 212 + .../src/Core/arch/Default/CMakeLists.txt | 6 - .../Eigen/src/Core/arch/NEON/CMakeLists.txt | 6 - eigenlib/Eigen/src/Core/arch/NEON/Complex.h | 251 +- .../Eigen/src/Core/arch/NEON/MathFunctions.h | 91 + .../Eigen/src/Core/arch/NEON/PacketMath.h | 363 +- .../Eigen/src/Core/arch/SSE/CMakeLists.txt | 6 - eigenlib/Eigen/src/Core/arch/SSE/Complex.h | 99 +- .../Eigen/src/Core/arch/SSE/MathFunctions.h | 121 +- eigenlib/Eigen/src/Core/arch/SSE/PacketMath.h | 460 +- .../Eigen/src/Core/arch/SSE/TypeCasting.h | 77 + .../Eigen/src/Core/arch/ZVector/Complex.h | 394 + .../src/Core/arch/ZVector/MathFunctions.h | 137 + .../Eigen/src/Core/arch/ZVector/PacketMath.h | 945 + .../src/Core/functors/AssignmentFunctors.h | 168 + .../Eigen/src/Core/functors/BinaryFunctors.h | 482 + .../Eigen/src/Core/functors/NullaryFunctors.h | 189 + .../Eigen/src/Core/functors/StlFunctors.h | 132 + .../src/Core/functors/TernaryFunctors.h} | 21 +- .../Eigen/src/Core/functors/UnaryFunctors.h | 792 + .../Eigen/src/Core/products/CMakeLists.txt | 6 - .../src/Core/products/CoeffBasedProduct.h | 476 - .../Core/products/GeneralBlockPanelKernel.h | 2244 ++- .../src/Core/products/GeneralMatrixMatrix.h | 359 +- .../products/GeneralMatrixMatrixTriangular.h | 136 +- ...h => GeneralMatrixMatrixTriangular_BLAS.h} | 65 +- ...atrix_MKL.h => GeneralMatrixMatrix_BLAS.h} | 47 +- .../src/Core/products/GeneralMatrixVector.h | 305 +- ...ector_MKL.h => GeneralMatrixVector_BLAS.h} | 68 +- .../Eigen/src/Core/products/Parallelizer.h | 68 +- .../Core/products/SelfadjointMatrixMatrix.h | 335 +- ...x_MKL.h => SelfadjointMatrixMatrix_BLAS.h} | 136 +- .../Core/products/SelfadjointMatrixVector.h | 115 +- ...r_MKL.h => SelfadjointMatrixVector_BLAS.h} | 49 +- .../src/Core/products/SelfadjointProduct.h | 26 +- .../Core/products/SelfadjointRank2Update.h | 8 +- .../Core/products/TriangularMatrixMatrix.h | 134 +- ...ix_MKL.h => TriangularMatrixMatrix_BLAS.h} | 111 +- .../Core/products/TriangularMatrixVector.h | 182 +- ...or_MKL.h => TriangularMatrixVector_BLAS.h} | 96 +- .../Core/products/TriangularSolverMatrix.h | 82 +- ...ix_MKL.h => TriangularSolverMatrix_BLAS.h} | 56 +- .../Core/products/TriangularSolverVector.h | 24 +- eigenlib/Eigen/src/Core/util/BlasUtil.h | 204 +- eigenlib/Eigen/src/Core/util/CMakeLists.txt | 6 - eigenlib/Eigen/src/Core/util/Constants.h | 174 +- .../src/Core/util/DisableStupidWarnings.h | 39 +- .../Eigen/src/Core/util/ForwardDeclarations.h | 131 +- eigenlib/Eigen/src/Core/util/MKL_support.h | 78 +- eigenlib/Eigen/src/Core/util/Macros.h | 793 +- eigenlib/Eigen/src/Core/util/Memory.h | 538 +- eigenlib/Eigen/src/Core/util/Meta.h | 351 +- .../src/Core/util/ReenableStupidWarnings.h | 13 + eigenlib/Eigen/src/Core/util/StaticAssert.h | 40 +- eigenlib/Eigen/src/Core/util/XprHelper.h | 580 +- eigenlib/Eigen/src/Eigen2Support/Block.h | 126 - .../Eigen/src/Eigen2Support/CMakeLists.txt | 8 - eigenlib/Eigen/src/Eigen2Support/Cwise.h | 192 - .../Eigen/src/Eigen2Support/CwiseOperators.h | 298 - .../src/Eigen2Support/Geometry/AlignedBox.h | 159 - .../Eigen/src/Eigen2Support/Geometry/All.h | 115 - .../src/Eigen2Support/Geometry/AngleAxis.h | 214 - .../src/Eigen2Support/Geometry/CMakeLists.txt | 6 - .../src/Eigen2Support/Geometry/Hyperplane.h | 254 - .../Eigen2Support/Geometry/ParametrizedLine.h | 141 - .../src/Eigen2Support/Geometry/Quaternion.h | 495 - .../src/Eigen2Support/Geometry/Rotation2D.h | 145 - .../src/Eigen2Support/Geometry/RotationBase.h | 123 - .../src/Eigen2Support/Geometry/Scaling.h | 167 - .../src/Eigen2Support/Geometry/Transform.h | 786 - .../src/Eigen2Support/Geometry/Translation.h | 184 - eigenlib/Eigen/src/Eigen2Support/LU.h | 120 - eigenlib/Eigen/src/Eigen2Support/Lazy.h | 71 - .../Eigen/src/Eigen2Support/LeastSquares.h | 169 - eigenlib/Eigen/src/Eigen2Support/Macros.h | 20 - .../Eigen/src/Eigen2Support/MathFunctions.h | 57 - eigenlib/Eigen/src/Eigen2Support/Memory.h | 45 - eigenlib/Eigen/src/Eigen2Support/Meta.h | 75 - eigenlib/Eigen/src/Eigen2Support/Minor.h | 117 - eigenlib/Eigen/src/Eigen2Support/QR.h | 67 - eigenlib/Eigen/src/Eigen2Support/SVD.h | 637 - .../src/Eigen2Support/TriangularSolver.h | 42 - .../Eigen/src/Eigen2Support/VectorBlock.h | 94 - eigenlib/Eigen/src/Eigenvalues/CMakeLists.txt | 6 - .../src/Eigenvalues/ComplexEigenSolver.h | 19 +- eigenlib/Eigen/src/Eigenvalues/ComplexSchur.h | 19 +- ...plexSchur_MKL.h => ComplexSchur_LAPACKE.h} | 41 +- eigenlib/Eigen/src/Eigenvalues/EigenSolver.h | 113 +- .../src/Eigenvalues/GeneralizedEigenSolver.h | 197 +- .../GeneralizedSelfAdjointEigenSolver.h | 3 +- .../src/Eigenvalues/HessenbergDecomposition.h | 15 +- eigenlib/Eigen/src/Eigenvalues/RealQZ.h | 46 +- eigenlib/Eigen/src/Eigenvalues/RealSchur.h | 29 +- .../{RealSchur_MKL.h => RealSchur_LAPACKE.h} | 42 +- .../src/Eigenvalues/SelfAdjointEigenSolver.h | 279 +- ...MKL.h => SelfAdjointEigenSolver_LAPACKE.h} | 42 +- .../src/Eigenvalues/Tridiagonalization.h | 39 +- eigenlib/Eigen/src/Geometry/AlignedBox.h | 98 +- eigenlib/Eigen/src/Geometry/AngleAxis.h | 92 +- eigenlib/Eigen/src/Geometry/CMakeLists.txt | 8 - eigenlib/Eigen/src/Geometry/EulerAngles.h | 22 +- eigenlib/Eigen/src/Geometry/Homogeneous.h | 290 +- eigenlib/Eigen/src/Geometry/Hyperplane.h | 64 +- eigenlib/Eigen/src/Geometry/OrthoMethods.h | 58 +- .../Eigen/src/Geometry/ParametrizedLine.h | 60 +- eigenlib/Eigen/src/Geometry/Quaternion.h | 225 +- eigenlib/Eigen/src/Geometry/Rotation2D.h | 85 +- eigenlib/Eigen/src/Geometry/RotationBase.h | 48 +- eigenlib/Eigen/src/Geometry/Scaling.h | 38 +- eigenlib/Eigen/src/Geometry/Transform.h | 309 +- eigenlib/Eigen/src/Geometry/Translation.h | 60 +- eigenlib/Eigen/src/Geometry/Umeyama.h | 19 +- .../Eigen/src/Geometry/arch/CMakeLists.txt | 6 - .../Eigen/src/Geometry/arch/Geometry_SSE.h | 56 +- .../Eigen/src/Householder/BlockHouseholder.h | 74 +- eigenlib/Eigen/src/Householder/CMakeLists.txt | 6 - eigenlib/Eigen/src/Householder/Householder.h | 7 +- .../src/Householder/HouseholderSequence.h | 55 +- .../BasicPreconditioners.h | 118 +- .../src/IterativeLinearSolvers/BiCGSTAB.h | 100 +- .../src/IterativeLinearSolvers/CMakeLists.txt | 6 - .../ConjugateGradient.h | 142 +- .../IncompleteCholesky.h | 400 + .../IterativeLinearSolvers/IncompleteLUT.h | 153 +- .../IterativeSolverBase.h | 312 +- .../LeastSquareConjugateGradient.h | 216 + .../IterativeLinearSolvers/SolveWithGuess.h | 115 + eigenlib/Eigen/src/Jacobi/CMakeLists.txt | 6 - eigenlib/Eigen/src/Jacobi/Jacobi.h | 34 +- eigenlib/Eigen/src/LU/CMakeLists.txt | 8 - eigenlib/Eigen/src/LU/Determinant.h | 2 +- eigenlib/Eigen/src/LU/FullPivLU.h | 314 +- .../Eigen/src/LU/{Inverse.h => InverseImpl.h} | 79 +- eigenlib/Eigen/src/LU/PartialPivLU.h | 252 +- ...tialPivLU_MKL.h => PartialPivLU_LAPACKE.h} | 26 +- eigenlib/Eigen/src/LU/arch/CMakeLists.txt | 6 - eigenlib/Eigen/src/LU/arch/Inverse_SSE.h | 47 +- .../Eigen/src/MetisSupport/CMakeLists.txt | 6 - .../Eigen/src/MetisSupport/MetisSupport.h | 18 +- eigenlib/Eigen/src/OrderingMethods/Amd.h | 90 +- .../Eigen/src/OrderingMethods/CMakeLists.txt | 6 - .../Eigen/src/OrderingMethods/Eigen_Colamd.h | 421 +- eigenlib/Eigen/src/OrderingMethods/Ordering.h | 51 +- .../Eigen/src/PaStiXSupport/CMakeLists.txt | 6 - .../Eigen/src/PaStiXSupport/PaStiXSupport.h | 155 +- .../Eigen/src/PardisoSupport/CMakeLists.txt | 6 - .../Eigen/src/PardisoSupport/PardisoSupport.h | 249 +- eigenlib/Eigen/src/QR/CMakeLists.txt | 6 - eigenlib/Eigen/src/QR/ColPivHouseholderQR.h | 281 +- ...QR_MKL.h => ColPivHouseholderQR_LAPACKE.h} | 48 +- .../src/QR/CompleteOrthogonalDecomposition.h | 562 + eigenlib/Eigen/src/QR/FullPivHouseholderQR.h | 192 +- eigenlib/Eigen/src/QR/HouseholderQR.h | 119 +- ...holderQR_MKL.h => HouseholderQR_LAPACKE.h} | 29 +- eigenlib/Eigen/src/SPQRSupport/CMakeLists.txt | 6 - .../src/SPQRSupport/SuiteSparseQRSupport.h | 123 +- eigenlib/Eigen/src/SVD/BDCSVD.h | 1230 ++ eigenlib/Eigen/src/SVD/CMakeLists.txt | 6 - eigenlib/Eigen/src/SVD/JacobiSVD.h | 380 +- .../{JacobiSVD_MKL.h => JacobiSVD_LAPACKE.h} | 52 +- .../{unsupported => }/Eigen/src/SVD/SVDBase.h | 199 +- .../Eigen/src/SVD/UpperBidiagonalization.h | 326 +- .../Eigen/src/SparseCholesky/CMakeLists.txt | 6 - .../src/SparseCholesky/SimplicialCholesky.h | 272 +- .../SparseCholesky/SimplicialCholesky_impl.h | 34 +- eigenlib/Eigen/src/SparseCore/AmbiVector.h | 94 +- eigenlib/Eigen/src/SparseCore/CMakeLists.txt | 6 - .../Eigen/src/SparseCore/CompressedStorage.h | 139 +- .../ConservativeSparseSparseProduct.h | 216 +- .../Eigen/src/SparseCore/MappedSparseMatrix.h | 164 +- eigenlib/Eigen/src/SparseCore/SparseAssign.h | 219 + eigenlib/Eigen/src/SparseCore/SparseBlock.h | 678 +- .../Eigen/src/SparseCore/SparseColEtree.h | 44 +- .../src/SparseCore/SparseCompressedBase.h | 325 + .../src/SparseCore/SparseCwiseBinaryOp.h | 665 +- .../Eigen/src/SparseCore/SparseCwiseUnaryOp.h | 155 +- .../Eigen/src/SparseCore/SparseDenseProduct.h | 417 +- .../src/SparseCore/SparseDiagonalProduct.h | 224 +- eigenlib/Eigen/src/SparseCore/SparseDot.h | 17 +- eigenlib/Eigen/src/SparseCore/SparseFuzzy.h | 29 +- eigenlib/Eigen/src/SparseCore/SparseMap.h | 305 + eigenlib/Eigen/src/SparseCore/SparseMatrix.h | 638 +- .../Eigen/src/SparseCore/SparseMatrixBase.h | 285 +- .../Eigen/src/SparseCore/SparsePermutation.h | 170 +- eigenlib/Eigen/src/SparseCore/SparseProduct.h | 291 +- eigenlib/Eigen/src/SparseCore/SparseRedux.h | 12 +- eigenlib/Eigen/src/SparseCore/SparseRef.h | 397 + .../src/SparseCore/SparseSelfAdjointView.h | 556 +- .../Eigen/src/SparseCore/SparseSolverBase.h | 124 + .../SparseSparseProductWithPruning.h | 86 +- .../Eigen/src/SparseCore/SparseTranspose.h | 99 +- .../src/SparseCore/SparseTriangularView.h | 252 +- eigenlib/Eigen/src/SparseCore/SparseUtil.h | 107 +- eigenlib/Eigen/src/SparseCore/SparseVector.h | 213 +- eigenlib/Eigen/src/SparseCore/SparseView.h | 236 +- .../Eigen/src/SparseCore/TriangularSolver.h | 117 +- eigenlib/Eigen/src/SparseLU/CMakeLists.txt | 6 - eigenlib/Eigen/src/SparseLU/SparseLU.h | 223 +- eigenlib/Eigen/src/SparseLU/SparseLUImpl.h | 12 +- eigenlib/Eigen/src/SparseLU/SparseLU_Memory.h | 19 +- .../Eigen/src/SparseLU/SparseLU_Structs.h | 3 +- .../src/SparseLU/SparseLU_SupernodalMatrix.h | 73 +- eigenlib/Eigen/src/SparseLU/SparseLU_Utils.h | 10 +- .../Eigen/src/SparseLU/SparseLU_column_bmod.h | 11 +- .../Eigen/src/SparseLU/SparseLU_column_dfs.h | 38 +- .../src/SparseLU/SparseLU_copy_to_ucol.h | 7 +- .../Eigen/src/SparseLU/SparseLU_gemm_kernel.h | 93 +- .../src/SparseLU/SparseLU_heap_relax_snode.h | 21 +- .../Eigen/src/SparseLU/SparseLU_kernel_bmod.h | 56 +- .../Eigen/src/SparseLU/SparseLU_panel_bmod.h | 14 +- .../Eigen/src/SparseLU/SparseLU_panel_dfs.h | 44 +- eigenlib/Eigen/src/SparseLU/SparseLU_pivotL.h | 19 +- eigenlib/Eigen/src/SparseLU/SparseLU_pruneL.h | 7 +- .../Eigen/src/SparseLU/SparseLU_relax_snode.h | 12 +- eigenlib/Eigen/src/SparseQR/CMakeLists.txt | 6 - eigenlib/Eigen/src/SparseQR/SparseQR.h | 187 +- eigenlib/Eigen/src/StlSupport/CMakeLists.txt | 6 - eigenlib/Eigen/src/StlSupport/StdDeque.h | 20 +- eigenlib/Eigen/src/StlSupport/StdList.h | 22 +- eigenlib/Eigen/src/StlSupport/StdVector.h | 5 + eigenlib/Eigen/src/StlSupport/details.h | 2 +- .../Eigen/src/SuperLUSupport/CMakeLists.txt | 6 - .../Eigen/src/SuperLUSupport/SuperLUSupport.h | 209 +- .../Eigen/src/UmfPackSupport/CMakeLists.txt | 6 - .../Eigen/src/UmfPackSupport/UmfPackSupport.h | 251 +- eigenlib/Eigen/src/misc/CMakeLists.txt | 6 - eigenlib/Eigen/src/misc/Image.h | 2 - eigenlib/Eigen/src/misc/Kernel.h | 4 +- eigenlib/Eigen/src/misc/RealSvd2x2.h | 55 + eigenlib/Eigen/src/misc/Solve.h | 76 - eigenlib/Eigen/src/misc/SparseSolve.h | 128 - eigenlib/Eigen/src/misc/blas.h | 418 +- eigenlib/Eigen/src/misc/lapack.h | 152 + eigenlib/Eigen/src/misc/lapacke.h | 16291 ++++++++++++++++ eigenlib/Eigen/src/misc/lapacke_mangling.h | 17 + .../Eigen/src/plugins/ArrayCwiseBinaryOps.h | 203 +- .../Eigen/src/plugins/ArrayCwiseUnaryOps.h | 467 +- eigenlib/Eigen/src/plugins/BlockMethods.h | 1269 +- eigenlib/Eigen/src/plugins/CMakeLists.txt | 6 - .../Eigen/src/plugins/CommonCwiseBinaryOps.h | 75 +- .../Eigen/src/plugins/CommonCwiseUnaryOps.h | 205 +- .../Eigen/src/plugins/MatrixCwiseBinaryOps.h | 29 +- .../Eigen/src/plugins/MatrixCwiseUnaryOps.h | 115 +- eigenlib/howto.txt | 6 +- eigenlib/unsupported/CMakeLists.txt | 7 - eigenlib/unsupported/Eigen/AdolcForward | 156 - eigenlib/unsupported/Eigen/AlignedVector3 | 190 - eigenlib/unsupported/Eigen/ArpackSupport | 31 - eigenlib/unsupported/Eigen/AutoDiff | 40 - eigenlib/unsupported/Eigen/BVH | 95 - eigenlib/unsupported/Eigen/CMakeLists.txt | 11 - eigenlib/unsupported/Eigen/FFT | 418 - eigenlib/unsupported/Eigen/IterativeSolvers | 45 - eigenlib/unsupported/Eigen/KroneckerProduct | 34 - eigenlib/unsupported/Eigen/LevenbergMarquardt | 45 - eigenlib/unsupported/Eigen/MPRealSupport | 203 - eigenlib/unsupported/Eigen/MatrixFunctions | 447 - .../unsupported/Eigen/NonLinearOptimization | 134 - eigenlib/unsupported/Eigen/NumericalDiff | 56 - eigenlib/unsupported/Eigen/OpenGLSupport | 322 - eigenlib/unsupported/Eigen/Polynomials | 138 - eigenlib/unsupported/Eigen/SVD | 39 - eigenlib/unsupported/Eigen/Skyline | 39 - eigenlib/unsupported/Eigen/SparseExtra | 56 - eigenlib/unsupported/Eigen/Splines | 31 - .../Eigen/src/AutoDiff/AutoDiffJacobian.h | 83 - .../Eigen/src/AutoDiff/AutoDiffScalar.h | 642 - .../Eigen/src/AutoDiff/AutoDiffVector.h | 220 - .../Eigen/src/AutoDiff/CMakeLists.txt | 6 - .../unsupported/Eigen/src/BVH/BVAlgorithms.h | 293 - .../unsupported/Eigen/src/BVH/CMakeLists.txt | 6 - eigenlib/unsupported/Eigen/src/BVH/KdBVH.h | 222 - eigenlib/unsupported/Eigen/src/CMakeLists.txt | 14 - .../ArpackSelfAdjointEigenSolver.h | 805 - .../unsupported/Eigen/src/FFT/CMakeLists.txt | 6 - .../unsupported/Eigen/src/FFT/ei_fftw_impl.h | 261 - .../Eigen/src/FFT/ei_kissfft_impl.h | 420 - .../Eigen/src/IterativeSolvers/CMakeLists.txt | 6 - .../IterativeSolvers/ConstrainedConjGrad.h | 189 - .../Eigen/src/IterativeSolvers/DGMRES.h | 542 - .../Eigen/src/IterativeSolvers/GMRES.h | 370 - .../src/IterativeSolvers/IncompleteCholesky.h | 278 - .../Eigen/src/IterativeSolvers/IncompleteLU.h | 113 - .../IterativeSolvers/IterationController.h | 154 - .../Eigen/src/IterativeSolvers/MINRES.h | 310 - .../Eigen/src/IterativeSolvers/Scaling.h | 185 - .../Eigen/src/KroneckerProduct/CMakeLists.txt | 6 - .../KroneckerProduct/KroneckerTensorProduct.h | 244 - .../src/LevenbergMarquardt/CMakeLists.txt | 6 - .../LevenbergMarquardt/CopyrightMINPACK.txt | 52 - .../Eigen/src/LevenbergMarquardt/LMcovar.h | 85 - .../Eigen/src/LevenbergMarquardt/LMonestep.h | 202 - .../Eigen/src/LevenbergMarquardt/LMpar.h | 160 - .../Eigen/src/LevenbergMarquardt/LMqrsolv.h | 189 - .../LevenbergMarquardt/LevenbergMarquardt.h | 377 - .../Eigen/src/MatrixFunctions/CMakeLists.txt | 6 - .../src/MatrixFunctions/MatrixExponential.h | 451 - .../src/MatrixFunctions/MatrixFunction.h | 591 - .../MatrixFunctions/MatrixFunctionAtomic.h | 131 - .../src/MatrixFunctions/MatrixLogarithm.h | 486 - .../Eigen/src/MatrixFunctions/MatrixPower.h | 508 - .../src/MatrixFunctions/MatrixSquareRoot.h | 466 - .../Eigen/src/MatrixFunctions/StemFunction.h | 105 - .../src/MoreVectorization/CMakeLists.txt | 6 - .../src/MoreVectorization/MathFunctions.h | 95 - .../src/NonLinearOptimization/CMakeLists.txt | 6 - .../HybridNonLinearSolver.h | 601 - .../LevenbergMarquardt.h | 650 - .../Eigen/src/NonLinearOptimization/chkder.h | 66 - .../Eigen/src/NonLinearOptimization/covar.h | 70 - .../Eigen/src/NonLinearOptimization/dogleg.h | 107 - .../Eigen/src/NonLinearOptimization/fdjac1.h | 79 - .../Eigen/src/NonLinearOptimization/lmpar.h | 298 - .../Eigen/src/NonLinearOptimization/qrsolv.h | 91 - .../Eigen/src/NonLinearOptimization/r1mpyq.h | 30 - .../Eigen/src/NonLinearOptimization/r1updt.h | 99 - .../Eigen/src/NonLinearOptimization/rwupdt.h | 49 - .../Eigen/src/NumericalDiff/CMakeLists.txt | 6 - .../Eigen/src/NumericalDiff/NumericalDiff.h | 130 - .../Eigen/src/Polynomials/CMakeLists.txt | 6 - .../Eigen/src/Polynomials/Companion.h | 276 - .../Eigen/src/Polynomials/PolynomialSolver.h | 389 - .../Eigen/src/Polynomials/PolynomialUtils.h | 143 - eigenlib/unsupported/Eigen/src/SVD/BDCSVD.h | 748 - .../unsupported/Eigen/src/SVD/CMakeLists.txt | 6 - .../unsupported/Eigen/src/SVD/JacobiSVD.h | 782 - .../unsupported/Eigen/src/SVD/TODOBdcsvd.txt | 29 - .../Eigen/src/SVD/doneInBDCSVD.txt | 21 - .../Eigen/src/Skyline/CMakeLists.txt | 6 - .../Eigen/src/Skyline/SkylineInplaceLU.h | 352 - .../Eigen/src/Skyline/SkylineMatrix.h | 862 - .../Eigen/src/Skyline/SkylineMatrixBase.h | 212 - .../Eigen/src/Skyline/SkylineProduct.h | 295 - .../Eigen/src/Skyline/SkylineStorage.h | 259 - .../Eigen/src/Skyline/SkylineUtil.h | 89 - .../SparseExtra/BlockOfDynamicSparseMatrix.h | 122 - .../Eigen/src/SparseExtra/CMakeLists.txt | 6 - .../src/SparseExtra/DynamicSparseMatrix.h | 357 - .../Eigen/src/SparseExtra/MarketIO.h | 273 - .../src/SparseExtra/MatrixMarketIterator.h | 232 - .../Eigen/src/SparseExtra/RandomSetter.h | 327 - .../Eigen/src/Splines/CMakeLists.txt | 6 - .../unsupported/Eigen/src/Splines/Spline.h | 474 - .../Eigen/src/Splines/SplineFitting.h | 156 - .../unsupported/Eigen/src/Splines/SplineFwd.h | 86 - eigenlib/unsupported/README.txt | 50 - eigenlib/unsupported/bench/bench_svd.cpp | 123 - eigenlib/unsupported/doc/CMakeLists.txt | 4 - eigenlib/unsupported/doc/Overview.dox | 25 - .../unsupported/doc/eigendoxy_layout.xml.in | 177 - .../unsupported/doc/examples/BVH_Example.cpp | 52 - .../unsupported/doc/examples/CMakeLists.txt | 20 - eigenlib/unsupported/doc/examples/FFT.cpp | 118 - .../doc/examples/MatrixExponential.cpp | 16 - .../doc/examples/MatrixFunction.cpp | 23 - .../doc/examples/MatrixLogarithm.cpp | 15 - .../unsupported/doc/examples/MatrixPower.cpp | 16 - .../doc/examples/MatrixPower_optimal.cpp | 17 - .../unsupported/doc/examples/MatrixSine.cpp | 20 - .../unsupported/doc/examples/MatrixSinh.cpp | 20 - .../doc/examples/MatrixSquareRoot.cpp | 16 - .../doc/examples/PolynomialSolver1.cpp | 53 - .../doc/examples/PolynomialUtils1.cpp | 20 - .../unsupported/doc/snippets/CMakeLists.txt | 26 - eigenlib/unsupported/test/BVH.cpp | 222 - eigenlib/unsupported/test/CMakeLists.txt | 90 - eigenlib/unsupported/test/FFT.cpp | 2 - eigenlib/unsupported/test/FFTW.cpp | 262 - .../test/NonLinearOptimization.cpp | 1870 -- eigenlib/unsupported/test/NumericalDiff.cpp | 114 - eigenlib/unsupported/test/alignedvector3.cpp | 59 - eigenlib/unsupported/test/autodiff.cpp | 173 - eigenlib/unsupported/test/bdcsvd.cpp | 213 - eigenlib/unsupported/test/dgmres.cpp | 31 - eigenlib/unsupported/test/forward_adolc.cpp | 143 - eigenlib/unsupported/test/gmres.cpp | 31 - eigenlib/unsupported/test/jacobisvd.cpp | 198 - .../unsupported/test/kronecker_product.cpp | 181 - .../unsupported/test/levenberg_marquardt.cpp | 1448 -- .../unsupported/test/matrix_exponential.cpp | 141 - eigenlib/unsupported/test/matrix_function.cpp | 193 - eigenlib/unsupported/test/matrix_functions.h | 47 - eigenlib/unsupported/test/matrix_power.cpp | 133 - .../unsupported/test/matrix_square_root.cpp | 31 - eigenlib/unsupported/test/minres.cpp | 49 - eigenlib/unsupported/test/mpreal/mpreal.h | 3074 --- eigenlib/unsupported/test/mpreal_support.cpp | 57 - eigenlib/unsupported/test/openglsupport.cpp | 337 - .../unsupported/test/polynomialsolver.cpp | 213 - eigenlib/unsupported/test/polynomialutils.cpp | 113 - eigenlib/unsupported/test/sparse_extra.cpp | 148 - eigenlib/unsupported/test/splines.cpp | 244 - eigenlib/unsupported/test/svd_common.h | 261 - 519 files changed, 58685 insertions(+), 54900 deletions(-) delete mode 100644 eigenlib/Eigen/Array delete mode 100644 eigenlib/Eigen/Eigen2Support delete mode 100644 eigenlib/Eigen/LeastSquares mode change 100644 => 100755 eigenlib/Eigen/PardisoSupport delete mode 100644 eigenlib/Eigen/src/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/Cholesky/CMakeLists.txt rename eigenlib/Eigen/src/Cholesky/{LLT_MKL.h => LLT_LAPACKE.h} (71%) delete mode 100644 eigenlib/Eigen/src/CholmodSupport/CMakeLists.txt create mode 100644 eigenlib/Eigen/src/Core/AssignEvaluator.h mode change 100644 => 100755 eigenlib/Eigen/src/Core/Assign_MKL.h delete mode 100644 eigenlib/Eigen/src/Core/CMakeLists.txt create mode 100644 eigenlib/Eigen/src/Core/ConditionEstimator.h create mode 100644 eigenlib/Eigen/src/Core/CoreEvaluators.h create mode 100644 eigenlib/Eigen/src/Core/CwiseTernaryOp.h delete mode 100644 eigenlib/Eigen/src/Core/Flagged.h delete mode 100644 eigenlib/Eigen/src/Core/Functors.h create mode 100644 eigenlib/Eigen/src/Core/Inverse.h create mode 100644 eigenlib/Eigen/src/Core/MathFunctionsImpl.h create mode 100644 eigenlib/Eigen/src/Core/Product.h delete mode 100644 eigenlib/Eigen/src/Core/ProductBase.h create mode 100644 eigenlib/Eigen/src/Core/ProductEvaluators.h create mode 100644 eigenlib/Eigen/src/Core/Solve.h create mode 100644 eigenlib/Eigen/src/Core/SolverBase.h create mode 100644 eigenlib/Eigen/src/Core/arch/AVX/Complex.h create mode 100644 eigenlib/Eigen/src/Core/arch/AVX/MathFunctions.h create mode 100644 eigenlib/Eigen/src/Core/arch/AVX/PacketMath.h create mode 100644 eigenlib/Eigen/src/Core/arch/AVX/TypeCasting.h create mode 100644 eigenlib/Eigen/src/Core/arch/AVX512/MathFunctions.h create mode 100644 eigenlib/Eigen/src/Core/arch/AVX512/PacketMath.h delete mode 100644 eigenlib/Eigen/src/Core/arch/AltiVec/CMakeLists.txt create mode 100644 eigenlib/Eigen/src/Core/arch/AltiVec/MathFunctions.h mode change 100644 => 100755 eigenlib/Eigen/src/Core/arch/AltiVec/PacketMath.h delete mode 100644 eigenlib/Eigen/src/Core/arch/CMakeLists.txt create mode 100644 eigenlib/Eigen/src/Core/arch/CUDA/Complex.h create mode 100644 eigenlib/Eigen/src/Core/arch/CUDA/Half.h create mode 100644 eigenlib/Eigen/src/Core/arch/CUDA/MathFunctions.h create mode 100644 eigenlib/Eigen/src/Core/arch/CUDA/PacketMath.h create mode 100644 eigenlib/Eigen/src/Core/arch/CUDA/PacketMathHalf.h create mode 100644 eigenlib/Eigen/src/Core/arch/CUDA/TypeCasting.h delete mode 100644 eigenlib/Eigen/src/Core/arch/Default/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/Core/arch/NEON/CMakeLists.txt create mode 100644 eigenlib/Eigen/src/Core/arch/NEON/MathFunctions.h delete mode 100644 eigenlib/Eigen/src/Core/arch/SSE/CMakeLists.txt mode change 100644 => 100755 eigenlib/Eigen/src/Core/arch/SSE/PacketMath.h create mode 100644 eigenlib/Eigen/src/Core/arch/SSE/TypeCasting.h create mode 100644 eigenlib/Eigen/src/Core/arch/ZVector/Complex.h create mode 100644 eigenlib/Eigen/src/Core/arch/ZVector/MathFunctions.h create mode 100755 eigenlib/Eigen/src/Core/arch/ZVector/PacketMath.h create mode 100644 eigenlib/Eigen/src/Core/functors/AssignmentFunctors.h create mode 100644 eigenlib/Eigen/src/Core/functors/BinaryFunctors.h create mode 100644 eigenlib/Eigen/src/Core/functors/NullaryFunctors.h create mode 100644 eigenlib/Eigen/src/Core/functors/StlFunctors.h rename eigenlib/{unsupported/Eigen/MoreVectorization => Eigen/src/Core/functors/TernaryFunctors.h} (52%) create mode 100644 eigenlib/Eigen/src/Core/functors/UnaryFunctors.h delete mode 100644 eigenlib/Eigen/src/Core/products/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/Core/products/CoeffBasedProduct.h rename eigenlib/Eigen/src/Core/products/{GeneralMatrixMatrixTriangular_MKL.h => GeneralMatrixMatrixTriangular_BLAS.h} (69%) rename eigenlib/Eigen/src/Core/products/{GeneralMatrixMatrix_MKL.h => GeneralMatrixMatrix_BLAS.h} (76%) rename eigenlib/Eigen/src/Core/products/{GeneralMatrixVector_MKL.h => GeneralMatrixVector_BLAS.h} (60%) rename eigenlib/Eigen/src/Core/products/{SelfadjointMatrixMatrix_MKL.h => SelfadjointMatrixMatrix_BLAS.h} (68%) rename eigenlib/Eigen/src/Core/products/{SelfadjointMatrixVector_MKL.h => SelfadjointMatrixVector_BLAS.h} (72%) rename eigenlib/Eigen/src/Core/products/{TriangularMatrixMatrix_MKL.h => TriangularMatrixMatrix_BLAS.h} (76%) rename eigenlib/Eigen/src/Core/products/{TriangularMatrixVector_MKL.h => TriangularMatrixVector_BLAS.h} (74%) rename eigenlib/Eigen/src/Core/products/{TriangularSolverMatrix_MKL.h => TriangularSolverMatrix_BLAS.h} (75%) mode change 100644 => 100755 eigenlib/Eigen/src/Core/util/BlasUtil.h delete mode 100644 eigenlib/Eigen/src/Core/util/CMakeLists.txt mode change 100644 => 100755 eigenlib/Eigen/src/Core/util/DisableStupidWarnings.h mode change 100644 => 100755 eigenlib/Eigen/src/Core/util/MKL_support.h mode change 100644 => 100755 eigenlib/Eigen/src/Core/util/Meta.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Block.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Cwise.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/CwiseOperators.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/AlignedBox.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/All.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/AngleAxis.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/Hyperplane.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/Quaternion.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/Rotation2D.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/RotationBase.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/Scaling.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/Transform.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Geometry/Translation.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/LU.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Lazy.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/LeastSquares.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Macros.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/MathFunctions.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Memory.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Meta.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/Minor.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/QR.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/SVD.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/TriangularSolver.h delete mode 100644 eigenlib/Eigen/src/Eigen2Support/VectorBlock.h delete mode 100644 eigenlib/Eigen/src/Eigenvalues/CMakeLists.txt rename eigenlib/Eigen/src/Eigenvalues/{ComplexSchur_MKL.h => ComplexSchur_LAPACKE.h} (65%) rename eigenlib/Eigen/src/Eigenvalues/{RealSchur_MKL.h => RealSchur_LAPACKE.h} (64%) rename eigenlib/Eigen/src/Eigenvalues/{SelfAdjointEigenSolver_MKL.h => SelfAdjointEigenSolver_LAPACKE.h} (62%) delete mode 100644 eigenlib/Eigen/src/Geometry/CMakeLists.txt mode change 100644 => 100755 eigenlib/Eigen/src/Geometry/Scaling.h delete mode 100644 eigenlib/Eigen/src/Geometry/arch/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/Householder/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/IterativeLinearSolvers/CMakeLists.txt create mode 100644 eigenlib/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h create mode 100644 eigenlib/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h create mode 100644 eigenlib/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h delete mode 100644 eigenlib/Eigen/src/Jacobi/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/LU/CMakeLists.txt rename eigenlib/Eigen/src/LU/{Inverse.h => InverseImpl.h} (86%) rename eigenlib/Eigen/src/LU/{PartialPivLU_MKL.h => PartialPivLU_LAPACKE.h} (77%) delete mode 100644 eigenlib/Eigen/src/LU/arch/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/MetisSupport/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/OrderingMethods/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/PaStiXSupport/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/PardisoSupport/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/QR/CMakeLists.txt rename eigenlib/Eigen/src/QR/{ColPivHouseholderQR_MKL.h => ColPivHouseholderQR_LAPACKE.h} (64%) create mode 100644 eigenlib/Eigen/src/QR/CompleteOrthogonalDecomposition.h rename eigenlib/Eigen/src/QR/{HouseholderQR_MKL.h => HouseholderQR_LAPACKE.h} (77%) delete mode 100644 eigenlib/Eigen/src/SPQRSupport/CMakeLists.txt create mode 100644 eigenlib/Eigen/src/SVD/BDCSVD.h delete mode 100644 eigenlib/Eigen/src/SVD/CMakeLists.txt rename eigenlib/Eigen/src/SVD/{JacobiSVD_MKL.h => JacobiSVD_LAPACKE.h} (60%) rename eigenlib/{unsupported => }/Eigen/src/SVD/SVDBase.h (52%) delete mode 100644 eigenlib/Eigen/src/SparseCholesky/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/SparseCore/CMakeLists.txt create mode 100644 eigenlib/Eigen/src/SparseCore/SparseAssign.h create mode 100644 eigenlib/Eigen/src/SparseCore/SparseCompressedBase.h create mode 100644 eigenlib/Eigen/src/SparseCore/SparseMap.h create mode 100644 eigenlib/Eigen/src/SparseCore/SparseRef.h create mode 100644 eigenlib/Eigen/src/SparseCore/SparseSolverBase.h delete mode 100644 eigenlib/Eigen/src/SparseLU/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/SparseQR/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/StlSupport/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/SuperLUSupport/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/UmfPackSupport/CMakeLists.txt delete mode 100644 eigenlib/Eigen/src/misc/CMakeLists.txt create mode 100644 eigenlib/Eigen/src/misc/RealSvd2x2.h delete mode 100644 eigenlib/Eigen/src/misc/Solve.h delete mode 100644 eigenlib/Eigen/src/misc/SparseSolve.h create mode 100644 eigenlib/Eigen/src/misc/lapack.h create mode 100755 eigenlib/Eigen/src/misc/lapacke.h create mode 100644 eigenlib/Eigen/src/misc/lapacke_mangling.h delete mode 100644 eigenlib/Eigen/src/plugins/CMakeLists.txt delete mode 100644 eigenlib/unsupported/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/AdolcForward delete mode 100644 eigenlib/unsupported/Eigen/AlignedVector3 delete mode 100644 eigenlib/unsupported/Eigen/ArpackSupport delete mode 100644 eigenlib/unsupported/Eigen/AutoDiff delete mode 100644 eigenlib/unsupported/Eigen/BVH delete mode 100644 eigenlib/unsupported/Eigen/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/FFT delete mode 100644 eigenlib/unsupported/Eigen/IterativeSolvers delete mode 100644 eigenlib/unsupported/Eigen/KroneckerProduct delete mode 100644 eigenlib/unsupported/Eigen/LevenbergMarquardt delete mode 100644 eigenlib/unsupported/Eigen/MPRealSupport delete mode 100644 eigenlib/unsupported/Eigen/MatrixFunctions delete mode 100644 eigenlib/unsupported/Eigen/NonLinearOptimization delete mode 100644 eigenlib/unsupported/Eigen/NumericalDiff delete mode 100644 eigenlib/unsupported/Eigen/OpenGLSupport delete mode 100644 eigenlib/unsupported/Eigen/Polynomials delete mode 100644 eigenlib/unsupported/Eigen/SVD delete mode 100644 eigenlib/unsupported/Eigen/Skyline delete mode 100644 eigenlib/unsupported/Eigen/SparseExtra delete mode 100644 eigenlib/unsupported/Eigen/Splines delete mode 100644 eigenlib/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h delete mode 100644 eigenlib/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h delete mode 100644 eigenlib/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h delete mode 100644 eigenlib/unsupported/Eigen/src/AutoDiff/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/BVH/BVAlgorithms.h delete mode 100644 eigenlib/unsupported/Eigen/src/BVH/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/BVH/KdBVH.h delete mode 100644 eigenlib/unsupported/Eigen/src/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h delete mode 100644 eigenlib/unsupported/Eigen/src/FFT/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/FFT/ei_fftw_impl.h delete mode 100644 eigenlib/unsupported/Eigen/src/FFT/ei_kissfft_impl.h delete mode 100644 eigenlib/unsupported/Eigen/src/IterativeSolvers/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h delete mode 100644 eigenlib/unsupported/Eigen/src/IterativeSolvers/DGMRES.h delete mode 100644 eigenlib/unsupported/Eigen/src/IterativeSolvers/GMRES.h delete mode 100644 eigenlib/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h delete mode 100644 eigenlib/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h delete mode 100644 eigenlib/unsupported/Eigen/src/IterativeSolvers/IterationController.h delete mode 100644 eigenlib/unsupported/Eigen/src/IterativeSolvers/MINRES.h delete mode 100644 eigenlib/unsupported/Eigen/src/IterativeSolvers/Scaling.h delete mode 100644 eigenlib/unsupported/Eigen/src/KroneckerProduct/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h delete mode 100644 eigenlib/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt delete mode 100644 eigenlib/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h delete mode 100644 eigenlib/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h delete mode 100644 eigenlib/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h delete mode 100644 eigenlib/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h delete mode 100644 eigenlib/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h delete mode 100644 eigenlib/unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h delete mode 100644 eigenlib/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h delete mode 100644 eigenlib/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h delete mode 100644 eigenlib/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h delete mode 100644 eigenlib/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h delete mode 100644 eigenlib/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h delete mode 100644 eigenlib/unsupported/Eigen/src/MatrixFunctions/StemFunction.h delete mode 100644 eigenlib/unsupported/Eigen/src/MoreVectorization/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/MoreVectorization/MathFunctions.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/chkder.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/covar.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/dogleg.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/lmpar.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/r1updt.h delete mode 100644 eigenlib/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h delete mode 100644 eigenlib/unsupported/Eigen/src/NumericalDiff/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h delete mode 100644 eigenlib/unsupported/Eigen/src/Polynomials/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/Polynomials/Companion.h delete mode 100644 eigenlib/unsupported/Eigen/src/Polynomials/PolynomialSolver.h delete mode 100644 eigenlib/unsupported/Eigen/src/Polynomials/PolynomialUtils.h delete mode 100644 eigenlib/unsupported/Eigen/src/SVD/BDCSVD.h delete mode 100644 eigenlib/unsupported/Eigen/src/SVD/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/SVD/JacobiSVD.h delete mode 100644 eigenlib/unsupported/Eigen/src/SVD/TODOBdcsvd.txt delete mode 100644 eigenlib/unsupported/Eigen/src/SVD/doneInBDCSVD.txt delete mode 100644 eigenlib/unsupported/Eigen/src/Skyline/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h delete mode 100644 eigenlib/unsupported/Eigen/src/Skyline/SkylineMatrix.h delete mode 100644 eigenlib/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h delete mode 100644 eigenlib/unsupported/Eigen/src/Skyline/SkylineProduct.h delete mode 100644 eigenlib/unsupported/Eigen/src/Skyline/SkylineStorage.h delete mode 100644 eigenlib/unsupported/Eigen/src/Skyline/SkylineUtil.h delete mode 100644 eigenlib/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h delete mode 100644 eigenlib/unsupported/Eigen/src/SparseExtra/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h delete mode 100644 eigenlib/unsupported/Eigen/src/SparseExtra/MarketIO.h delete mode 100644 eigenlib/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h delete mode 100644 eigenlib/unsupported/Eigen/src/SparseExtra/RandomSetter.h delete mode 100644 eigenlib/unsupported/Eigen/src/Splines/CMakeLists.txt delete mode 100644 eigenlib/unsupported/Eigen/src/Splines/Spline.h delete mode 100644 eigenlib/unsupported/Eigen/src/Splines/SplineFitting.h delete mode 100644 eigenlib/unsupported/Eigen/src/Splines/SplineFwd.h delete mode 100644 eigenlib/unsupported/README.txt delete mode 100644 eigenlib/unsupported/bench/bench_svd.cpp delete mode 100644 eigenlib/unsupported/doc/CMakeLists.txt delete mode 100644 eigenlib/unsupported/doc/Overview.dox delete mode 100644 eigenlib/unsupported/doc/eigendoxy_layout.xml.in delete mode 100644 eigenlib/unsupported/doc/examples/BVH_Example.cpp delete mode 100644 eigenlib/unsupported/doc/examples/CMakeLists.txt delete mode 100644 eigenlib/unsupported/doc/examples/FFT.cpp delete mode 100644 eigenlib/unsupported/doc/examples/MatrixExponential.cpp delete mode 100644 eigenlib/unsupported/doc/examples/MatrixFunction.cpp delete mode 100644 eigenlib/unsupported/doc/examples/MatrixLogarithm.cpp delete mode 100644 eigenlib/unsupported/doc/examples/MatrixPower.cpp delete mode 100644 eigenlib/unsupported/doc/examples/MatrixPower_optimal.cpp delete mode 100644 eigenlib/unsupported/doc/examples/MatrixSine.cpp delete mode 100644 eigenlib/unsupported/doc/examples/MatrixSinh.cpp delete mode 100644 eigenlib/unsupported/doc/examples/MatrixSquareRoot.cpp delete mode 100644 eigenlib/unsupported/doc/examples/PolynomialSolver1.cpp delete mode 100644 eigenlib/unsupported/doc/examples/PolynomialUtils1.cpp delete mode 100644 eigenlib/unsupported/doc/snippets/CMakeLists.txt delete mode 100644 eigenlib/unsupported/test/BVH.cpp delete mode 100644 eigenlib/unsupported/test/CMakeLists.txt delete mode 100644 eigenlib/unsupported/test/FFT.cpp delete mode 100644 eigenlib/unsupported/test/FFTW.cpp delete mode 100644 eigenlib/unsupported/test/NonLinearOptimization.cpp delete mode 100644 eigenlib/unsupported/test/NumericalDiff.cpp delete mode 100644 eigenlib/unsupported/test/alignedvector3.cpp delete mode 100644 eigenlib/unsupported/test/autodiff.cpp delete mode 100644 eigenlib/unsupported/test/bdcsvd.cpp delete mode 100644 eigenlib/unsupported/test/dgmres.cpp delete mode 100644 eigenlib/unsupported/test/forward_adolc.cpp delete mode 100644 eigenlib/unsupported/test/gmres.cpp delete mode 100644 eigenlib/unsupported/test/jacobisvd.cpp delete mode 100644 eigenlib/unsupported/test/kronecker_product.cpp delete mode 100644 eigenlib/unsupported/test/levenberg_marquardt.cpp delete mode 100644 eigenlib/unsupported/test/matrix_exponential.cpp delete mode 100644 eigenlib/unsupported/test/matrix_function.cpp delete mode 100644 eigenlib/unsupported/test/matrix_functions.h delete mode 100644 eigenlib/unsupported/test/matrix_power.cpp delete mode 100644 eigenlib/unsupported/test/matrix_square_root.cpp delete mode 100644 eigenlib/unsupported/test/minres.cpp delete mode 100644 eigenlib/unsupported/test/mpreal/mpreal.h delete mode 100644 eigenlib/unsupported/test/mpreal_support.cpp delete mode 100644 eigenlib/unsupported/test/openglsupport.cpp delete mode 100644 eigenlib/unsupported/test/polynomialsolver.cpp delete mode 100644 eigenlib/unsupported/test/polynomialutils.cpp delete mode 100644 eigenlib/unsupported/test/sparse_extra.cpp delete mode 100644 eigenlib/unsupported/test/splines.cpp delete mode 100644 eigenlib/unsupported/test/svd_common.h diff --git a/eigenlib/Eigen/Array b/eigenlib/Eigen/Array deleted file mode 100644 index 3d004fb69..000000000 --- a/eigenlib/Eigen/Array +++ /dev/null @@ -1,11 +0,0 @@ -#ifndef EIGEN_ARRAY_MODULE_H -#define EIGEN_ARRAY_MODULE_H - -// include Core first to handle Eigen2 support macros -#include "Core" - -#ifndef EIGEN2_SUPPORT - #error The Eigen/Array header does no longer exist in Eigen3. All that functionality has moved to Eigen/Core. -#endif - -#endif // EIGEN_ARRAY_MODULE_H diff --git a/eigenlib/Eigen/CMakeLists.txt b/eigenlib/Eigen/CMakeLists.txt index a92dd6f6c..9eb502b79 100644 --- a/eigenlib/Eigen/CMakeLists.txt +++ b/eigenlib/Eigen/CMakeLists.txt @@ -16,4 +16,4 @@ install(FILES DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen COMPONENT Devel ) -add_subdirectory(src) +install(DIRECTORY src DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen COMPONENT Devel FILES_MATCHING PATTERN "*.h") diff --git a/eigenlib/Eigen/Cholesky b/eigenlib/Eigen/Cholesky index f727f5d89..369d1f5ec 100644 --- a/eigenlib/Eigen/Cholesky +++ b/eigenlib/Eigen/Cholesky @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_CHOLESKY_MODULE_H #define EIGEN_CHOLESKY_MODULE_H @@ -10,20 +17,22 @@ * * * This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices. - * Those decompositions are accessible via the following MatrixBase methods: - * - MatrixBase::llt(), + * Those decompositions are also accessible via the following methods: + * - MatrixBase::llt() * - MatrixBase::ldlt() + * - SelfAdjointView::llt() + * - SelfAdjointView::ldlt() * * \code * #include * \endcode */ -#include "src/misc/Solve.h" #include "src/Cholesky/LLT.h" #include "src/Cholesky/LDLT.h" #ifdef EIGEN_USE_LAPACKE -#include "src/Cholesky/LLT_MKL.h" +#include "src/misc/lapacke.h" +#include "src/Cholesky/LLT_LAPACKE.h" #endif #include "src/Core/util/ReenableStupidWarnings.h" diff --git a/eigenlib/Eigen/CholmodSupport b/eigenlib/Eigen/CholmodSupport index 745b884e7..bed8924d3 100644 --- a/eigenlib/Eigen/CholmodSupport +++ b/eigenlib/Eigen/CholmodSupport @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_CHOLMODSUPPORT_MODULE_H #define EIGEN_CHOLMODSUPPORT_MODULE_H @@ -12,7 +19,7 @@ extern "C" { /** \ingroup Support_modules * \defgroup CholmodSupport_Module CholmodSupport module * - * This module provides an interface to the Cholmod library which is part of the suitesparse package. + * This module provides an interface to the Cholmod library which is part of the suitesparse package. * It provides the two following main factorization classes: * - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization. * - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial). @@ -33,12 +40,8 @@ extern "C" { * */ -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - #include "src/CholmodSupport/CholmodSupport.h" - #include "src/Core/util/ReenableStupidWarnings.h" #endif // EIGEN_CHOLMODSUPPORT_MODULE_H diff --git a/eigenlib/Eigen/Core b/eigenlib/Eigen/Core index 509c529e1..82558155e 100644 --- a/eigenlib/Eigen/Core +++ b/eigenlib/Eigen/Core @@ -14,6 +14,58 @@ // first thing Eigen does: stop the compiler from committing suicide #include "src/Core/util/DisableStupidWarnings.h" +// Handle NVCC/CUDA/SYCL +#if defined(__CUDACC__) || defined(__SYCL_DEVICE_ONLY__) + // Do not try asserts on CUDA and SYCL! + #ifndef EIGEN_NO_DEBUG + #define EIGEN_NO_DEBUG + #endif + + #ifdef EIGEN_INTERNAL_DEBUGGING + #undef EIGEN_INTERNAL_DEBUGGING + #endif + + #ifdef EIGEN_EXCEPTIONS + #undef EIGEN_EXCEPTIONS + #endif + + // All functions callable from CUDA code must be qualified with __device__ + #ifdef __CUDACC__ + // Do not try to vectorize on CUDA and SYCL! + #ifndef EIGEN_DONT_VECTORIZE + #define EIGEN_DONT_VECTORIZE + #endif + + #define EIGEN_DEVICE_FUNC __host__ __device__ + // We need math_functions.hpp to ensure that that EIGEN_USING_STD_MATH macro + // works properly on the device side + #include + #else + #define EIGEN_DEVICE_FUNC + #endif + +#else + #define EIGEN_DEVICE_FUNC + +#endif + +// When compiling CUDA device code with NVCC, pull in math functions from the +// global namespace. In host mode, and when device doee with clang, use the +// std versions. +#if defined(__CUDA_ARCH__) && defined(__NVCC__) + #define EIGEN_USING_STD_MATH(FUNC) using ::FUNC; +#else + #define EIGEN_USING_STD_MATH(FUNC) using std::FUNC; +#endif + +#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) && !defined(EIGEN_EXCEPTIONS) && !defined(EIGEN_USE_SYCL) + #define EIGEN_EXCEPTIONS +#endif + +#ifdef EIGEN_EXCEPTIONS + #include +#endif + // then include this file where all our macros are defined. It's really important to do it first because // it's where we do all the alignment settings (platform detection and honoring the user's will if he // defined e.g. EIGEN_DONT_ALIGN) so it needs to be done before we do anything with vectorization. @@ -21,7 +73,7 @@ // Disable the ipa-cp-clone optimization flag with MinGW 6.x or newer (enabled by default with -O3) // See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=556 for details. -#if defined(__MINGW32__) && EIGEN_GNUC_AT_LEAST(4,6) +#if EIGEN_COMP_MINGW && EIGEN_GNUC_AT_LEAST(4,6) #pragma GCC optimize ("-fno-ipa-cp-clone") #endif @@ -31,26 +83,26 @@ // and inclusion of their respective header files #include "src/Core/util/MKL_support.h" -// if alignment is disabled, then disable vectorization. Note: EIGEN_ALIGN is the proper check, it takes into -// account both the user's will (EIGEN_DONT_ALIGN) and our own platform checks -#if !EIGEN_ALIGN +// if alignment is disabled, then disable vectorization. Note: EIGEN_MAX_ALIGN_BYTES is the proper check, it takes into +// account both the user's will (EIGEN_MAX_ALIGN_BYTES,EIGEN_DONT_ALIGN) and our own platform checks +#if EIGEN_MAX_ALIGN_BYTES==0 #ifndef EIGEN_DONT_VECTORIZE #define EIGEN_DONT_VECTORIZE #endif #endif -#ifdef _MSC_VER +#if EIGEN_COMP_MSVC #include // for _aligned_malloc -- need it regardless of whether vectorization is enabled - #if (_MSC_VER >= 1500) // 2008 or later + #if (EIGEN_COMP_MSVC >= 1500) // 2008 or later // Remember that usage of defined() in a #define is undefined by the standard. // a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP. - #if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(_M_X64) + #if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || EIGEN_ARCH_x86_64 #define EIGEN_SSE2_ON_MSVC_2008_OR_LATER #endif #endif #else // Remember that usage of defined() in a #define is undefined by the standard - #if (defined __SSE2__) && ( (!defined __GNUC__) || (defined __INTEL_COMPILER) || EIGEN_GNUC_AT_LEAST(4,2) ) + #if (defined __SSE2__) && ( (!EIGEN_COMP_GNUC) || EIGEN_COMP_ICC || EIGEN_GNUC_AT_LEAST(4,2) ) #define EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC #endif #endif @@ -82,6 +134,28 @@ #ifdef __SSE4_2__ #define EIGEN_VECTORIZE_SSE4_2 #endif + #ifdef __AVX__ + #define EIGEN_VECTORIZE_AVX + #define EIGEN_VECTORIZE_SSE3 + #define EIGEN_VECTORIZE_SSSE3 + #define EIGEN_VECTORIZE_SSE4_1 + #define EIGEN_VECTORIZE_SSE4_2 + #endif + #ifdef __AVX2__ + #define EIGEN_VECTORIZE_AVX2 + #endif + #ifdef __FMA__ + #define EIGEN_VECTORIZE_FMA + #endif + #if defined(__AVX512F__) && defined(EIGEN_ENABLE_AVX512) + #define EIGEN_VECTORIZE_AVX512 + #define EIGEN_VECTORIZE_AVX2 + #define EIGEN_VECTORIZE_AVX + #define EIGEN_VECTORIZE_FMA + #ifdef __AVX512DQ__ + #define EIGEN_VECTORIZE_AVX512DQ + #endif + #endif // include files @@ -95,9 +169,10 @@ extern "C" { // In theory we should only include immintrin.h and not the other *mmintrin.h header files directly. // Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus: - #if defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1110 + #if EIGEN_COMP_ICC >= 1110 #include #else + #include #include #include #ifdef EIGEN_VECTORIZE_SSE3 @@ -112,8 +187,20 @@ #ifdef EIGEN_VECTORIZE_SSE4_2 #include #endif + #if defined(EIGEN_VECTORIZE_AVX) || defined(EIGEN_VECTORIZE_AVX512) + #include + #endif #endif } // end extern "C" + #elif defined __VSX__ + #define EIGEN_VECTORIZE + #define EIGEN_VECTORIZE_VSX + #include + // We need to #undef all these ugly tokens defined in + // => use __vector instead of vector + #undef bool + #undef vector + #undef pixel #elif defined __ALTIVEC__ #define EIGEN_VECTORIZE #define EIGEN_VECTORIZE_ALTIVEC @@ -123,13 +210,35 @@ #undef bool #undef vector #undef pixel - #elif defined __ARM_NEON + #elif (defined __ARM_NEON) || (defined __ARM_NEON__) #define EIGEN_VECTORIZE #define EIGEN_VECTORIZE_NEON #include + #elif (defined __s390x__ && defined __VEC__) + #define EIGEN_VECTORIZE + #define EIGEN_VECTORIZE_ZVECTOR + #include #endif #endif +#if defined(__F16C__) && !defined(EIGEN_COMP_CLANG) + // We can use the optimized fp16 to float and float to fp16 conversion routines + #define EIGEN_HAS_FP16_C +#endif + +#if defined __CUDACC__ + #define EIGEN_VECTORIZE_CUDA + #include + #if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500 + #define EIGEN_HAS_CUDA_FP16 + #endif +#endif + +#if defined EIGEN_HAS_CUDA_FP16 + #include + #include +#endif + #if (defined _OPENMP) && (!defined EIGEN_DONT_PARALLELIZE) #define EIGEN_HAS_OPENMP #endif @@ -139,7 +248,7 @@ #endif // MSVC for windows mobile does not have the errno.h file -#if !(defined(_MSC_VER) && defined(_WIN32_WCE)) && !defined(__ARMCC_VERSION) +#if !(EIGEN_COMP_MSVC && EIGEN_OS_WINCE) && !EIGEN_COMP_ARM #define EIGEN_HAS_ERRNO #endif @@ -159,29 +268,30 @@ // for min/max: #include +// for std::is_nothrow_move_assignable +#ifdef EIGEN_INCLUDE_TYPE_TRAITS +#include +#endif + // for outputting debug info #ifdef EIGEN_DEBUG_ASSIGN #include #endif // required for __cpuid, needs to be included after cmath -#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE)) +#if EIGEN_COMP_MSVC && EIGEN_ARCH_i386_OR_x86_64 && !EIGEN_OS_WINCE #include #endif -#if defined(_CPPUNWIND) || defined(__EXCEPTIONS) - #define EIGEN_EXCEPTIONS -#endif - -#ifdef EIGEN_EXCEPTIONS - #include -#endif - /** \brief Namespace containing all symbols from the %Eigen library. */ namespace Eigen { inline static const char *SimdInstructionSetsInUse(void) { -#if defined(EIGEN_VECTORIZE_SSE4_2) +#if defined(EIGEN_VECTORIZE_AVX512) + return "AVX512, FMA, AVX2, AVX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2"; +#elif defined(EIGEN_VECTORIZE_AVX) + return "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2"; +#elif defined(EIGEN_VECTORIZE_SSE4_2) return "SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2"; #elif defined(EIGEN_VECTORIZE_SSE4_1) return "SSE, SSE2, SSE3, SSSE3, SSE4.1"; @@ -193,8 +303,12 @@ inline static const char *SimdInstructionSetsInUse(void) { return "SSE, SSE2"; #elif defined(EIGEN_VECTORIZE_ALTIVEC) return "AltiVec"; +#elif defined(EIGEN_VECTORIZE_VSX) + return "VSX"; #elif defined(EIGEN_VECTORIZE_NEON) return "ARM NEON"; +#elif defined(EIGEN_VECTORIZE_ZVECTOR) + return "S390X ZVECTOR"; #else return "None"; #endif @@ -202,40 +316,15 @@ inline static const char *SimdInstructionSetsInUse(void) { } // end namespace Eigen -#define STAGE10_FULL_EIGEN2_API 10 -#define STAGE20_RESOLVE_API_CONFLICTS 20 -#define STAGE30_FULL_EIGEN3_API 30 -#define STAGE40_FULL_EIGEN3_STRICTNESS 40 -#define STAGE99_NO_EIGEN2_SUPPORT 99 - -#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE40_FULL_EIGEN3_STRICTNESS -#elif defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API -#elif defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE20_RESOLVE_API_CONFLICTS -#elif defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE10_FULL_EIGEN2_API -#elif defined EIGEN2_SUPPORT - // default to stage 3, that's what it's always meant - #define EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API - #define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API -#else - #define EIGEN2_SUPPORT_STAGE STAGE99_NO_EIGEN2_SUPPORT -#endif - -#ifdef EIGEN2_SUPPORT -#undef minor +#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS || defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API || defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS || defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API || defined EIGEN2_SUPPORT +// This will generate an error message: +#error Eigen2-support is only available up to version 3.2. Please go to "http://eigen.tuxfamily.org/index.php?title=Eigen2" for further information #endif // we use size_t frequently and we'll never remember to prepend it with std:: everytime just to // ensure QNX/QCC support using std::size_t; -// gcc 4.6.0 wants std:: for ptrdiff_t +// gcc 4.6.0 wants std:: for ptrdiff_t using std::ptrdiff_t; /** \defgroup Core_Module Core module @@ -249,8 +338,8 @@ using std::ptrdiff_t; */ #include "src/Core/util/Constants.h" -#include "src/Core/util/ForwardDeclarations.h" #include "src/Core/util/Meta.h" +#include "src/Core/util/ForwardDeclarations.h" #include "src/Core/util/StaticAssert.h" #include "src/Core/util/XprHelper.h" #include "src/Core/util/Memory.h" @@ -258,41 +347,91 @@ using std::ptrdiff_t; #include "src/Core/NumTraits.h" #include "src/Core/MathFunctions.h" #include "src/Core/GenericPacketMath.h" +#include "src/Core/MathFunctionsImpl.h" -#if defined EIGEN_VECTORIZE_SSE +#if defined EIGEN_VECTORIZE_AVX512 + #include "src/Core/arch/SSE/PacketMath.h" + #include "src/Core/arch/AVX/PacketMath.h" + #include "src/Core/arch/AVX512/PacketMath.h" + #include "src/Core/arch/AVX512/MathFunctions.h" +#elif defined EIGEN_VECTORIZE_AVX + // Use AVX for floats and doubles, SSE for integers + #include "src/Core/arch/SSE/PacketMath.h" + #include "src/Core/arch/SSE/Complex.h" + #include "src/Core/arch/SSE/MathFunctions.h" + #include "src/Core/arch/AVX/PacketMath.h" + #include "src/Core/arch/AVX/MathFunctions.h" + #include "src/Core/arch/AVX/Complex.h" + #include "src/Core/arch/AVX/TypeCasting.h" +#elif defined EIGEN_VECTORIZE_SSE #include "src/Core/arch/SSE/PacketMath.h" #include "src/Core/arch/SSE/MathFunctions.h" #include "src/Core/arch/SSE/Complex.h" -#elif defined EIGEN_VECTORIZE_ALTIVEC + #include "src/Core/arch/SSE/TypeCasting.h" +#elif defined(EIGEN_VECTORIZE_ALTIVEC) || defined(EIGEN_VECTORIZE_VSX) #include "src/Core/arch/AltiVec/PacketMath.h" + #include "src/Core/arch/AltiVec/MathFunctions.h" #include "src/Core/arch/AltiVec/Complex.h" #elif defined EIGEN_VECTORIZE_NEON #include "src/Core/arch/NEON/PacketMath.h" + #include "src/Core/arch/NEON/MathFunctions.h" #include "src/Core/arch/NEON/Complex.h" +#elif defined EIGEN_VECTORIZE_ZVECTOR + #include "src/Core/arch/ZVector/PacketMath.h" + #include "src/Core/arch/ZVector/MathFunctions.h" + #include "src/Core/arch/ZVector/Complex.h" +#endif + +// Half float support +#include "src/Core/arch/CUDA/Half.h" +#include "src/Core/arch/CUDA/PacketMathHalf.h" +#include "src/Core/arch/CUDA/TypeCasting.h" + +#if defined EIGEN_VECTORIZE_CUDA + #include "src/Core/arch/CUDA/PacketMath.h" + #include "src/Core/arch/CUDA/MathFunctions.h" #endif #include "src/Core/arch/Default/Settings.h" -#include "src/Core/Functors.h" +#include "src/Core/functors/TernaryFunctors.h" +#include "src/Core/functors/BinaryFunctors.h" +#include "src/Core/functors/UnaryFunctors.h" +#include "src/Core/functors/NullaryFunctors.h" +#include "src/Core/functors/StlFunctors.h" +#include "src/Core/functors/AssignmentFunctors.h" + +// Specialized functors to enable the processing of complex numbers +// on CUDA devices +#include "src/Core/arch/CUDA/Complex.h" + #include "src/Core/DenseCoeffsBase.h" #include "src/Core/DenseBase.h" #include "src/Core/MatrixBase.h" #include "src/Core/EigenBase.h" +#include "src/Core/Product.h" +#include "src/Core/CoreEvaluators.h" +#include "src/Core/AssignEvaluator.h" + #ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874 // at least confirmed with Doxygen 1.5.5 and 1.5.6 #include "src/Core/Assign.h" #endif +#include "src/Core/ArrayBase.h" #include "src/Core/util/BlasUtil.h" #include "src/Core/DenseStorage.h" #include "src/Core/NestByValue.h" -#include "src/Core/ForceAlignedAccess.h" + +// #include "src/Core/ForceAlignedAccess.h" + #include "src/Core/ReturnByValue.h" #include "src/Core/NoAlias.h" #include "src/Core/PlainObjectBase.h" #include "src/Core/Matrix.h" #include "src/Core/Array.h" +#include "src/Core/CwiseTernaryOp.h" #include "src/Core/CwiseBinaryOp.h" #include "src/Core/CwiseUnaryOp.h" #include "src/Core/CwiseNullaryOp.h" @@ -300,32 +439,33 @@ using std::ptrdiff_t; #include "src/Core/SelfCwiseBinaryOp.h" #include "src/Core/Dot.h" #include "src/Core/StableNorm.h" -#include "src/Core/MapBase.h" #include "src/Core/Stride.h" +#include "src/Core/MapBase.h" #include "src/Core/Map.h" +#include "src/Core/Ref.h" #include "src/Core/Block.h" #include "src/Core/VectorBlock.h" -#include "src/Core/Ref.h" #include "src/Core/Transpose.h" #include "src/Core/DiagonalMatrix.h" #include "src/Core/Diagonal.h" #include "src/Core/DiagonalProduct.h" -#include "src/Core/PermutationMatrix.h" -#include "src/Core/Transpositions.h" #include "src/Core/Redux.h" #include "src/Core/Visitor.h" #include "src/Core/Fuzzy.h" #include "src/Core/IO.h" #include "src/Core/Swap.h" #include "src/Core/CommaInitializer.h" -#include "src/Core/Flagged.h" -#include "src/Core/ProductBase.h" #include "src/Core/GeneralProduct.h" +#include "src/Core/Solve.h" +#include "src/Core/Inverse.h" +#include "src/Core/SolverBase.h" +#include "src/Core/PermutationMatrix.h" +#include "src/Core/Transpositions.h" #include "src/Core/TriangularMatrix.h" #include "src/Core/SelfAdjointView.h" #include "src/Core/products/GeneralBlockPanelKernel.h" #include "src/Core/products/Parallelizer.h" -#include "src/Core/products/CoeffBasedProduct.h" +#include "src/Core/ProductEvaluators.h" #include "src/Core/products/GeneralMatrixVector.h" #include "src/Core/products/GeneralMatrixMatrix.h" #include "src/Core/SolveTriangular.h" @@ -340,6 +480,7 @@ using std::ptrdiff_t; #include "src/Core/products/TriangularSolverVector.h" #include "src/Core/BandMatrix.h" #include "src/Core/CoreIterators.h" +#include "src/Core/ConditionEstimator.h" #include "src/Core/BooleanRedux.h" #include "src/Core/Select.h" @@ -347,18 +488,17 @@ using std::ptrdiff_t; #include "src/Core/Random.h" #include "src/Core/Replicate.h" #include "src/Core/Reverse.h" -#include "src/Core/ArrayBase.h" #include "src/Core/ArrayWrapper.h" #ifdef EIGEN_USE_BLAS -#include "src/Core/products/GeneralMatrixMatrix_MKL.h" -#include "src/Core/products/GeneralMatrixVector_MKL.h" -#include "src/Core/products/GeneralMatrixMatrixTriangular_MKL.h" -#include "src/Core/products/SelfadjointMatrixMatrix_MKL.h" -#include "src/Core/products/SelfadjointMatrixVector_MKL.h" -#include "src/Core/products/TriangularMatrixMatrix_MKL.h" -#include "src/Core/products/TriangularMatrixVector_MKL.h" -#include "src/Core/products/TriangularSolverMatrix_MKL.h" +#include "src/Core/products/GeneralMatrixMatrix_BLAS.h" +#include "src/Core/products/GeneralMatrixVector_BLAS.h" +#include "src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h" +#include "src/Core/products/SelfadjointMatrixMatrix_BLAS.h" +#include "src/Core/products/SelfadjointMatrixVector_BLAS.h" +#include "src/Core/products/TriangularMatrixMatrix_BLAS.h" +#include "src/Core/products/TriangularMatrixVector_BLAS.h" +#include "src/Core/products/TriangularSolverMatrix_BLAS.h" #endif // EIGEN_USE_BLAS #ifdef EIGEN_USE_MKL_VML @@ -369,8 +509,4 @@ using std::ptrdiff_t; #include "src/Core/util/ReenableStupidWarnings.h" -#ifdef EIGEN2_SUPPORT -#include "Eigen2Support" -#endif - #endif // EIGEN_CORE_H diff --git a/eigenlib/Eigen/Eigen b/eigenlib/Eigen/Eigen index 19b40ea4e..654c8dc63 100644 --- a/eigenlib/Eigen/Eigen +++ b/eigenlib/Eigen/Eigen @@ -1,2 +1,2 @@ #include "Dense" -//#include "Sparse" +#include "Sparse" diff --git a/eigenlib/Eigen/Eigen2Support b/eigenlib/Eigen/Eigen2Support deleted file mode 100644 index 6aa009d20..000000000 --- a/eigenlib/Eigen/Eigen2Support +++ /dev/null @@ -1,95 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2SUPPORT_H -#define EIGEN2SUPPORT_H - -#if (!defined(EIGEN2_SUPPORT)) || (!defined(EIGEN_CORE_H)) -#error Eigen2 support must be enabled by defining EIGEN2_SUPPORT before including any Eigen header -#endif - -#ifndef EIGEN_NO_EIGEN2_DEPRECATED_WARNING - -#if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) -#warning "Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. (Define EIGEN_NO_EIGEN2_DEPRECATED_WARNING to disable this warning)" -#else -#pragma message ("Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. (Define EIGEN_NO_EIGEN2_DEPRECATED_WARNING to disable this warning)") -#endif - -#endif // EIGEN_NO_EIGEN2_DEPRECATED_WARNING - -#include "src/Core/util/DisableStupidWarnings.h" - -/** \ingroup Support_modules - * \defgroup Eigen2Support_Module Eigen2 support module - * - * \warning Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. - * - * This module provides a couple of deprecated functions improving the compatibility with Eigen2. - * - * To use it, define EIGEN2_SUPPORT before including any Eigen header - * \code - * #define EIGEN2_SUPPORT - * \endcode - * - */ - -#include "src/Eigen2Support/Macros.h" -#include "src/Eigen2Support/Memory.h" -#include "src/Eigen2Support/Meta.h" -#include "src/Eigen2Support/Lazy.h" -#include "src/Eigen2Support/Cwise.h" -#include "src/Eigen2Support/CwiseOperators.h" -#include "src/Eigen2Support/TriangularSolver.h" -#include "src/Eigen2Support/Block.h" -#include "src/Eigen2Support/VectorBlock.h" -#include "src/Eigen2Support/Minor.h" -#include "src/Eigen2Support/MathFunctions.h" - - -#include "src/Core/util/ReenableStupidWarnings.h" - -// Eigen2 used to include iostream -#include - -#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ -using Eigen::Matrix##SizeSuffix##TypeSuffix; \ -using Eigen::Vector##SizeSuffix##TypeSuffix; \ -using Eigen::RowVector##SizeSuffix##TypeSuffix; - -#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ - -#define EIGEN_USING_MATRIX_TYPEDEFS \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd) - -#define USING_PART_OF_NAMESPACE_EIGEN \ -EIGEN_USING_MATRIX_TYPEDEFS \ -using Eigen::Matrix; \ -using Eigen::MatrixBase; \ -using Eigen::ei_random; \ -using Eigen::ei_real; \ -using Eigen::ei_imag; \ -using Eigen::ei_conj; \ -using Eigen::ei_abs; \ -using Eigen::ei_abs2; \ -using Eigen::ei_sqrt; \ -using Eigen::ei_exp; \ -using Eigen::ei_log; \ -using Eigen::ei_sin; \ -using Eigen::ei_cos; - -#endif // EIGEN2SUPPORT_H diff --git a/eigenlib/Eigen/Eigenvalues b/eigenlib/Eigen/Eigenvalues index 53c5a73a2..009e529e1 100644 --- a/eigenlib/Eigen/Eigenvalues +++ b/eigenlib/Eigen/Eigenvalues @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_EIGENVALUES_MODULE_H #define EIGEN_EIGENVALUES_MODULE_H @@ -25,6 +32,7 @@ * \endcode */ +#include "src/misc/RealSvd2x2.h" #include "src/Eigenvalues/Tridiagonalization.h" #include "src/Eigenvalues/RealSchur.h" #include "src/Eigenvalues/EigenSolver.h" @@ -37,9 +45,10 @@ #include "src/Eigenvalues/GeneralizedEigenSolver.h" #include "src/Eigenvalues/MatrixBaseEigenvalues.h" #ifdef EIGEN_USE_LAPACKE -#include "src/Eigenvalues/RealSchur_MKL.h" -#include "src/Eigenvalues/ComplexSchur_MKL.h" -#include "src/Eigenvalues/SelfAdjointEigenSolver_MKL.h" +#include "src/misc/lapacke.h" +#include "src/Eigenvalues/RealSchur_LAPACKE.h" +#include "src/Eigenvalues/ComplexSchur_LAPACKE.h" +#include "src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h" #endif #include "src/Core/util/ReenableStupidWarnings.h" diff --git a/eigenlib/Eigen/Geometry b/eigenlib/Eigen/Geometry index efd9d4504..716d52952 100644 --- a/eigenlib/Eigen/Geometry +++ b/eigenlib/Eigen/Geometry @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_GEOMETRY_MODULE_H #define EIGEN_GEOMETRY_MODULE_H @@ -9,21 +16,17 @@ #include "LU" #include -#ifndef M_PI -#define M_PI 3.14159265358979323846 -#endif - /** \defgroup Geometry_Module Geometry module - * - * * * This module provides support for: * - fixed-size homogeneous transformations * - translation, scaling, 2D and 3D rotations - * - quaternions - * - \ref MatrixBase::cross() "cross product" - * - \ref MatrixBase::unitOrthogonal() "orthognal vector generation" - * - some linear components: parametrized-lines and hyperplanes + * - \link Quaternion quaternions \endlink + * - cross products (\ref MatrixBase::cross, \ref MatrixBase::cross3) + * - orthognal vector generation (\ref MatrixBase::unitOrthogonal) + * - some linear components: \link ParametrizedLine parametrized-lines \endlink and \link Hyperplane hyperplanes \endlink + * - \link AlignedBox axis aligned bounding boxes \endlink + * - \link umeyama least-square transformation fitting \endlink * * \code * #include @@ -33,27 +36,23 @@ #include "src/Geometry/OrthoMethods.h" #include "src/Geometry/EulerAngles.h" -#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS - #include "src/Geometry/Homogeneous.h" - #include "src/Geometry/RotationBase.h" - #include "src/Geometry/Rotation2D.h" - #include "src/Geometry/Quaternion.h" - #include "src/Geometry/AngleAxis.h" - #include "src/Geometry/Transform.h" - #include "src/Geometry/Translation.h" - #include "src/Geometry/Scaling.h" - #include "src/Geometry/Hyperplane.h" - #include "src/Geometry/ParametrizedLine.h" - #include "src/Geometry/AlignedBox.h" - #include "src/Geometry/Umeyama.h" - - #if defined EIGEN_VECTORIZE_SSE - #include "src/Geometry/arch/Geometry_SSE.h" - #endif -#endif - -#ifdef EIGEN2_SUPPORT -#include "src/Eigen2Support/Geometry/All.h" +#include "src/Geometry/Homogeneous.h" +#include "src/Geometry/RotationBase.h" +#include "src/Geometry/Rotation2D.h" +#include "src/Geometry/Quaternion.h" +#include "src/Geometry/AngleAxis.h" +#include "src/Geometry/Transform.h" +#include "src/Geometry/Translation.h" +#include "src/Geometry/Scaling.h" +#include "src/Geometry/Hyperplane.h" +#include "src/Geometry/ParametrizedLine.h" +#include "src/Geometry/AlignedBox.h" +#include "src/Geometry/Umeyama.h" + +// Use the SSE optimized version whenever possible. At the moment the +// SSE version doesn't compile when AVX is enabled +#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX +#include "src/Geometry/arch/Geometry_SSE.h" #endif #include "src/Core/util/ReenableStupidWarnings.h" diff --git a/eigenlib/Eigen/Householder b/eigenlib/Eigen/Householder index 6e348db5c..89cd81b1a 100644 --- a/eigenlib/Eigen/Householder +++ b/eigenlib/Eigen/Householder @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_HOUSEHOLDER_MODULE_H #define EIGEN_HOUSEHOLDER_MODULE_H diff --git a/eigenlib/Eigen/IterativeLinearSolvers b/eigenlib/Eigen/IterativeLinearSolvers index 0f4159dc1..957d5750b 100644 --- a/eigenlib/Eigen/IterativeLinearSolvers +++ b/eigenlib/Eigen/IterativeLinearSolvers @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H #define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H @@ -12,28 +19,29 @@ * This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse. * Those solvers are accessible via the following classes: * - ConjugateGradient for selfadjoint (hermitian) matrices, + * - LeastSquaresConjugateGradient for rectangular least-square problems, * - BiCGSTAB for general square matrices. * * These iterative solvers are associated with some preconditioners: * - IdentityPreconditioner - not really useful - * - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices. - * - IncompleteILUT - incomplete LU factorization with dual thresholding + * - DiagonalPreconditioner - also called Jacobi preconditioner, work very well on diagonal dominant matrices. + * - IncompleteLUT - incomplete LU factorization with dual thresholding * * Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport. * - * \code - * #include - * \endcode + \code + #include + \endcode */ -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - +#include "src/IterativeLinearSolvers/SolveWithGuess.h" #include "src/IterativeLinearSolvers/IterativeSolverBase.h" #include "src/IterativeLinearSolvers/BasicPreconditioners.h" #include "src/IterativeLinearSolvers/ConjugateGradient.h" +#include "src/IterativeLinearSolvers/LeastSquareConjugateGradient.h" #include "src/IterativeLinearSolvers/BiCGSTAB.h" #include "src/IterativeLinearSolvers/IncompleteLUT.h" +#include "src/IterativeLinearSolvers/IncompleteCholesky.h" #include "src/Core/util/ReenableStupidWarnings.h" diff --git a/eigenlib/Eigen/Jacobi b/eigenlib/Eigen/Jacobi index ba8a4dc36..17c1d785a 100644 --- a/eigenlib/Eigen/Jacobi +++ b/eigenlib/Eigen/Jacobi @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_JACOBI_MODULE_H #define EIGEN_JACOBI_MODULE_H diff --git a/eigenlib/Eigen/LU b/eigenlib/Eigen/LU index db5795504..6f6c55629 100644 --- a/eigenlib/Eigen/LU +++ b/eigenlib/Eigen/LU @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_LU_MODULE_H #define EIGEN_LU_MODULE_H @@ -16,25 +23,23 @@ * \endcode */ -#include "src/misc/Solve.h" #include "src/misc/Kernel.h" #include "src/misc/Image.h" #include "src/LU/FullPivLU.h" #include "src/LU/PartialPivLU.h" #ifdef EIGEN_USE_LAPACKE -#include "src/LU/PartialPivLU_MKL.h" +#include "src/misc/lapacke.h" +#include "src/LU/PartialPivLU_LAPACKE.h" #endif #include "src/LU/Determinant.h" -#include "src/LU/Inverse.h" +#include "src/LU/InverseImpl.h" -#if defined EIGEN_VECTORIZE_SSE +// Use the SSE optimized version whenever possible. At the moment the +// SSE version doesn't compile when AVX is enabled +#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX #include "src/LU/arch/Inverse_SSE.h" #endif -#ifdef EIGEN2_SUPPORT - #include "src/Eigen2Support/LU.h" -#endif - #include "src/Core/util/ReenableStupidWarnings.h" #endif // EIGEN_LU_MODULE_H diff --git a/eigenlib/Eigen/LeastSquares b/eigenlib/Eigen/LeastSquares deleted file mode 100644 index 35137c25d..000000000 --- a/eigenlib/Eigen/LeastSquares +++ /dev/null @@ -1,32 +0,0 @@ -#ifndef EIGEN_REGRESSION_MODULE_H -#define EIGEN_REGRESSION_MODULE_H - -#ifndef EIGEN2_SUPPORT -#error LeastSquares is only available in Eigen2 support mode (define EIGEN2_SUPPORT) -#endif - -// exclude from normal eigen3-only documentation -#ifdef EIGEN2_SUPPORT - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -#include "Eigenvalues" -#include "Geometry" - -/** \defgroup LeastSquares_Module LeastSquares module - * This module provides linear regression and related features. - * - * \code - * #include - * \endcode - */ - -#include "src/Eigen2Support/LeastSquares.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN2_SUPPORT - -#endif // EIGEN_REGRESSION_MODULE_H diff --git a/eigenlib/Eigen/MetisSupport b/eigenlib/Eigen/MetisSupport index 6a113f7a8..85c41bf34 100644 --- a/eigenlib/Eigen/MetisSupport +++ b/eigenlib/Eigen/MetisSupport @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_METISSUPPORT_MODULE_H #define EIGEN_METISSUPPORT_MODULE_H diff --git a/eigenlib/Eigen/OrderingMethods b/eigenlib/Eigen/OrderingMethods index 7c0f1ffff..d8ea36193 100644 --- a/eigenlib/Eigen/OrderingMethods +++ b/eigenlib/Eigen/OrderingMethods @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_ORDERINGMETHODS_MODULE_H #define EIGEN_ORDERINGMETHODS_MODULE_H diff --git a/eigenlib/Eigen/PaStiXSupport b/eigenlib/Eigen/PaStiXSupport index 7c616ee5e..de3a63b4d 100644 --- a/eigenlib/Eigen/PaStiXSupport +++ b/eigenlib/Eigen/PaStiXSupport @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_PASTIXSUPPORT_MODULE_H #define EIGEN_PASTIXSUPPORT_MODULE_H @@ -5,7 +12,6 @@ #include "src/Core/util/DisableStupidWarnings.h" -#include extern "C" { #include #include @@ -35,12 +41,8 @@ extern "C" { * */ -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - #include "src/PaStiXSupport/PaStiXSupport.h" - #include "src/Core/util/ReenableStupidWarnings.h" #endif // EIGEN_PASTIXSUPPORT_MODULE_H diff --git a/eigenlib/Eigen/PardisoSupport b/eigenlib/Eigen/PardisoSupport old mode 100644 new mode 100755 index 99330ce7a..340edf51f --- a/eigenlib/Eigen/PardisoSupport +++ b/eigenlib/Eigen/PardisoSupport @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_PARDISOSUPPORT_MODULE_H #define EIGEN_PARDISOSUPPORT_MODULE_H @@ -7,8 +14,6 @@ #include -#include - /** \ingroup Support_modules * \defgroup PardisoSupport_Module PardisoSupport module * diff --git a/eigenlib/Eigen/QR b/eigenlib/Eigen/QR index ac5b02693..80838e3bd 100644 --- a/eigenlib/Eigen/QR +++ b/eigenlib/Eigen/QR @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_QR_MODULE_H #define EIGEN_QR_MODULE_H @@ -15,31 +22,26 @@ * * This module provides various QR decompositions * This module also provides some MatrixBase methods, including: - * - MatrixBase::qr(), + * - MatrixBase::householderQr() + * - MatrixBase::colPivHouseholderQr() + * - MatrixBase::fullPivHouseholderQr() * * \code * #include * \endcode */ -#include "src/misc/Solve.h" #include "src/QR/HouseholderQR.h" #include "src/QR/FullPivHouseholderQR.h" #include "src/QR/ColPivHouseholderQR.h" +#include "src/QR/CompleteOrthogonalDecomposition.h" #ifdef EIGEN_USE_LAPACKE -#include "src/QR/HouseholderQR_MKL.h" -#include "src/QR/ColPivHouseholderQR_MKL.h" -#endif - -#ifdef EIGEN2_SUPPORT -#include "src/Eigen2Support/QR.h" +#include "src/misc/lapacke.h" +#include "src/QR/HouseholderQR_LAPACKE.h" +#include "src/QR/ColPivHouseholderQR_LAPACKE.h" #endif #include "src/Core/util/ReenableStupidWarnings.h" -#ifdef EIGEN2_SUPPORT -#include "Eigenvalues" -#endif - #endif // EIGEN_QR_MODULE_H /* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/eigenlib/Eigen/QtAlignedMalloc b/eigenlib/Eigen/QtAlignedMalloc index 46f7d83b7..4044d5ac5 100644 --- a/eigenlib/Eigen/QtAlignedMalloc +++ b/eigenlib/Eigen/QtAlignedMalloc @@ -1,3 +1,9 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_QTMALLOC_MODULE_H #define EIGEN_QTMALLOC_MODULE_H diff --git a/eigenlib/Eigen/SPQRSupport b/eigenlib/Eigen/SPQRSupport index 77016442e..f70390c17 100644 --- a/eigenlib/Eigen/SPQRSupport +++ b/eigenlib/Eigen/SPQRSupport @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_SPQRSUPPORT_MODULE_H #define EIGEN_SPQRSUPPORT_MODULE_H @@ -10,7 +17,7 @@ /** \ingroup Support_modules * \defgroup SPQRSupport_Module SuiteSparseQR module * - * This module provides an interface to the SPQR library, which is part of the suitesparse package. + * This module provides an interface to the SPQR library, which is part of the suitesparse package. * * \code * #include @@ -21,8 +28,6 @@ * */ -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" #include "src/CholmodSupport/CholmodSupport.h" #include "src/SPQRSupport/SuiteSparseQRSupport.h" diff --git a/eigenlib/Eigen/SVD b/eigenlib/Eigen/SVD index fd310017a..86143c23d 100644 --- a/eigenlib/Eigen/SVD +++ b/eigenlib/Eigen/SVD @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_SVD_MODULE_H #define EIGEN_SVD_MODULE_H @@ -12,23 +19,26 @@ * * * This module provides SVD decomposition for matrices (both real and complex). - * This decomposition is accessible via the following MatrixBase method: + * Two decomposition algorithms are provided: + * - JacobiSVD implementing two-sided Jacobi iterations is numerically very accurate, fast for small matrices, but very slow for larger ones. + * - BDCSVD implementing a recursive divide & conquer strategy on top of an upper-bidiagonalization which remains fast for large problems. + * These decompositions are accessible via the respective classes and following MatrixBase methods: * - MatrixBase::jacobiSvd() + * - MatrixBase::bdcSvd() * * \code * #include * \endcode */ -#include "src/misc/Solve.h" +#include "src/misc/RealSvd2x2.h" +#include "src/SVD/UpperBidiagonalization.h" +#include "src/SVD/SVDBase.h" #include "src/SVD/JacobiSVD.h" +#include "src/SVD/BDCSVD.h" #if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT) -#include "src/SVD/JacobiSVD_MKL.h" -#endif -#include "src/SVD/UpperBidiagonalization.h" - -#ifdef EIGEN2_SUPPORT -#include "src/Eigen2Support/SVD.h" +#include "src/misc/lapacke.h" +#include "src/SVD/JacobiSVD_LAPACKE.h" #endif #include "src/Core/util/ReenableStupidWarnings.h" diff --git a/eigenlib/Eigen/Sparse b/eigenlib/Eigen/Sparse index 7cc9c0913..a2ef7a665 100644 --- a/eigenlib/Eigen/Sparse +++ b/eigenlib/Eigen/Sparse @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_SPARSE_MODULE_H #define EIGEN_SPARSE_MODULE_H @@ -11,9 +18,9 @@ * - \ref SparseQR_Module * - \ref IterativeLinearSolvers_Module * - * \code - * #include - * \endcode + \code + #include + \endcode */ #include "SparseCore" diff --git a/eigenlib/Eigen/SparseCholesky b/eigenlib/Eigen/SparseCholesky index 9f5056aa1..b6a320c40 100644 --- a/eigenlib/Eigen/SparseCholesky +++ b/eigenlib/Eigen/SparseCholesky @@ -34,8 +34,6 @@ #error The SparseCholesky module has nothing to offer in MPL2 only mode #endif -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" #include "src/SparseCholesky/SimplicialCholesky.h" #ifndef EIGEN_MPL2_ONLY diff --git a/eigenlib/Eigen/SparseCore b/eigenlib/Eigen/SparseCore index 9b5be5e15..76966c4c4 100644 --- a/eigenlib/Eigen/SparseCore +++ b/eigenlib/Eigen/SparseCore @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_SPARSECORE_MODULE_H #define EIGEN_SPARSECORE_MODULE_H @@ -14,7 +21,7 @@ /** * \defgroup SparseCore_Module SparseCore module * - * This module provides a sparse matrix representation, and basic associatd matrix manipulations + * This module provides a sparse matrix representation, and basic associated matrix manipulations * and operations. * * See the \ref TutorialSparse "Sparse tutorial" @@ -26,37 +33,35 @@ * This module depends on: Core. */ -namespace Eigen { - -/** The type used to identify a general sparse storage. */ -struct Sparse {}; - -} - #include "src/SparseCore/SparseUtil.h" #include "src/SparseCore/SparseMatrixBase.h" +#include "src/SparseCore/SparseAssign.h" #include "src/SparseCore/CompressedStorage.h" #include "src/SparseCore/AmbiVector.h" +#include "src/SparseCore/SparseCompressedBase.h" #include "src/SparseCore/SparseMatrix.h" +#include "src/SparseCore/SparseMap.h" #include "src/SparseCore/MappedSparseMatrix.h" #include "src/SparseCore/SparseVector.h" -#include "src/SparseCore/SparseBlock.h" -#include "src/SparseCore/SparseTranspose.h" +#include "src/SparseCore/SparseRef.h" #include "src/SparseCore/SparseCwiseUnaryOp.h" #include "src/SparseCore/SparseCwiseBinaryOp.h" +#include "src/SparseCore/SparseTranspose.h" +#include "src/SparseCore/SparseBlock.h" #include "src/SparseCore/SparseDot.h" -#include "src/SparseCore/SparsePermutation.h" #include "src/SparseCore/SparseRedux.h" -#include "src/SparseCore/SparseFuzzy.h" +#include "src/SparseCore/SparseView.h" +#include "src/SparseCore/SparseDiagonalProduct.h" #include "src/SparseCore/ConservativeSparseSparseProduct.h" #include "src/SparseCore/SparseSparseProductWithPruning.h" #include "src/SparseCore/SparseProduct.h" #include "src/SparseCore/SparseDenseProduct.h" -#include "src/SparseCore/SparseDiagonalProduct.h" -#include "src/SparseCore/SparseTriangularView.h" #include "src/SparseCore/SparseSelfAdjointView.h" +#include "src/SparseCore/SparseTriangularView.h" #include "src/SparseCore/TriangularSolver.h" -#include "src/SparseCore/SparseView.h" +#include "src/SparseCore/SparsePermutation.h" +#include "src/SparseCore/SparseFuzzy.h" +#include "src/SparseCore/SparseSolverBase.h" #include "src/Core/util/ReenableStupidWarnings.h" diff --git a/eigenlib/Eigen/SparseLU b/eigenlib/Eigen/SparseLU index 8527a49bd..38b38b531 100644 --- a/eigenlib/Eigen/SparseLU +++ b/eigenlib/Eigen/SparseLU @@ -20,9 +20,6 @@ * Please, see the documentation of the SparseLU class for more details. */ -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - // Ordering interface #include "OrderingMethods" diff --git a/eigenlib/Eigen/SparseQR b/eigenlib/Eigen/SparseQR index 4ee42065e..a6f3b7f7d 100644 --- a/eigenlib/Eigen/SparseQR +++ b/eigenlib/Eigen/SparseQR @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_SPARSEQR_MODULE_H #define EIGEN_SPARSEQR_MODULE_H @@ -21,9 +28,6 @@ * */ -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - #include "OrderingMethods" #include "src/SparseCore/SparseColEtree.h" #include "src/SparseQR/SparseQR.h" diff --git a/eigenlib/Eigen/StdDeque b/eigenlib/Eigen/StdDeque index f27234778..be3a7f82b 100644 --- a/eigenlib/Eigen/StdDeque +++ b/eigenlib/Eigen/StdDeque @@ -14,7 +14,7 @@ #include "Core" #include -#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */ +#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 /* MSVC auto aligns in 64 bit builds */ #define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...) diff --git a/eigenlib/Eigen/StdList b/eigenlib/Eigen/StdList index 225c1e18f..07ba1297b 100644 --- a/eigenlib/Eigen/StdList +++ b/eigenlib/Eigen/StdList @@ -13,7 +13,7 @@ #include "Core" #include -#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */ +#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 /* MSVC auto aligns in 64 bit builds */ #define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...) diff --git a/eigenlib/Eigen/StdVector b/eigenlib/Eigen/StdVector index 6b22627f6..fdfc37766 100644 --- a/eigenlib/Eigen/StdVector +++ b/eigenlib/Eigen/StdVector @@ -14,7 +14,7 @@ #include "Core" #include -#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */ +#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 /* MSVC auto aligns in 64 bit builds */ #define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...) diff --git a/eigenlib/Eigen/SuperLUSupport b/eigenlib/Eigen/SuperLUSupport index 575e14fbc..59312a82d 100644 --- a/eigenlib/Eigen/SuperLUSupport +++ b/eigenlib/Eigen/SuperLUSupport @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_SUPERLUSUPPORT_MODULE_H #define EIGEN_SUPERLUSUPPORT_MODULE_H @@ -36,6 +43,8 @@ namespace Eigen { struct SluMatrix; } * - class SuperLU: a supernodal sequential LU factorization. * - class SuperILU: a supernodal sequential incomplete LU factorization (to be used as a preconditioner for iterative methods). * + * \warning This wrapper requires at least versions 4.0 of SuperLU. The 3.x versions are not supported. + * * \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting. * * \code @@ -48,12 +57,8 @@ namespace Eigen { struct SluMatrix; } * */ -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - #include "src/SuperLUSupport/SuperLUSupport.h" - #include "src/Core/util/ReenableStupidWarnings.h" #endif // EIGEN_SUPERLUSUPPORT_MODULE_H diff --git a/eigenlib/Eigen/UmfPackSupport b/eigenlib/Eigen/UmfPackSupport index 984f64a84..00eec8087 100644 --- a/eigenlib/Eigen/UmfPackSupport +++ b/eigenlib/Eigen/UmfPackSupport @@ -1,3 +1,10 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + #ifndef EIGEN_UMFPACKSUPPORT_MODULE_H #define EIGEN_UMFPACKSUPPORT_MODULE_H @@ -12,7 +19,7 @@ extern "C" { /** \ingroup Support_modules * \defgroup UmfPackSupport_Module UmfPackSupport module * - * This module provides an interface to the UmfPack library which is part of the suitesparse package. + * This module provides an interface to the UmfPack library which is part of the suitesparse package. * It provides the following factorization class: * - class UmfPackLU: a multifrontal sequential LU factorization. * @@ -26,9 +33,6 @@ extern "C" { * */ -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - #include "src/UmfPackSupport/UmfPackSupport.h" #include "src/Core/util/ReenableStupidWarnings.h" diff --git a/eigenlib/Eigen/src/CMakeLists.txt b/eigenlib/Eigen/src/CMakeLists.txt deleted file mode 100644 index c326f374d..000000000 --- a/eigenlib/Eigen/src/CMakeLists.txt +++ /dev/null @@ -1,7 +0,0 @@ -file(GLOB Eigen_src_subdirectories "*") -escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}") -foreach(f ${Eigen_src_subdirectories}) - if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" ) - add_subdirectory(${f}) - endif() -endforeach() diff --git a/eigenlib/Eigen/src/Cholesky/CMakeLists.txt b/eigenlib/Eigen/src/Cholesky/CMakeLists.txt deleted file mode 100644 index d01488b41..000000000 --- a/eigenlib/Eigen/src/Cholesky/CMakeLists.txt +++ /dev/null @@ -1,6 +0,0 @@ -FILE(GLOB Eigen_Cholesky_SRCS "*.h") - -INSTALL(FILES - ${Eigen_Cholesky_SRCS} - DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Cholesky COMPONENT Devel - ) diff --git a/eigenlib/Eigen/src/Cholesky/LDLT.h b/eigenlib/Eigen/src/Cholesky/LDLT.h index e01ae8233..fcee7b2e3 100644 --- a/eigenlib/Eigen/src/Cholesky/LDLT.h +++ b/eigenlib/Eigen/src/Cholesky/LDLT.h @@ -13,7 +13,7 @@ #ifndef EIGEN_LDLT_H #define EIGEN_LDLT_H -namespace Eigen { +namespace Eigen { namespace internal { template struct LDLT_Traits; @@ -28,8 +28,8 @@ namespace internal { * * \brief Robust Cholesky decomposition of a matrix with pivoting * - * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition - * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. + * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition + * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. * The other triangular part won't be read. * * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite @@ -43,7 +43,9 @@ namespace internal { * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky * decomposition to determine whether a system of equations has a solution. * - * \sa MatrixBase::ldlt(), class LLT + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT */ template class LDLT { @@ -52,15 +54,15 @@ template class LDLT enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, UpLo = _UpLo }; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; - typedef typename MatrixType::Index Index; - typedef Matrix TmpMatrixType; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Matrix TmpMatrixType; typedef Transpositions TranspositionType; typedef PermutationMatrix PermutationType; @@ -72,11 +74,11 @@ template class LDLT * The default constructor is useful in cases in which the user intends to * perform decompositions via LDLT::compute(const MatrixType&). */ - LDLT() - : m_matrix(), - m_transpositions(), + LDLT() + : m_matrix(), + m_transpositions(), m_sign(internal::ZeroSign), - m_isInitialized(false) + m_isInitialized(false) {} /** \brief Default Constructor with memory preallocation @@ -85,7 +87,7 @@ template class LDLT * according to the specified problem \a size. * \sa LDLT() */ - LDLT(Index size) + explicit LDLT(Index size) : m_matrix(size, size), m_transpositions(size), m_temporary(size), @@ -96,16 +98,35 @@ template class LDLT /** \brief Constructor with decomposition * * This calculates the decomposition for the input \a matrix. + * * \sa LDLT(Index size) */ - LDLT(const MatrixType& matrix) + template + explicit LDLT(const EigenBase& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_transpositions(matrix.rows()), m_temporary(matrix.rows()), m_sign(internal::ZeroSign), m_isInitialized(false) { - compute(matrix); + compute(matrix.derived()); + } + + /** \brief Constructs a LDLT factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. + * + * \sa LDLT(const EigenBase&) + */ + template + explicit LDLT(EigenBase& matrix) + : m_matrix(matrix.derived()), + m_transpositions(matrix.rows()), + m_temporary(matrix.rows()), + m_sign(internal::ZeroSign), + m_isInitialized(false) + { + compute(matrix.derived()); } /** Clear any existing decomposition @@ -151,13 +172,6 @@ template class LDLT eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; } - - #ifdef EIGEN2_SUPPORT - inline bool isPositiveDefinite() const - { - return isPositive(); - } - #endif /** \returns true if the matrix is negative (semidefinite) */ inline bool isNegative(void) const @@ -173,37 +187,38 @@ template class LDLT * \note_about_checking_solutions * * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ - * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, + * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. * - * \sa MatrixBase::ldlt() + * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() */ template - inline const internal::solve_retval + inline const Solve solve(const MatrixBase& b) const { eigen_assert(m_isInitialized && "LDLT is not initialized."); eigen_assert(m_matrix.rows()==b.rows() && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); - return internal::solve_retval(*this, b.derived()); + return Solve(*this, b.derived()); } - #ifdef EIGEN2_SUPPORT - template - bool solve(const MatrixBase& b, ResultType *result) const - { - *result = this->solve(b); - return true; - } - #endif - template bool solveInPlace(MatrixBase &bAndX) const; - LDLT& compute(const MatrixType& matrix); + template + LDLT& compute(const EigenBase& matrix); + + /** \returns an estimate of the reciprocal condition number of the matrix of + * which \c *this is the LDLT decomposition. + */ + RealScalar rcond() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } template LDLT& rankUpdate(const MatrixBase& w, const RealScalar& alpha=1); @@ -220,6 +235,13 @@ template class LDLT MatrixType reconstructedMatrix() const; + /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. + * + * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: + * \code x = decomposition.adjoint().solve(b) \endcode + */ + const LDLT& adjoint() const { return *this; }; + inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } @@ -231,11 +253,17 @@ template class LDLT ComputationInfo info() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); - return Success; + return m_info; } + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + EIGEN_DEVICE_FUNC + void _solve_impl(const RhsType &rhs, DstType &dst) const; + #endif + protected: - + static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); @@ -248,10 +276,12 @@ template class LDLT * is not stored), and the diagonal entries correspond to D. */ MatrixType m_matrix; + RealScalar m_l1_norm; TranspositionType m_transpositions; TmpMatrixType m_temporary; internal::SignMatrix m_sign; bool m_isInitialized; + ComputationInfo m_info; }; namespace internal { @@ -266,15 +296,17 @@ template<> struct ldlt_inplace using std::abs; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; + typedef typename TranspositionType::StorageIndex IndexType; eigen_assert(mat.rows()==mat.cols()); const Index size = mat.rows(); + bool found_zero_pivot = false; + bool ret = true; if (size <= 1) { transpositions.setIdentity(); - if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef; - else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef; + if (numext::real(mat.coeff(0,0)) > static_cast(0) ) sign = PositiveSemiDef; + else if (numext::real(mat.coeff(0,0)) < static_cast(0)) sign = NegativeSemiDef; else sign = ZeroSign; return true; } @@ -286,7 +318,7 @@ template<> struct ldlt_inplace mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); index_of_biggest_in_corner += k; - transpositions.coeffRef(k) = index_of_biggest_in_corner; + transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); if(k != index_of_biggest_in_corner) { // apply the transposition while taking care to consider only @@ -295,7 +327,7 @@ template<> struct ldlt_inplace mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); - for(int i=k+1;i struct ldlt_inplace if(rs>0) A21.noalias() -= A20 * temp.head(k); } - + // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot - // was smaller than the cutoff value. However, soince LDLT is not rank-revealing - // we should only make sure we do not introduce INF or NaN values. - // LAPACK also uses 0 as the cutoff value. + // was smaller than the cutoff value. However, since LDLT is not rank-revealing + // we should only make sure that we do not introduce INF or NaN values. + // Remark that LAPACK also uses 0 as the cutoff value. RealScalar realAkk = numext::real(mat.coeffRef(k,k)); - if((rs>0) && (abs(realAkk) > RealScalar(0))) + bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); + + if(k==0 && !pivot_is_valid) + { + // The entire diagonal is zero, there is nothing more to do + // except filling the transpositions, and checking whether the matrix is zero. + sign = ZeroSign; + for(Index j = 0; j0) && pivot_is_valid) A21 /= realAkk; + if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed + else if(!pivot_is_valid) found_zero_pivot = true; + if (sign == PositiveSemiDef) { - if (realAkk < 0) sign = Indefinite; + if (realAkk < static_cast(0)) sign = Indefinite; } else if (sign == NegativeSemiDef) { - if (realAkk > 0) sign = Indefinite; + if (realAkk > static_cast(0)) sign = Indefinite; } else if (sign == ZeroSign) { - if (realAkk > 0) sign = PositiveSemiDef; - else if (realAkk < 0) sign = NegativeSemiDef; + if (realAkk > static_cast(0)) sign = PositiveSemiDef; + else if (realAkk < static_cast(0)) sign = NegativeSemiDef; } } - return true; + return ret; } // Reference for the algorithm: Davis and Hager, "Multiple Rank @@ -356,7 +406,6 @@ template<> struct ldlt_inplace using numext::isfinite; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; const Index size = mat.rows(); eigen_assert(mat.cols() == size && w.size()==size); @@ -420,16 +469,16 @@ template struct LDLT_Traits { typedef const TriangularView MatrixL; typedef const TriangularView MatrixU; - static inline MatrixL getL(const MatrixType& m) { return m; } - static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } }; template struct LDLT_Traits { typedef const TriangularView MatrixL; typedef const TriangularView MatrixU; - static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } - static inline MatrixU getU(const MatrixType& m) { return m; } + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } }; } // end namespace internal @@ -437,21 +486,35 @@ template struct LDLT_Traits /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix */ template -LDLT& LDLT::compute(const MatrixType& a) +template +LDLT& LDLT::compute(const EigenBase& a) { check_template_parameters(); - + eigen_assert(a.rows()==a.cols()); const Index size = a.rows(); - m_matrix = a; + m_matrix = a.derived(); + + // Compute matrix L1 norm = max abs column sum. + m_l1_norm = RealScalar(0); + // TODO move this code to SelfAdjointView + for (Index col = 0; col < size; ++col) { + RealScalar abs_col_sum; + if (_UpLo == Lower) + abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); + else + abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); + if (abs_col_sum > m_l1_norm) + m_l1_norm = abs_col_sum; + } m_transpositions.resize(size); m_isInitialized = false; m_temporary.resize(size); m_sign = internal::ZeroSign; - internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign); + m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; m_isInitialized = true; return *this; @@ -464,20 +527,21 @@ LDLT& LDLT::compute(const MatrixType& a) */ template template -LDLT& LDLT::rankUpdate(const MatrixBase& w, const typename NumTraits::Real& sigma) +LDLT& LDLT::rankUpdate(const MatrixBase& w, const typename LDLT::RealScalar& sigma) { + typedef typename TranspositionType::StorageIndex IndexType; const Index size = w.rows(); if (m_isInitialized) { eigen_assert(m_matrix.rows()==size); } else - { + { m_matrix.resize(size,size); m_matrix.setZero(); m_transpositions.resize(size); for (Index i = 0; i < size; i++) - m_transpositions.coeffRef(i) = i; + m_transpositions.coeffRef(i) = IndexType(i); m_temporary.resize(size); m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; m_isInitialized = true; @@ -488,53 +552,45 @@ LDLT& LDLT::rankUpdate(const MatrixBase -struct solve_retval, Rhs> - : solve_retval_base, Rhs> +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const { - typedef LDLT<_MatrixType,_UpLo> LDLTType; - EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs) - - template void evalTo(Dest& dst) const + eigen_assert(rhs.rows() == rows()); + // dst = P b + dst = m_transpositions * rhs; + + // dst = L^-1 (P b) + matrixL().solveInPlace(dst); + + // dst = D^-1 (L^-1 P b) + // more precisely, use pseudo-inverse of D (see bug 241) + using std::abs; + const typename Diagonal::RealReturnType vecD(vectorD()); + // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon + // as motivated by LAPACK's xGELSS: + // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits::epsilon(),RealScalar(1) / NumTraits::highest()); + // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest + // diagonal element is not well justified and leads to numerical issues in some cases. + // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. + RealScalar tolerance = RealScalar(1) / NumTraits::highest(); + + for (Index i = 0; i < vecD.size(); ++i) { - eigen_assert(rhs().rows() == dec().matrixLDLT().rows()); - // dst = P b - dst = dec().transpositionsP() * rhs(); - - // dst = L^-1 (P b) - dec().matrixL().solveInPlace(dst); - - // dst = D^-1 (L^-1 P b) - // more precisely, use pseudo-inverse of D (see bug 241) - using std::abs; - using std::max; - typedef typename LDLTType::MatrixType MatrixType; - typedef typename LDLTType::RealScalar RealScalar; - const typename Diagonal::RealReturnType vectorD(dec().vectorD()); - // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon - // as motivated by LAPACK's xGELSS: - // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits::epsilon(),RealScalar(1) / NumTraits::highest()); - // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest - // diagonal element is not well justified and to numerical issues in some cases. - // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. - RealScalar tolerance = RealScalar(1) / NumTraits::highest(); - - for (Index i = 0; i < vectorD.size(); ++i) { - if(abs(vectorD(i)) > tolerance) - dst.row(i) /= vectorD(i); - else - dst.row(i).setZero(); - } + if(abs(vecD(i)) > tolerance) + dst.row(i) /= vecD(i); + else + dst.row(i).setZero(); + } - // dst = L^-T (D^-1 L^-1 P b) - dec().matrixU().solveInPlace(dst); + // dst = L^-T (D^-1 L^-1 P b) + matrixU().solveInPlace(dst); - // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b - dst = dec().transpositionsP().transpose() * dst; - } -}; + // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b + dst = m_transpositions.transpose() * dst; } +#endif /** \internal use x = ldlt_object.solve(x); * @@ -588,6 +644,7 @@ MatrixType LDLT::reconstructedMatrix() const /** \cholesky_module * \returns the Cholesky decomposition with full pivoting without square root of \c *this + * \sa MatrixBase::ldlt() */ template inline const LDLT::PlainObject, UpLo> @@ -598,6 +655,7 @@ SelfAdjointView::ldlt() const /** \cholesky_module * \returns the Cholesky decomposition with full pivoting without square root of \c *this + * \sa SelfAdjointView::ldlt() */ template inline const LDLT::PlainObject> diff --git a/eigenlib/Eigen/src/Cholesky/LLT.h b/eigenlib/Eigen/src/Cholesky/LLT.h index 59723a63d..87ca8d423 100644 --- a/eigenlib/Eigen/src/Cholesky/LLT.h +++ b/eigenlib/Eigen/src/Cholesky/LLT.h @@ -10,7 +10,7 @@ #ifndef EIGEN_LLT_H #define EIGEN_LLT_H -namespace Eigen { +namespace Eigen { namespace internal{ template struct LLT_Traits; @@ -22,8 +22,8 @@ template struct LLT_Traits; * * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features * - * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition - * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. + * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition + * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. * The other triangular part won't be read. * * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite @@ -40,8 +40,10 @@ template struct LLT_Traits; * * Example: \include LLT_example.cpp * Output: \verbinclude LLT_example.out - * - * \sa MatrixBase::llt(), class LDLT + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT */ /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, @@ -54,12 +56,12 @@ template class LLT enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; - typedef typename MatrixType::Index Index; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef typename MatrixType::StorageIndex StorageIndex; enum { PacketSize = internal::packet_traits::size, @@ -83,14 +85,30 @@ template class LLT * according to the specified problem \a size. * \sa LLT() */ - LLT(Index size) : m_matrix(size, size), + explicit LLT(Index size) : m_matrix(size, size), m_isInitialized(false) {} - LLT(const MatrixType& matrix) + template + explicit LLT(const EigenBase& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_isInitialized(false) { - compute(matrix); + compute(matrix.derived()); + } + + /** \brief Constructs a LDLT factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when + * \c MatrixType is a Eigen::Ref. + * + * \sa LLT(const EigenBase&) + */ + template + explicit LLT(EigenBase& matrix) + : m_matrix(matrix.derived()), + m_isInitialized(false) + { + compute(matrix.derived()); } /** \returns a view of the upper triangular matrix U */ @@ -115,33 +133,33 @@ template class LLT * Example: \include LLT_solve.cpp * Output: \verbinclude LLT_solve.out * - * \sa solveInPlace(), MatrixBase::llt() + * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() */ template - inline const internal::solve_retval + inline const Solve solve(const MatrixBase& b) const { eigen_assert(m_isInitialized && "LLT is not initialized."); eigen_assert(m_matrix.rows()==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b"); - return internal::solve_retval(*this, b.derived()); + return Solve(*this, b.derived()); } - #ifdef EIGEN2_SUPPORT - template - bool solve(const MatrixBase& b, ResultType *result) const - { - *result = this->solve(b); - return true; - } - - bool isPositiveDefinite() const { return true; } - #endif - template void solveInPlace(MatrixBase &bAndX) const; - LLT& compute(const MatrixType& matrix); + template + LLT& compute(const EigenBase& matrix); + + /** \returns an estimate of the reciprocal condition number of the matrix of + * which \c *this is the Cholesky decomposition. + */ + RealScalar rcond() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } /** \returns the LLT decomposition matrix * @@ -167,24 +185,38 @@ template class LLT return m_info; } + /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. + * + * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: + * \code x = decomposition.adjoint().solve(b) \endcode + */ + const LLT& adjoint() const { return *this; }; + inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } template LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + EIGEN_DEVICE_FUNC + void _solve_impl(const RhsType &rhs, DstType &dst) const; + #endif + protected: - + static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); } - + /** \internal * Used to compute and store L * The strict upper part is not used and even not initialized. */ MatrixType m_matrix; + RealScalar m_l1_norm; bool m_isInitialized; ComputationInfo m_info; }; @@ -194,12 +226,11 @@ namespace internal { template struct llt_inplace; template -static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) +static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) { using std::sqrt; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; typedef typename MatrixType::ColXpr ColXpr; typedef typename internal::remove_all::type ColXprCleaned; typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; @@ -268,11 +299,10 @@ template struct llt_inplace { typedef typename NumTraits::Real RealScalar; template - static typename MatrixType::Index unblocked(MatrixType& mat) + static Index unblocked(MatrixType& mat) { using std::sqrt; - typedef typename MatrixType::Index Index; - + eigen_assert(mat.rows()==mat.cols()); const Index size = mat.rows(); for(Index k = 0; k < size; ++k) @@ -289,15 +319,14 @@ template struct llt_inplace return k; mat.coeffRef(k,k) = x = sqrt(x); if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); - if (rs>0) A21 *= RealScalar(1)/x; + if (rs>0) A21 /= x; } return -1; } template - static typename MatrixType::Index blocked(MatrixType& m) + static Index blocked(MatrixType& m) { - typedef typename MatrixType::Index Index; eigen_assert(m.rows()==m.cols()); Index size = m.rows(); if(size<32) @@ -322,36 +351,36 @@ template struct llt_inplace Index ret; if((ret=unblocked(A11))>=0) return k+ret; if(rs>0) A11.adjoint().template triangularView().template solveInPlace(A21); - if(rs>0) A22.template selfadjointView().rankUpdate(A21,-1); // bottleneck + if(rs>0) A22.template selfadjointView().rankUpdate(A21,typename NumTraits::Literal(-1)); // bottleneck } return -1; } template - static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) { return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } }; - + template struct llt_inplace { typedef typename NumTraits::Real RealScalar; template - static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat) + static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) { Transpose matt(mat); return llt_inplace::unblocked(matt); } template - static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat) + static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) { Transpose matt(mat); return llt_inplace::blocked(matt); } template - static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) { Transpose matt(mat); return llt_inplace::rankUpdate(matt, vec.conjugate(), sigma); @@ -362,8 +391,8 @@ template struct LLT_Traits { typedef const TriangularView MatrixL; typedef const TriangularView MatrixU; - static inline MatrixL getL(const MatrixType& m) { return m; } - static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } static bool inplace_decomposition(MatrixType& m) { return llt_inplace::blocked(m)==-1; } }; @@ -372,8 +401,8 @@ template struct LLT_Traits { typedef const TriangularView MatrixL; typedef const TriangularView MatrixU; - static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } - static inline MatrixU getU(const MatrixType& m) { return m; } + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } static bool inplace_decomposition(MatrixType& m) { return llt_inplace::blocked(m)==-1; } }; @@ -388,14 +417,28 @@ template struct LLT_Traits * Output: \verbinclude TutorialLinAlgComputeTwice.out */ template -LLT& LLT::compute(const MatrixType& a) +template +LLT& LLT::compute(const EigenBase& a) { check_template_parameters(); - + eigen_assert(a.rows()==a.cols()); const Index size = a.rows(); m_matrix.resize(size, size); - m_matrix = a; + m_matrix = a.derived(); + + // Compute matrix L1 norm = max abs column sum. + m_l1_norm = RealScalar(0); + // TODO move this code to SelfAdjointView + for (Index col = 0; col < size; ++col) { + RealScalar abs_col_sum; + if (_UpLo == Lower) + abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); + else + abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); + if (abs_col_sum > m_l1_norm) + m_l1_norm = abs_col_sum; + } m_isInitialized = true; bool ok = Traits::inplace_decomposition(m_matrix); @@ -423,33 +466,24 @@ LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, c return *this; } - -namespace internal { -template -struct solve_retval, Rhs> - : solve_retval_base, Rhs> -{ - typedef LLT<_MatrixType,UpLo> LLTType; - EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs) - template void evalTo(Dest& dst) const - { - dst = rhs(); - dec().solveInPlace(dst); - } -}; +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + dst = rhs; + solveInPlace(dst); } +#endif /** \internal use x = llt_object.solve(x); - * + * * This is the \em in-place version of solve(). * * \param bAndX represents both the right-hand side matrix b and result x. * - * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. - * - * This version avoids a copy when the right hand side matrix b is not - * needed anymore. + * This version avoids a copy when the right hand side matrix b is not needed anymore. * * \sa LLT::solve(), MatrixBase::llt() */ @@ -475,6 +509,7 @@ MatrixType LLT::reconstructedMatrix() const /** \cholesky_module * \returns the LLT decomposition of \c *this + * \sa SelfAdjointView::llt() */ template inline const LLT::PlainObject> @@ -485,6 +520,7 @@ MatrixBase::llt() const /** \cholesky_module * \returns the LLT decomposition of \c *this + * \sa SelfAdjointView::llt() */ template inline const LLT::PlainObject, UpLo> diff --git a/eigenlib/Eigen/src/Cholesky/LLT_MKL.h b/eigenlib/Eigen/src/Cholesky/LLT_LAPACKE.h similarity index 71% rename from eigenlib/Eigen/src/Cholesky/LLT_MKL.h rename to eigenlib/Eigen/src/Cholesky/LLT_LAPACKE.h index 66675d747..bc6489e69 100644 --- a/eigenlib/Eigen/src/Cholesky/LLT_MKL.h +++ b/eigenlib/Eigen/src/Cholesky/LLT_LAPACKE.h @@ -25,41 +25,38 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************** - * Content : Eigen bindings to Intel(R) MKL + * Content : Eigen bindings to LAPACKe * LLt decomposition based on LAPACKE_?potrf function. ******************************************************************************** */ -#ifndef EIGEN_LLT_MKL_H -#define EIGEN_LLT_MKL_H - -#include "Eigen/src/Core/util/MKL_support.h" -#include +#ifndef EIGEN_LLT_LAPACKE_H +#define EIGEN_LLT_LAPACKE_H namespace Eigen { namespace internal { -template struct mkl_llt; +template struct lapacke_llt; -#define EIGEN_MKL_LLT(EIGTYPE, MKLTYPE, MKLPREFIX) \ -template<> struct mkl_llt \ +#define EIGEN_LAPACKE_LLT(EIGTYPE, BLASTYPE, LAPACKE_PREFIX) \ +template<> struct lapacke_llt \ { \ template \ - static inline typename MatrixType::Index potrf(MatrixType& m, char uplo) \ + static inline Index potrf(MatrixType& m, char uplo) \ { \ lapack_int matrix_order; \ lapack_int size, lda, info, StorageOrder; \ EIGTYPE* a; \ eigen_assert(m.rows()==m.cols()); \ /* Set up parameters for ?potrf */ \ - size = m.rows(); \ + size = convert_index(m.rows()); \ StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \ matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \ a = &(m.coeffRef(0,0)); \ - lda = m.outerStride(); \ + lda = convert_index(m.outerStride()); \ \ - info = LAPACKE_##MKLPREFIX##potrf( matrix_order, uplo, size, (MKLTYPE*)a, lda ); \ + info = LAPACKE_##LAPACKE_PREFIX##potrf( matrix_order, uplo, size, (BLASTYPE*)a, lda ); \ info = (info==0) ? -1 : info>0 ? info-1 : size; \ return info; \ } \ @@ -67,36 +64,36 @@ template<> struct mkl_llt \ template<> struct llt_inplace \ { \ template \ - static typename MatrixType::Index blocked(MatrixType& m) \ + static Index blocked(MatrixType& m) \ { \ - return mkl_llt::potrf(m, 'L'); \ + return lapacke_llt::potrf(m, 'L'); \ } \ template \ - static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ { return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \ }; \ template<> struct llt_inplace \ { \ template \ - static typename MatrixType::Index blocked(MatrixType& m) \ + static Index blocked(MatrixType& m) \ { \ - return mkl_llt::potrf(m, 'U'); \ + return lapacke_llt::potrf(m, 'U'); \ } \ template \ - static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ { \ Transpose matt(mat); \ return llt_inplace::rankUpdate(matt, vec.conjugate(), sigma); \ } \ }; -EIGEN_MKL_LLT(double, double, d) -EIGEN_MKL_LLT(float, float, s) -EIGEN_MKL_LLT(dcomplex, MKL_Complex16, z) -EIGEN_MKL_LLT(scomplex, MKL_Complex8, c) +EIGEN_LAPACKE_LLT(double, double, d) +EIGEN_LAPACKE_LLT(float, float, s) +EIGEN_LAPACKE_LLT(dcomplex, lapack_complex_double, z) +EIGEN_LAPACKE_LLT(scomplex, lapack_complex_float, c) } // end namespace internal } // end namespace Eigen -#endif // EIGEN_LLT_MKL_H +#endif // EIGEN_LLT_LAPACKE_H diff --git a/eigenlib/Eigen/src/CholmodSupport/CMakeLists.txt b/eigenlib/Eigen/src/CholmodSupport/CMakeLists.txt deleted file mode 100644 index 814dfa613..000000000 --- a/eigenlib/Eigen/src/CholmodSupport/CMakeLists.txt +++ /dev/null @@ -1,6 +0,0 @@ -FILE(GLOB Eigen_CholmodSupport_SRCS "*.h") - -INSTALL(FILES - ${Eigen_CholmodSupport_SRCS} - DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/CholmodSupport COMPONENT Devel - ) diff --git a/eigenlib/Eigen/src/CholmodSupport/CholmodSupport.h b/eigenlib/Eigen/src/CholmodSupport/CholmodSupport.h index c449960de..571972023 100644 --- a/eigenlib/Eigen/src/CholmodSupport/CholmodSupport.h +++ b/eigenlib/Eigen/src/CholmodSupport/CholmodSupport.h @@ -14,46 +14,52 @@ namespace Eigen { namespace internal { -template -void cholmod_configure_matrix(CholmodType& mat) -{ - if (internal::is_same::value) - { - mat.xtype = CHOLMOD_REAL; - mat.dtype = CHOLMOD_SINGLE; - } - else if (internal::is_same::value) - { +template struct cholmod_configure_matrix; + +template<> struct cholmod_configure_matrix { + template + static void run(CholmodType& mat) { mat.xtype = CHOLMOD_REAL; mat.dtype = CHOLMOD_DOUBLE; } - else if (internal::is_same >::value) - { - mat.xtype = CHOLMOD_COMPLEX; - mat.dtype = CHOLMOD_SINGLE; - } - else if (internal::is_same >::value) - { +}; + +template<> struct cholmod_configure_matrix > { + template + static void run(CholmodType& mat) { mat.xtype = CHOLMOD_COMPLEX; mat.dtype = CHOLMOD_DOUBLE; } - else - { - eigen_assert(false && "Scalar type not supported by CHOLMOD"); - } -} +}; + +// Other scalar types are not yet suppotred by Cholmod +// template<> struct cholmod_configure_matrix { +// template +// static void run(CholmodType& mat) { +// mat.xtype = CHOLMOD_REAL; +// mat.dtype = CHOLMOD_SINGLE; +// } +// }; +// +// template<> struct cholmod_configure_matrix > { +// template +// static void run(CholmodType& mat) { +// mat.xtype = CHOLMOD_COMPLEX; +// mat.dtype = CHOLMOD_SINGLE; +// } +// }; } // namespace internal /** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object. * Note that the data are shared. */ -template -cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat) +template +cholmod_sparse viewAsCholmod(Ref > mat) { cholmod_sparse res; res.nzmax = mat.nonZeros(); - res.nrow = mat.rows();; + res.nrow = mat.rows(); res.ncol = mat.cols(); res.p = mat.outerIndexPtr(); res.i = mat.innerIndexPtr(); @@ -74,11 +80,11 @@ cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat) res.dtype = 0; res.stype = -1; - if (internal::is_same<_Index,int>::value) + if (internal::is_same<_StorageIndex,int>::value) { res.itype = CHOLMOD_INT; } - else if (internal::is_same<_Index,UF_long>::value) + else if (internal::is_same<_StorageIndex,long>::value) { res.itype = CHOLMOD_LONG; } @@ -88,7 +94,7 @@ cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat) } // setup res.xtype - internal::cholmod_configure_matrix<_Scalar>(res); + internal::cholmod_configure_matrix<_Scalar>::run(res); res.stype = 0; @@ -98,16 +104,23 @@ cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat) template const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat) { - cholmod_sparse res = viewAsCholmod(mat.const_cast_derived()); + cholmod_sparse res = viewAsCholmod(Ref >(mat.const_cast_derived())); + return res; +} + +template +const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat) +{ + cholmod_sparse res = viewAsCholmod(Ref >(mat.const_cast_derived())); return res; } /** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix. * The data are not copied but shared. */ template -cholmod_sparse viewAsCholmod(const SparseSelfAdjointView, UpLo>& mat) +cholmod_sparse viewAsCholmod(const SparseSelfAdjointView, UpLo>& mat) { - cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived()); + cholmod_sparse res = viewAsCholmod(Ref >(mat.matrix().const_cast_derived())); if(UpLo==Upper) res.stype = 1; if(UpLo==Lower) res.stype = -1; @@ -131,19 +144,19 @@ cholmod_dense viewAsCholmod(MatrixBase& mat) res.x = (void*)(mat.derived().data()); res.z = 0; - internal::cholmod_configure_matrix(res); + internal::cholmod_configure_matrix::run(res); return res; } /** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix. * The data are not copied but shared. */ -template -MappedSparseMatrix viewAsEigen(cholmod_sparse& cm) +template +MappedSparseMatrix viewAsEigen(cholmod_sparse& cm) { - return MappedSparseMatrix - (cm.nrow, cm.ncol, static_cast(cm.p)[cm.ncol], - static_cast(cm.p), static_cast(cm.i),static_cast(cm.x) ); + return MappedSparseMatrix + (cm.nrow, cm.ncol, static_cast(cm.p)[cm.ncol], + static_cast(cm.p), static_cast(cm.i),static_cast(cm.x) ); } enum CholmodMode { @@ -157,29 +170,39 @@ enum CholmodMode { * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT */ template -class CholmodBase : internal::noncopyable +class CholmodBase : public SparseSolverBase { + protected: + typedef SparseSolverBase Base; + using Base::derived; + using Base::m_isInitialized; public: typedef _MatrixType MatrixType; enum { UpLo = _UpLo }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef MatrixType CholMatrixType; - typedef typename MatrixType::Index Index; + typedef typename MatrixType::StorageIndex StorageIndex; + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; public: CholmodBase() - : m_cholmodFactor(0), m_info(Success), m_isInitialized(false) + : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false) { - m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0); + EIGEN_STATIC_ASSERT((internal::is_same::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY); + m_shiftOffset[0] = m_shiftOffset[1] = 0.0; cholmod_start(&m_cholmod); } - CholmodBase(const MatrixType& matrix) - : m_cholmodFactor(0), m_info(Success), m_isInitialized(false) + explicit CholmodBase(const MatrixType& matrix) + : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false) { - m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0); + EIGEN_STATIC_ASSERT((internal::is_same::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY); + m_shiftOffset[0] = m_shiftOffset[1] = 0.0; cholmod_start(&m_cholmod); compute(matrix); } @@ -191,11 +214,8 @@ class CholmodBase : internal::noncopyable cholmod_finish(&m_cholmod); } - inline Index cols() const { return m_cholmodFactor->n; } - inline Index rows() const { return m_cholmodFactor->n; } - - Derived& derived() { return *static_cast(this); } - const Derived& derived() const { return *static_cast(this); } + inline StorageIndex cols() const { return internal::convert_index(m_cholmodFactor->n); } + inline StorageIndex rows() const { return internal::convert_index(m_cholmodFactor->n); } /** \brief Reports whether previous computation was successful. * @@ -216,34 +236,6 @@ class CholmodBase : internal::noncopyable return derived(); } - /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. - * - * \sa compute() - */ - template - inline const internal::solve_retval - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "LLT is not initialized."); - eigen_assert(rows()==b.rows() - && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b"); - return internal::solve_retval(*this, b.derived()); - } - - /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. - * - * \sa compute() - */ - template - inline const internal::sparse_solve_retval - solve(const SparseMatrixBase& b) const - { - eigen_assert(m_isInitialized && "LLT is not initialized."); - eigen_assert(rows()==b.rows() - && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b"); - return internal::sparse_solve_retval(*this, b.derived()); - } - /** Performs a symbolic decomposition on the sparsity pattern of \a matrix. * * This function is particularly useful when solving for several problems having the same structure. @@ -277,7 +269,7 @@ class CholmodBase : internal::noncopyable eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView()); cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod); - + // If the factorization failed, minor is the column at which it did. On success minor == n. this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue); m_factorizationIsOk = true; @@ -290,20 +282,22 @@ class CholmodBase : internal::noncopyable #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal */ template - void _solve(const MatrixBase &b, MatrixBase &dest) const + void _solve_impl(const MatrixBase &b, MatrixBase &dest) const { eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); const Index size = m_cholmodFactor->n; EIGEN_UNUSED_VARIABLE(size); eigen_assert(size==b.rows()); + + // Cholmod needs column-major stoarge without inner-stride, which corresponds to the default behavior of Ref. + Ref > b_ref(b.derived()); - // note: cd stands for Cholmod Dense - Rhs& b_ref(b.const_cast_derived()); cholmod_dense b_cd = viewAsCholmod(b_ref); cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod); if(!x_cd) { this->m_info = NumericalIssue; + return; } // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) dest = Matrix::Map(reinterpret_cast(x_cd->x),b.rows(),b.cols()); @@ -311,8 +305,8 @@ class CholmodBase : internal::noncopyable } /** \internal */ - template - void _solve(const SparseMatrix &b, SparseMatrix &dest) const + template + void _solve_impl(const SparseMatrixBase &b, SparseMatrixBase &dest) const { eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); const Index size = m_cholmodFactor->n; @@ -320,14 +314,16 @@ class CholmodBase : internal::noncopyable eigen_assert(size==b.rows()); // note: cs stands for Cholmod Sparse - cholmod_sparse b_cs = viewAsCholmod(b); + Ref > b_ref(b.const_cast_derived()); + cholmod_sparse b_cs = viewAsCholmod(b_ref); cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod); if(!x_cs) { this->m_info = NumericalIssue; + return; } // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) - dest = viewAsEigen(*x_cs); + dest.derived() = viewAsEigen(*x_cs); cholmod_free_sparse(&x_cs, &m_cholmod); } #endif // EIGEN_PARSED_BY_DOXYGEN @@ -344,10 +340,61 @@ class CholmodBase : internal::noncopyable */ Derived& setShift(const RealScalar& offset) { - m_shiftOffset[0] = offset; + m_shiftOffset[0] = double(offset); return derived(); } + /** \returns the determinant of the underlying matrix from the current factorization */ + Scalar determinant() const + { + using std::exp; + return exp(logDeterminant()); + } + + /** \returns the log determinant of the underlying matrix from the current factorization */ + Scalar logDeterminant() const + { + using std::log; + using numext::real; + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); + + RealScalar logDet = 0; + Scalar *x = static_cast(m_cholmodFactor->x); + if (m_cholmodFactor->is_super) + { + // Supernodal factorization stored as a packed list of dense column-major blocs, + // as described by the following structure: + + // super[k] == index of the first column of the j-th super node + StorageIndex *super = static_cast(m_cholmodFactor->super); + // pi[k] == offset to the description of row indices + StorageIndex *pi = static_cast(m_cholmodFactor->pi); + // px[k] == offset to the respective dense block + StorageIndex *px = static_cast(m_cholmodFactor->px); + + Index nb_super_nodes = m_cholmodFactor->nsuper; + for (Index k=0; k < nb_super_nodes; ++k) + { + StorageIndex ncols = super[k + 1] - super[k]; + StorageIndex nrows = pi[k + 1] - pi[k]; + + Map, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1)); + logDet += sk.real().log().sum(); + } + } + else + { + // Simplicial factorization stored as standard CSC matrix. + StorageIndex *p = static_cast(m_cholmodFactor->p); + Index size = m_cholmodFactor->n; + for (Index k=0; kis_ll) + logDet *= 2.0; + return logDet; + }; + template void dumpMemory(Stream& /*s*/) {} @@ -355,9 +402,8 @@ class CholmodBase : internal::noncopyable protected: mutable cholmod_common m_cholmod; cholmod_factor* m_cholmodFactor; - RealScalar m_shiftOffset[2]; + double m_shiftOffset[2]; mutable ComputationInfo m_info; - bool m_isInitialized; int m_factorizationIsOk; int m_analysisIsOk; }; @@ -376,9 +422,13 @@ class CholmodBase : internal::noncopyable * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower * or Upper. Default is Lower. * + * \implsparsesolverconcept + * * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. * - * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT + * \warning Only double precision real and complex scalar types are supported by Cholmod. + * + * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT */ template class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> > @@ -395,7 +445,7 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl CholmodSimplicialLLT(const MatrixType& matrix) : Base() { init(); - compute(matrix); + this->compute(matrix); } ~CholmodSimplicialLLT() {} @@ -423,9 +473,13 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower * or Upper. Default is Lower. * + * \implsparsesolverconcept + * * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. * - * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT + * \warning Only double precision real and complex scalar types are supported by Cholmod. + * + * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT */ template class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> > @@ -442,7 +496,7 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp CholmodSimplicialLDLT(const MatrixType& matrix) : Base() { init(); - compute(matrix); + this->compute(matrix); } ~CholmodSimplicialLDLT() {} @@ -468,9 +522,13 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower * or Upper. Default is Lower. * + * \implsparsesolverconcept + * * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. * - * \sa \ref TutorialSparseDirectSolvers + * \warning Only double precision real and complex scalar types are supported by Cholmod. + * + * \sa \ref TutorialSparseSolverConcept */ template class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> > @@ -487,7 +545,7 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper CholmodSupernodalLLT(const MatrixType& matrix) : Base() { init(); - compute(matrix); + this->compute(matrix); } ~CholmodSupernodalLLT() {} @@ -515,9 +573,13 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower * or Upper. Default is Lower. * + * \implsparsesolverconcept + * * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. * - * \sa \ref TutorialSparseDirectSolvers + * \warning Only double precision real and complex scalar types are supported by Cholmod. + * + * \sa \ref TutorialSparseSolverConcept */ template class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> > @@ -534,7 +596,7 @@ class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecom CholmodDecomposition(const MatrixType& matrix) : Base() { init(); - compute(matrix); + this->compute(matrix); } ~CholmodDecomposition() {} @@ -572,36 +634,6 @@ class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecom } }; -namespace internal { - -template -struct solve_retval, Rhs> - : solve_retval_base, Rhs> -{ - typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec; - EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) - - template void evalTo(Dest& dst) const - { - dec()._solve(rhs(),dst); - } -}; - -template -struct sparse_solve_retval, Rhs> - : sparse_solve_retval_base, Rhs> -{ - typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec; - EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) - - template void evalTo(Dest& dst) const - { - dec()._solve(rhs(),dst); - } -}; - -} // end namespace internal - } // end namespace Eigen #endif // EIGEN_CHOLMODSUPPORT_H diff --git a/eigenlib/Eigen/src/Core/Array.h b/eigenlib/Eigen/src/Core/Array.h index 0ab03eff0..0d34269fd 100644 --- a/eigenlib/Eigen/src/Core/Array.h +++ b/eigenlib/Eigen/src/Core/Array.h @@ -12,7 +12,16 @@ namespace Eigen { -/** \class Array +namespace internal { +template +struct traits > : traits > +{ + typedef ArrayXpr XprKind; + typedef ArrayBase > XprBase; +}; +} + +/** \class Array * \ingroup Core_Module * * \brief General-purpose arrays with easy API for coefficient-wise operations @@ -24,20 +33,14 @@ namespace Eigen { * API for the %Matrix class provides easy access to linear-algebra * operations. * + * See documentation of class Matrix for detailed information on the template parameters + * storage layout. + * * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN. + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN. * - * \sa \ref TutorialArrayClass, \ref TopicClassHierarchy + * \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy */ -namespace internal { -template -struct traits > : traits > -{ - typedef ArrayXpr XprKind; - typedef ArrayBase > XprBase; -}; -} - template class Array : public PlainObjectBase > @@ -69,11 +72,27 @@ class Array * the usage of 'using'. This should be done only for operator=. */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Array& operator=(const EigenBase &other) { return Base::operator=(other); } + /** Set all the entries to \a value. + * \sa DenseBase::setConstant(), DenseBase::fill() + */ + /* This overload is needed because the usage of + * using Base::operator=; + * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped + * the usage of 'using'. This should be done only for operator=. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array& operator=(const Scalar &value) + { + Base::setConstant(value); + return *this; + } + /** Copies the value of the expression \a other into \c *this with automatic resizing. * * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), @@ -84,7 +103,8 @@ class Array * remain row-vectors and vectors remain vectors. */ template - EIGEN_STRONG_INLINE Array& operator=(const ArrayBase& other) + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array& operator=(const DenseBase& other) { return Base::_set(other); } @@ -92,11 +112,12 @@ class Array /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Array& operator=(const Array& other) { return Base::_set(other); } - + /** Default constructor. * * For fixed-size matrices, does nothing. @@ -107,6 +128,7 @@ class Array * * \sa resize(Index,Index) */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Array() : Base() { Base::_check_template_params(); @@ -116,6 +138,7 @@ class Array #ifndef EIGEN_PARSED_BY_DOXYGEN // FIXME is it still needed ?? /** \internal */ + EIGEN_DEVICE_FUNC Array(internal::constructor_without_unaligned_array_assert) : Base(internal::constructor_without_unaligned_array_assert()) { @@ -124,41 +147,64 @@ class Array } #endif - /** Constructs a vector or row-vector with given dimension. \only_for_vectors - * - * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, - * it is redundant to pass the dimension here, so it makes more sense to use the default - * constructor Matrix() instead. - */ - EIGEN_STRONG_INLINE explicit Array(Index dim) - : Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim) +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + Array(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible::value) + : Base(std::move(other)) { Base::_check_template_params(); - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array) - eigen_assert(dim >= 0); - eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim); - EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic) + Base::_set_noalias(other); + } + EIGEN_DEVICE_FUNC + Array& operator=(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable::value) + { + other.swap(*this); + return *this; } +#endif #ifndef EIGEN_PARSED_BY_DOXYGEN + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE explicit Array(const T& x) + { + Base::_check_template_params(); + Base::template _init1(x); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1) { Base::_check_template_params(); this->template _init2(val0, val1); } #else - /** constructs an uninitialized matrix with \a rows rows and \a cols columns. + /** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */ + EIGEN_DEVICE_FUNC explicit Array(const Scalar *data); + /** Constructs a vector or row-vector with given dimension. \only_for_vectors + * + * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, + * it is redundant to pass the dimension here, so it makes more sense to use the default + * constructor Array() instead. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE explicit Array(Index dim); + /** constructs an initialized 1x1 Array with the given coefficient */ + Array(const Scalar& value); + /** constructs an uninitialized array with \a rows rows and \a cols columns. * - * This is useful for dynamic-size matrices. For fixed-size matrices, + * This is useful for dynamic-size arrays. For fixed-size arrays, * it is redundant to pass these parameters, so one should use the default constructor - * Matrix() instead. */ + * Array() instead. */ Array(Index rows, Index cols); /** constructs an initialized 2D vector with given coefficients */ Array(const Scalar& val0, const Scalar& val1); #endif /** constructs an initialized 3D vector with given coefficients */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2) { Base::_check_template_params(); @@ -168,6 +214,7 @@ class Array m_storage.data()[2] = val2; } /** constructs an initialized 4D vector with given coefficients */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3) { Base::_check_template_params(); @@ -178,51 +225,21 @@ class Array m_storage.data()[3] = val3; } - explicit Array(const Scalar *data); - - /** Constructor copying the value of the expression \a other */ - template - EIGEN_STRONG_INLINE Array(const ArrayBase& other) - : Base(other.rows() * other.cols(), other.rows(), other.cols()) - { - Base::_check_template_params(); - Base::_set_noalias(other); - } /** Copy constructor */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Array(const Array& other) - : Base(other.rows() * other.cols(), other.rows(), other.cols()) - { - Base::_check_template_params(); - Base::_set_noalias(other); - } - /** Copy constructor with in-place evaluation */ - template - EIGEN_STRONG_INLINE Array(const ReturnByValue& other) - { - Base::_check_template_params(); - Base::resize(other.rows(), other.cols()); - other.evalTo(*this); - } + : Base(other) + { } /** \sa MatrixBase::operator=(const EigenBase&) */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Array(const EigenBase &other) - : Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols()) - { - Base::_check_template_params(); - Base::_resize_to_match(other); - *this = other; - } - - /** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the - * data pointers. - */ - template - void swap(ArrayBase const & other) - { this->_swap(other.derived()); } + : Base(other.derived()) + { } - inline Index innerStride() const { return 1; } - inline Index outerStride() const { return this->innerSize(); } + EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); } #ifdef EIGEN_ARRAY_PLUGIN #include EIGEN_ARRAY_PLUGIN diff --git a/eigenlib/Eigen/src/Core/ArrayBase.h b/eigenlib/Eigen/src/Core/ArrayBase.h index 38852600d..f0232f65e 100644 --- a/eigenlib/Eigen/src/Core/ArrayBase.h +++ b/eigenlib/Eigen/src/Core/ArrayBase.h @@ -32,7 +32,7 @@ template class MatrixWrapper; * \tparam Derived is the derived type, e.g., an array or an expression type. * * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN. + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN. * * \sa class MatrixBase, \ref TopicClassHierarchy */ @@ -46,11 +46,7 @@ template class ArrayBase typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl; - using internal::special_scalar_op_base::Scalar, - typename NumTraits::Scalar>::Real>::operator*; - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; @@ -64,8 +60,7 @@ template class ArrayBase using Base::MaxSizeAtCompileTime; using Base::IsVectorAtCompileTime; using Base::Flags; - using Base::CoeffReadCost; - + using Base::derived; using Base::const_cast_derived; using Base::rows; @@ -85,25 +80,14 @@ template class ArrayBase #endif // not EIGEN_PARSED_BY_DOXYGEN #ifndef EIGEN_PARSED_BY_DOXYGEN - /** \internal the plain matrix type corresponding to this expression. Note that is not necessarily - * exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const - * reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either - * PlainObject or const PlainObject&. - */ - typedef Array::Scalar, - internal::traits::RowsAtCompileTime, - internal::traits::ColsAtCompileTime, - AutoAlign | (internal::traits::Flags&RowMajorBit ? RowMajor : ColMajor), - internal::traits::MaxRowsAtCompileTime, - internal::traits::MaxColsAtCompileTime - > PlainObject; - + typedef typename Base::PlainObject PlainObject; /** \internal Represents a matrix with all coefficients equal to one another*/ - typedef CwiseNullaryOp,Derived> ConstantReturnType; + typedef CwiseNullaryOp,PlainObject> ConstantReturnType; #endif // not EIGEN_PARSED_BY_DOXYGEN #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase +#define EIGEN_DOC_UNARY_ADDONS(X,Y) # include "../plugins/CommonCwiseUnaryOps.h" # include "../plugins/MatrixCwiseUnaryOps.h" # include "../plugins/ArrayCwiseUnaryOps.h" @@ -114,44 +98,62 @@ template class ArrayBase # include EIGEN_ARRAYBASE_PLUGIN # endif #undef EIGEN_CURRENT_STORAGE_BASE_CLASS +#undef EIGEN_DOC_UNARY_ADDONS /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const ArrayBase& other) { - return internal::assign_selector::run(derived(), other.derived()); + internal::call_assignment(derived(), other.derived()); + return derived(); } - - Derived& operator+=(const Scalar& scalar) - { return *this = derived() + scalar; } - Derived& operator-=(const Scalar& scalar) - { return *this = derived() - scalar; } + + /** Set all the entries to \a value. + * \sa DenseBase::setConstant(), DenseBase::fill() */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator=(const Scalar &value) + { Base::setConstant(value); return derived(); } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator+=(const Scalar& scalar); + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator-=(const Scalar& scalar); template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator+=(const ArrayBase& other); template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator-=(const ArrayBase& other); template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*=(const ArrayBase& other); template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator/=(const ArrayBase& other); public: + EIGEN_DEVICE_FUNC ArrayBase& array() { return *this; } + EIGEN_DEVICE_FUNC const ArrayBase& array() const { return *this; } /** \returns an \link Eigen::MatrixBase Matrix \endlink expression of this array * \sa MatrixBase::array() */ - MatrixWrapper matrix() { return derived(); } - const MatrixWrapper matrix() const { return derived(); } + EIGEN_DEVICE_FUNC + MatrixWrapper matrix() { return MatrixWrapper(derived()); } + EIGEN_DEVICE_FUNC + const MatrixWrapper matrix() const { return MatrixWrapper(derived()); } // template // inline void evalTo(Dest& dst) const { dst = matrix(); } protected: + EIGEN_DEVICE_FUNC ArrayBase() : Base() {} private: @@ -176,8 +178,7 @@ template EIGEN_STRONG_INLINE Derived & ArrayBase::operator-=(const ArrayBase &other) { - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); + call_assignment(derived(), other.derived(), internal::sub_assign_op()); return derived(); } @@ -190,8 +191,7 @@ template EIGEN_STRONG_INLINE Derived & ArrayBase::operator+=(const ArrayBase& other) { - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); + call_assignment(derived(), other.derived(), internal::add_assign_op()); return derived(); } @@ -204,8 +204,7 @@ template EIGEN_STRONG_INLINE Derived & ArrayBase::operator*=(const ArrayBase& other) { - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); + call_assignment(derived(), other.derived(), internal::mul_assign_op()); return derived(); } @@ -218,8 +217,7 @@ template EIGEN_STRONG_INLINE Derived & ArrayBase::operator/=(const ArrayBase& other) { - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); + call_assignment(derived(), other.derived(), internal::div_assign_op()); return derived(); } diff --git a/eigenlib/Eigen/src/Core/ArrayWrapper.h b/eigenlib/Eigen/src/Core/ArrayWrapper.h index b4641e2a0..a04521a16 100644 --- a/eigenlib/Eigen/src/Core/ArrayWrapper.h +++ b/eigenlib/Eigen/src/Core/ArrayWrapper.h @@ -44,6 +44,7 @@ class ArrayWrapper : public ArrayBase > typedef ArrayBase Base; EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper) EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper) + typedef typename internal::remove_all::type NestedExpression; typedef typename internal::conditional< internal::is_lvalue::value, @@ -51,76 +52,45 @@ class ArrayWrapper : public ArrayBase > const Scalar >::type ScalarWithConstIfNotLvalue; - typedef typename internal::nested::type NestedExpressionType; + typedef typename internal::ref_selector::non_const_type NestedExpressionType; - inline ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {} + using Base::coeffRef; + EIGEN_DEVICE_FUNC + explicit EIGEN_STRONG_INLINE ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {} + + EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); } + EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); } - inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); } + EIGEN_DEVICE_FUNC + inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); } + EIGEN_DEVICE_FUNC inline const Scalar* data() const { return m_expression.data(); } - inline CoeffReturnType coeff(Index rowId, Index colId) const - { - return m_expression.coeff(rowId, colId); - } - - inline Scalar& coeffRef(Index rowId, Index colId) - { - return m_expression.const_cast_derived().coeffRef(rowId, colId); - } - + EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index rowId, Index colId) const { - return m_expression.const_cast_derived().coeffRef(rowId, colId); - } - - inline CoeffReturnType coeff(Index index) const - { - return m_expression.coeff(index); - } - - inline Scalar& coeffRef(Index index) - { - return m_expression.const_cast_derived().coeffRef(index); + return m_expression.coeffRef(rowId, colId); } + EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index index) const { - return m_expression.const_cast_derived().coeffRef(index); - } - - template - inline const PacketScalar packet(Index rowId, Index colId) const - { - return m_expression.template packet(rowId, colId); - } - - template - inline void writePacket(Index rowId, Index colId, const PacketScalar& val) - { - m_expression.const_cast_derived().template writePacket(rowId, colId, val); - } - - template - inline const PacketScalar packet(Index index) const - { - return m_expression.template packet(index); - } - - template - inline void writePacket(Index index, const PacketScalar& val) - { - m_expression.const_cast_derived().template writePacket(index, val); + return m_expression.coeffRef(index); } template + EIGEN_DEVICE_FUNC inline void evalTo(Dest& dst) const { dst = m_expression; } const typename internal::remove_all::type& + EIGEN_DEVICE_FUNC nestedExpression() const { return m_expression; @@ -128,10 +98,12 @@ class ArrayWrapper : public ArrayBase > /** Forwards the resizing request to the nested expression * \sa DenseBase::resize(Index) */ - void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); } + EIGEN_DEVICE_FUNC + void resize(Index newSize) { m_expression.resize(newSize); } /** Forwards the resizing request to the nested expression * \sa DenseBase::resize(Index,Index)*/ - void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); } + EIGEN_DEVICE_FUNC + void resize(Index rows, Index cols) { m_expression.resize(rows,cols); } protected: NestedExpressionType m_expression; @@ -169,6 +141,7 @@ class MatrixWrapper : public MatrixBase > typedef MatrixBase > Base; EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper) EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper) + typedef typename internal::remove_all::type NestedExpression; typedef typename internal::conditional< internal::is_lvalue::value, @@ -176,72 +149,40 @@ class MatrixWrapper : public MatrixBase > const Scalar >::type ScalarWithConstIfNotLvalue; - typedef typename internal::nested::type NestedExpressionType; + typedef typename internal::ref_selector::non_const_type NestedExpressionType; - inline MatrixWrapper(ExpressionType& a_matrix) : m_expression(a_matrix) {} + using Base::coeffRef; + EIGEN_DEVICE_FUNC + explicit inline MatrixWrapper(ExpressionType& matrix) : m_expression(matrix) {} + + EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); } + EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); } - inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); } + EIGEN_DEVICE_FUNC + inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); } + EIGEN_DEVICE_FUNC inline const Scalar* data() const { return m_expression.data(); } - inline CoeffReturnType coeff(Index rowId, Index colId) const - { - return m_expression.coeff(rowId, colId); - } - - inline Scalar& coeffRef(Index rowId, Index colId) - { - return m_expression.const_cast_derived().coeffRef(rowId, colId); - } - + EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index rowId, Index colId) const { return m_expression.derived().coeffRef(rowId, colId); } - inline CoeffReturnType coeff(Index index) const - { - return m_expression.coeff(index); - } - - inline Scalar& coeffRef(Index index) - { - return m_expression.const_cast_derived().coeffRef(index); - } - + EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index index) const { - return m_expression.const_cast_derived().coeffRef(index); - } - - template - inline const PacketScalar packet(Index rowId, Index colId) const - { - return m_expression.template packet(rowId, colId); - } - - template - inline void writePacket(Index rowId, Index colId, const PacketScalar& val) - { - m_expression.const_cast_derived().template writePacket(rowId, colId, val); - } - - template - inline const PacketScalar packet(Index index) const - { - return m_expression.template packet(index); - } - - template - inline void writePacket(Index index, const PacketScalar& val) - { - m_expression.const_cast_derived().template writePacket(index, val); + return m_expression.coeffRef(index); } + EIGEN_DEVICE_FUNC const typename internal::remove_all::type& nestedExpression() const { @@ -250,10 +191,12 @@ class MatrixWrapper : public MatrixBase > /** Forwards the resizing request to the nested expression * \sa DenseBase::resize(Index) */ - void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); } + EIGEN_DEVICE_FUNC + void resize(Index newSize) { m_expression.resize(newSize); } /** Forwards the resizing request to the nested expression * \sa DenseBase::resize(Index,Index)*/ - void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); } + EIGEN_DEVICE_FUNC + void resize(Index rows, Index cols) { m_expression.resize(rows,cols); } protected: NestedExpressionType m_expression; diff --git a/eigenlib/Eigen/src/Core/Assign.h b/eigenlib/Eigen/src/Core/Assign.h index bcfc261e5..53806ba33 100644 --- a/eigenlib/Eigen/src/Core/Assign.h +++ b/eigenlib/Eigen/src/Core/Assign.h @@ -14,478 +14,6 @@ namespace Eigen { -namespace internal { - -/*************************************************************************** -* Part 1 : the logic deciding a strategy for traversal and unrolling * -***************************************************************************/ - -template -struct assign_traits -{ -public: - enum { - DstIsAligned = Derived::Flags & AlignedBit, - DstHasDirectAccess = Derived::Flags & DirectAccessBit, - SrcIsAligned = OtherDerived::Flags & AlignedBit, - JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned - }; - -private: - enum { - InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime) - : int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime) - : int(Derived::RowsAtCompileTime), - InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime) - : int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime) - : int(Derived::MaxRowsAtCompileTime), - MaxSizeAtCompileTime = Derived::SizeAtCompileTime, - PacketSize = packet_traits::size - }; - - enum { - StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)), - MightVectorize = StorageOrdersAgree - && (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit), - MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0 - && int(DstIsAligned) && int(SrcIsAligned), - MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit), - MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess - && (DstIsAligned || MaxSizeAtCompileTime == Dynamic), - /* If the destination isn't aligned, we have to do runtime checks and we don't unroll, - so it's only good for large enough sizes. */ - MaySliceVectorize = MightVectorize && DstHasDirectAccess - && (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize) - /* slice vectorization can be slow, so we only want it if the slices are big, which is - indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block - in a fixed-size matrix */ - }; - -public: - enum { - Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal) - : int(MayLinearVectorize) ? int(LinearVectorizedTraversal) - : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) - : int(MayLinearize) ? int(LinearTraversal) - : int(DefaultTraversal), - Vectorized = int(Traversal) == InnerVectorizedTraversal - || int(Traversal) == LinearVectorizedTraversal - || int(Traversal) == SliceVectorizedTraversal - }; - -private: - enum { - UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1), - MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic - && int(OtherDerived::CoeffReadCost) != Dynamic - && int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit), - MayUnrollInner = int(InnerSize) != Dynamic - && int(OtherDerived::CoeffReadCost) != Dynamic - && int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit) - }; - -public: - enum { - Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal)) - ? ( - int(MayUnrollCompletely) ? int(CompleteUnrolling) - : int(MayUnrollInner) ? int(InnerUnrolling) - : int(NoUnrolling) - ) - : int(Traversal) == int(LinearVectorizedTraversal) - ? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) ) - : int(Traversal) == int(LinearTraversal) - ? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) : int(NoUnrolling) ) - : int(NoUnrolling) - }; - -#ifdef EIGEN_DEBUG_ASSIGN - static void debug() - { - EIGEN_DEBUG_VAR(DstIsAligned) - EIGEN_DEBUG_VAR(SrcIsAligned) - EIGEN_DEBUG_VAR(JointAlignment) - EIGEN_DEBUG_VAR(InnerSize) - EIGEN_DEBUG_VAR(InnerMaxSize) - EIGEN_DEBUG_VAR(PacketSize) - EIGEN_DEBUG_VAR(StorageOrdersAgree) - EIGEN_DEBUG_VAR(MightVectorize) - EIGEN_DEBUG_VAR(MayLinearize) - EIGEN_DEBUG_VAR(MayInnerVectorize) - EIGEN_DEBUG_VAR(MayLinearVectorize) - EIGEN_DEBUG_VAR(MaySliceVectorize) - EIGEN_DEBUG_VAR(Traversal) - EIGEN_DEBUG_VAR(UnrollingLimit) - EIGEN_DEBUG_VAR(MayUnrollCompletely) - EIGEN_DEBUG_VAR(MayUnrollInner) - EIGEN_DEBUG_VAR(Unrolling) - } -#endif -}; - -/*************************************************************************** -* Part 2 : meta-unrollers -***************************************************************************/ - -/************************ -*** Default traversal *** -************************/ - -template -struct assign_DefaultTraversal_CompleteUnrolling -{ - enum { - outer = Index / Derived1::InnerSizeAtCompileTime, - inner = Index % Derived1::InnerSizeAtCompileTime - }; - - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - dst.copyCoeffByOuterInner(outer, inner, src); - assign_DefaultTraversal_CompleteUnrolling::run(dst, src); - } -}; - -template -struct assign_DefaultTraversal_CompleteUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {} -}; - -template -struct assign_DefaultTraversal_InnerUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer) - { - dst.copyCoeffByOuterInner(outer, Index, src); - assign_DefaultTraversal_InnerUnrolling::run(dst, src, outer); - } -}; - -template -struct assign_DefaultTraversal_InnerUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {} -}; - -/*********************** -*** Linear traversal *** -***********************/ - -template -struct assign_LinearTraversal_CompleteUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - dst.copyCoeff(Index, src); - assign_LinearTraversal_CompleteUnrolling::run(dst, src); - } -}; - -template -struct assign_LinearTraversal_CompleteUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {} -}; - -/************************** -*** Inner vectorization *** -**************************/ - -template -struct assign_innervec_CompleteUnrolling -{ - enum { - outer = Index / Derived1::InnerSizeAtCompileTime, - inner = Index % Derived1::InnerSizeAtCompileTime, - JointAlignment = assign_traits::JointAlignment - }; - - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - dst.template copyPacketByOuterInner(outer, inner, src); - assign_innervec_CompleteUnrolling::size, Stop>::run(dst, src); - } -}; - -template -struct assign_innervec_CompleteUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {} -}; - -template -struct assign_innervec_InnerUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer) - { - dst.template copyPacketByOuterInner(outer, Index, src); - assign_innervec_InnerUnrolling::size, Stop>::run(dst, src, outer); - } -}; - -template -struct assign_innervec_InnerUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {} -}; - -/*************************************************************************** -* Part 3 : implementation of all cases -***************************************************************************/ - -template::Traversal, - int Unrolling = assign_traits::Unrolling, - int Version = Specialized> -struct assign_impl; - -/************************ -*** Default traversal *** -************************/ - -template -struct assign_impl -{ - static inline void run(Derived1 &, const Derived2 &) { } -}; - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static inline void run(Derived1 &dst, const Derived2 &src) - { - const Index innerSize = dst.innerSize(); - const Index outerSize = dst.outerSize(); - for(Index outer = 0; outer < outerSize; ++outer) - for(Index inner = 0; inner < innerSize; ++inner) - dst.copyCoeffByOuterInner(outer, inner, src); - } -}; - -template -struct assign_impl -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - assign_DefaultTraversal_CompleteUnrolling - ::run(dst, src); - } -}; - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - const Index outerSize = dst.outerSize(); - for(Index outer = 0; outer < outerSize; ++outer) - assign_DefaultTraversal_InnerUnrolling - ::run(dst, src, outer); - } -}; - -/*********************** -*** Linear traversal *** -***********************/ - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static inline void run(Derived1 &dst, const Derived2 &src) - { - const Index size = dst.size(); - for(Index i = 0; i < size; ++i) - dst.copyCoeff(i, src); - } -}; - -template -struct assign_impl -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - assign_LinearTraversal_CompleteUnrolling - ::run(dst, src); - } -}; - -/************************** -*** Inner vectorization *** -**************************/ - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static inline void run(Derived1 &dst, const Derived2 &src) - { - const Index innerSize = dst.innerSize(); - const Index outerSize = dst.outerSize(); - const Index packetSize = packet_traits::size; - for(Index outer = 0; outer < outerSize; ++outer) - for(Index inner = 0; inner < innerSize; inner+=packetSize) - dst.template copyPacketByOuterInner(outer, inner, src); - } -}; - -template -struct assign_impl -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - assign_innervec_CompleteUnrolling - ::run(dst, src); - } -}; - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - const Index outerSize = dst.outerSize(); - for(Index outer = 0; outer < outerSize; ++outer) - assign_innervec_InnerUnrolling - ::run(dst, src, outer); - } -}; - -/*************************** -*** Linear vectorization *** -***************************/ - -template -struct unaligned_assign_impl -{ - template - static EIGEN_STRONG_INLINE void run(const Derived&, OtherDerived&, typename Derived::Index, typename Derived::Index) {} -}; - -template <> -struct unaligned_assign_impl -{ - // MSVC must not inline this functions. If it does, it fails to optimize the - // packet access path. -#ifdef _MSC_VER - template - static EIGEN_DONT_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end) -#else - template - static EIGEN_STRONG_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end) -#endif - { - for (typename Derived::Index index = start; index < end; ++index) - dst.copyCoeff(index, src); - } -}; - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - const Index size = dst.size(); - typedef packet_traits PacketTraits; - enum { - packetSize = PacketTraits::size, - dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : int(assign_traits::DstIsAligned) , - srcAlignment = assign_traits::JointAlignment - }; - const Index alignedStart = assign_traits::DstIsAligned ? 0 - : internal::first_aligned(&dst.coeffRef(0), size); - const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize; - - unaligned_assign_impl::DstIsAligned!=0>::run(src,dst,0,alignedStart); - - for(Index index = alignedStart; index < alignedEnd; index += packetSize) - { - dst.template copyPacket(index, src); - } - - unaligned_assign_impl<>::run(src,dst,alignedEnd,size); - } -}; - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - enum { size = Derived1::SizeAtCompileTime, - packetSize = packet_traits::size, - alignedSize = (size/packetSize)*packetSize }; - - assign_innervec_CompleteUnrolling::run(dst, src); - assign_DefaultTraversal_CompleteUnrolling::run(dst, src); - } -}; - -/************************** -*** Slice vectorization *** -***************************/ - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static inline void run(Derived1 &dst, const Derived2 &src) - { - typedef typename Derived1::Scalar Scalar; - typedef packet_traits PacketTraits; - enum { - packetSize = PacketTraits::size, - alignable = PacketTraits::AlignedOnScalar, - dstIsAligned = assign_traits::DstIsAligned, - dstAlignment = alignable ? Aligned : int(dstIsAligned), - srcAlignment = assign_traits::JointAlignment - }; - const Scalar *dst_ptr = &dst.coeffRef(0,0); - if((!bool(dstIsAligned)) && (Index(dst_ptr) % sizeof(Scalar))>0) - { - // the pointer is not aligend-on scalar, so alignment is not possible - return assign_impl::run(dst, src); - } - const Index packetAlignedMask = packetSize - 1; - const Index innerSize = dst.innerSize(); - const Index outerSize = dst.outerSize(); - const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0; - Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned(dst_ptr, innerSize); - - for(Index outer = 0; outer < outerSize; ++outer) - { - const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask); - // do the non-vectorizable part of the assignment - for(Index inner = 0; inner(outer, inner, src); - - // do the non-vectorizable part of the assignment - for(Index inner = alignedEnd; inner((alignedStart+alignedStep)%packetSize, innerSize); - } - } -}; - -} // end namespace internal - -/*************************************************************************** -* Part 4 : implementation of DenseBase methods -***************************************************************************/ - template template EIGEN_STRONG_INLINE Derived& DenseBase @@ -499,90 +27,62 @@ EIGEN_STRONG_INLINE Derived& DenseBase EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived) EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) -#ifdef EIGEN_DEBUG_ASSIGN - internal::assign_traits::debug(); -#endif eigen_assert(rows() == other.rows() && cols() == other.cols()); - internal::assign_impl::Traversal) - : int(InvalidTraversal)>::run(derived(),other.derived()); -#ifndef EIGEN_NO_DEBUG - checkTransposeAliasing(other.derived()); -#endif + internal::call_assignment_no_alias(derived(),other.derived()); + return derived(); } -namespace internal { - -template::Flags) & EvalBeforeAssigningBit) != 0, - bool NeedToTranspose = ((int(Derived::RowsAtCompileTime) == 1 && int(OtherDerived::ColsAtCompileTime) == 1) - | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&". - // revert to || as soon as not needed anymore. - (int(Derived::ColsAtCompileTime) == 1 && int(OtherDerived::RowsAtCompileTime) == 1)) - && int(Derived::SizeAtCompileTime) != 1> -struct assign_selector; - -template -struct assign_selector { - static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.derived()); } - template - static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { other.evalTo(dst); return dst; } -}; -template -struct assign_selector { - static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.eval()); } -}; -template -struct assign_selector { - static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose()); } - template - static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { Transpose dstTrans(dst); other.evalTo(dstTrans); return dst; } -}; -template -struct assign_selector { - static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose().eval()); } -}; - -} // end namespace internal - template template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::operator=(const DenseBase& other) { - return internal::assign_selector::run(derived(), other.derived()); + internal::call_assignment(derived(), other.derived()); + return derived(); } template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::operator=(const DenseBase& other) { - return internal::assign_selector::run(derived(), other.derived()); + internal::call_assignment(derived(), other.derived()); + return derived(); } template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const MatrixBase& other) { - return internal::assign_selector::run(derived(), other.derived()); + internal::call_assignment(derived(), other.derived()); + return derived(); } template template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const DenseBase& other) { - return internal::assign_selector::run(derived(), other.derived()); + internal::call_assignment(derived(), other.derived()); + return derived(); } template template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const EigenBase& other) { - return internal::assign_selector::evalTo(derived(), other.derived()); + internal::call_assignment(derived(), other.derived()); + return derived(); } template template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const ReturnByValue& other) { - return internal::assign_selector::evalTo(derived(), other.derived()); + other.derived().evalTo(derived()); + return derived(); } } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/AssignEvaluator.h b/eigenlib/Eigen/src/Core/AssignEvaluator.h new file mode 100644 index 000000000..14400d246 --- /dev/null +++ b/eigenlib/Eigen/src/Core/AssignEvaluator.h @@ -0,0 +1,918 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011 Benoit Jacob +// Copyright (C) 2011-2014 Gael Guennebaud +// Copyright (C) 2011-2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ASSIGN_EVALUATOR_H +#define EIGEN_ASSIGN_EVALUATOR_H + +namespace Eigen { + +// This implementation is based on Assign.h + +namespace internal { + +/*************************************************************************** +* Part 1 : the logic deciding a strategy for traversal and unrolling * +***************************************************************************/ + +// copy_using_evaluator_traits is based on assign_traits + +template +struct copy_using_evaluator_traits +{ + typedef typename DstEvaluator::XprType Dst; + typedef typename Dst::Scalar DstScalar; + + enum { + DstFlags = DstEvaluator::Flags, + SrcFlags = SrcEvaluator::Flags + }; + +public: + enum { + DstAlignment = DstEvaluator::Alignment, + SrcAlignment = SrcEvaluator::Alignment, + DstHasDirectAccess = DstFlags & DirectAccessBit, + JointAlignment = EIGEN_PLAIN_ENUM_MIN(DstAlignment,SrcAlignment) + }; + +private: + enum { + InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime) + : int(DstFlags)&RowMajorBit ? int(Dst::ColsAtCompileTime) + : int(Dst::RowsAtCompileTime), + InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime) + : int(DstFlags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime) + : int(Dst::MaxRowsAtCompileTime), + OuterStride = int(outer_stride_at_compile_time::ret), + MaxSizeAtCompileTime = Dst::SizeAtCompileTime + }; + + // TODO distinguish between linear traversal and inner-traversals + typedef typename find_best_packet::type LinearPacketType; + typedef typename find_best_packet::type InnerPacketType; + + enum { + LinearPacketSize = unpacket_traits::size, + InnerPacketSize = unpacket_traits::size + }; + +public: + enum { + LinearRequiredAlignment = unpacket_traits::alignment, + InnerRequiredAlignment = unpacket_traits::alignment + }; + +private: + enum { + DstIsRowMajor = DstFlags&RowMajorBit, + SrcIsRowMajor = SrcFlags&RowMajorBit, + StorageOrdersAgree = (int(DstIsRowMajor) == int(SrcIsRowMajor)), + MightVectorize = bool(StorageOrdersAgree) + && (int(DstFlags) & int(SrcFlags) & ActualPacketAccessBit) + && bool(functor_traits::PacketAccess), + MayInnerVectorize = MightVectorize + && int(InnerSize)!=Dynamic && int(InnerSize)%int(InnerPacketSize)==0 + && int(OuterStride)!=Dynamic && int(OuterStride)%int(InnerPacketSize)==0 + && (EIGEN_UNALIGNED_VECTORIZE || int(JointAlignment)>=int(InnerRequiredAlignment)), + MayLinearize = bool(StorageOrdersAgree) && (int(DstFlags) & int(SrcFlags) & LinearAccessBit), + MayLinearVectorize = bool(MightVectorize) && MayLinearize && DstHasDirectAccess + && (EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)) || MaxSizeAtCompileTime == Dynamic), + /* If the destination isn't aligned, we have to do runtime checks and we don't unroll, + so it's only good for large enough sizes. */ + MaySliceVectorize = bool(MightVectorize) && bool(DstHasDirectAccess) + && (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=(EIGEN_UNALIGNED_VECTORIZE?InnerPacketSize:(3*InnerPacketSize))) + /* slice vectorization can be slow, so we only want it if the slices are big, which is + indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block + in a fixed-size matrix + However, with EIGEN_UNALIGNED_VECTORIZE and unrolling, slice vectorization is still worth it */ + }; + +public: + enum { + Traversal = int(MayLinearVectorize) && (LinearPacketSize>InnerPacketSize) ? int(LinearVectorizedTraversal) + : int(MayInnerVectorize) ? int(InnerVectorizedTraversal) + : int(MayLinearVectorize) ? int(LinearVectorizedTraversal) + : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) + : int(MayLinearize) ? int(LinearTraversal) + : int(DefaultTraversal), + Vectorized = int(Traversal) == InnerVectorizedTraversal + || int(Traversal) == LinearVectorizedTraversal + || int(Traversal) == SliceVectorizedTraversal + }; + + typedef typename conditional::type PacketType; + +private: + enum { + ActualPacketSize = int(Traversal)==LinearVectorizedTraversal ? LinearPacketSize + : Vectorized ? InnerPacketSize + : 1, + UnrollingLimit = EIGEN_UNROLLING_LIMIT * ActualPacketSize, + MayUnrollCompletely = int(Dst::SizeAtCompileTime) != Dynamic + && int(Dst::SizeAtCompileTime) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit), + MayUnrollInner = int(InnerSize) != Dynamic + && int(InnerSize) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit) + }; + +public: + enum { + Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal)) + ? ( + int(MayUnrollCompletely) ? int(CompleteUnrolling) + : int(MayUnrollInner) ? int(InnerUnrolling) + : int(NoUnrolling) + ) + : int(Traversal) == int(LinearVectorizedTraversal) + ? ( bool(MayUnrollCompletely) && ( EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment))) + ? int(CompleteUnrolling) + : int(NoUnrolling) ) + : int(Traversal) == int(LinearTraversal) + ? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) + : int(NoUnrolling) ) +#if EIGEN_UNALIGNED_VECTORIZE + : int(Traversal) == int(SliceVectorizedTraversal) + ? ( bool(MayUnrollInner) ? int(InnerUnrolling) + : int(NoUnrolling) ) +#endif + : int(NoUnrolling) + }; + +#ifdef EIGEN_DEBUG_ASSIGN + static void debug() + { + std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl; + std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl; + std::cerr.setf(std::ios::hex, std::ios::basefield); + std::cerr << "DstFlags" << " = " << DstFlags << " (" << demangle_flags(DstFlags) << " )" << std::endl; + std::cerr << "SrcFlags" << " = " << SrcFlags << " (" << demangle_flags(SrcFlags) << " )" << std::endl; + std::cerr.unsetf(std::ios::hex); + EIGEN_DEBUG_VAR(DstAlignment) + EIGEN_DEBUG_VAR(SrcAlignment) + EIGEN_DEBUG_VAR(LinearRequiredAlignment) + EIGEN_DEBUG_VAR(InnerRequiredAlignment) + EIGEN_DEBUG_VAR(JointAlignment) + EIGEN_DEBUG_VAR(InnerSize) + EIGEN_DEBUG_VAR(InnerMaxSize) + EIGEN_DEBUG_VAR(LinearPacketSize) + EIGEN_DEBUG_VAR(InnerPacketSize) + EIGEN_DEBUG_VAR(ActualPacketSize) + EIGEN_DEBUG_VAR(StorageOrdersAgree) + EIGEN_DEBUG_VAR(MightVectorize) + EIGEN_DEBUG_VAR(MayLinearize) + EIGEN_DEBUG_VAR(MayInnerVectorize) + EIGEN_DEBUG_VAR(MayLinearVectorize) + EIGEN_DEBUG_VAR(MaySliceVectorize) + std::cerr << "Traversal" << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl; + EIGEN_DEBUG_VAR(SrcEvaluator::CoeffReadCost) + EIGEN_DEBUG_VAR(UnrollingLimit) + EIGEN_DEBUG_VAR(MayUnrollCompletely) + EIGEN_DEBUG_VAR(MayUnrollInner) + std::cerr << "Unrolling" << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl; + std::cerr << std::endl; + } +#endif +}; + +/*************************************************************************** +* Part 2 : meta-unrollers +***************************************************************************/ + +/************************ +*** Default traversal *** +************************/ + +template +struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling +{ + // FIXME: this is not very clean, perhaps this information should be provided by the kernel? + typedef typename Kernel::DstEvaluatorType DstEvaluatorType; + typedef typename DstEvaluatorType::XprType DstXprType; + + enum { + outer = Index / DstXprType::InnerSizeAtCompileTime, + inner = Index % DstXprType::InnerSizeAtCompileTime + }; + + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + kernel.assignCoeffByOuterInner(outer, inner); + copy_using_evaluator_DefaultTraversal_CompleteUnrolling::run(kernel); + } +}; + +template +struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { } +}; + +template +struct copy_using_evaluator_DefaultTraversal_InnerUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer) + { + kernel.assignCoeffByOuterInner(outer, Index_); + copy_using_evaluator_DefaultTraversal_InnerUnrolling::run(kernel, outer); + } +}; + +template +struct copy_using_evaluator_DefaultTraversal_InnerUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index) { } +}; + +/*********************** +*** Linear traversal *** +***********************/ + +template +struct copy_using_evaluator_LinearTraversal_CompleteUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) + { + kernel.assignCoeff(Index); + copy_using_evaluator_LinearTraversal_CompleteUnrolling::run(kernel); + } +}; + +template +struct copy_using_evaluator_LinearTraversal_CompleteUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { } +}; + +/************************** +*** Inner vectorization *** +**************************/ + +template +struct copy_using_evaluator_innervec_CompleteUnrolling +{ + // FIXME: this is not very clean, perhaps this information should be provided by the kernel? + typedef typename Kernel::DstEvaluatorType DstEvaluatorType; + typedef typename DstEvaluatorType::XprType DstXprType; + typedef typename Kernel::PacketType PacketType; + + enum { + outer = Index / DstXprType::InnerSizeAtCompileTime, + inner = Index % DstXprType::InnerSizeAtCompileTime, + SrcAlignment = Kernel::AssignmentTraits::SrcAlignment, + DstAlignment = Kernel::AssignmentTraits::DstAlignment + }; + + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + kernel.template assignPacketByOuterInner(outer, inner); + enum { NextIndex = Index + unpacket_traits::size }; + copy_using_evaluator_innervec_CompleteUnrolling::run(kernel); + } +}; + +template +struct copy_using_evaluator_innervec_CompleteUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { } +}; + +template +struct copy_using_evaluator_innervec_InnerUnrolling +{ + typedef typename Kernel::PacketType PacketType; + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer) + { + kernel.template assignPacketByOuterInner(outer, Index_); + enum { NextIndex = Index_ + unpacket_traits::size }; + copy_using_evaluator_innervec_InnerUnrolling::run(kernel, outer); + } +}; + +template +struct copy_using_evaluator_innervec_InnerUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &, Index) { } +}; + +/*************************************************************************** +* Part 3 : implementation of all cases +***************************************************************************/ + +// dense_assignment_loop is based on assign_impl + +template +struct dense_assignment_loop; + +/************************ +*** Default traversal *** +************************/ + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE run(Kernel &kernel) + { + for(Index outer = 0; outer < kernel.outerSize(); ++outer) { + for(Index inner = 0; inner < kernel.innerSize(); ++inner) { + kernel.assignCoeffByOuterInner(outer, inner); + } + } + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + copy_using_evaluator_DefaultTraversal_CompleteUnrolling::run(kernel); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + + const Index outerSize = kernel.outerSize(); + for(Index outer = 0; outer < outerSize; ++outer) + copy_using_evaluator_DefaultTraversal_InnerUnrolling::run(kernel, outer); + } +}; + +/*************************** +*** Linear vectorization *** +***************************/ + + +// The goal of unaligned_dense_assignment_loop is simply to factorize the handling +// of the non vectorizable beginning and ending parts + +template +struct unaligned_dense_assignment_loop +{ + // if IsAligned = true, then do nothing + template + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index, Index) {} +}; + +template <> +struct unaligned_dense_assignment_loop +{ + // MSVC must not inline this functions. If it does, it fails to optimize the + // packet access path. + // FIXME check which version exhibits this issue +#if EIGEN_COMP_MSVC + template + static EIGEN_DONT_INLINE void run(Kernel &kernel, + Index start, + Index end) +#else + template + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, + Index start, + Index end) +#endif + { + for (Index index = start; index < end; ++index) + kernel.assignCoeff(index); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + const Index size = kernel.size(); + typedef typename Kernel::Scalar Scalar; + typedef typename Kernel::PacketType PacketType; + enum { + requestedAlignment = Kernel::AssignmentTraits::LinearRequiredAlignment, + packetSize = unpacket_traits::size, + dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment), + dstAlignment = packet_traits::AlignedOnScalar ? int(requestedAlignment) + : int(Kernel::AssignmentTraits::DstAlignment), + srcAlignment = Kernel::AssignmentTraits::JointAlignment + }; + const Index alignedStart = dstIsAligned ? 0 : internal::first_aligned(kernel.dstDataPtr(), size); + const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize; + + unaligned_dense_assignment_loop::run(kernel, 0, alignedStart); + + for(Index index = alignedStart; index < alignedEnd; index += packetSize) + kernel.template assignPacket(index); + + unaligned_dense_assignment_loop<>::run(kernel, alignedEnd, size); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + typedef typename Kernel::PacketType PacketType; + + enum { size = DstXprType::SizeAtCompileTime, + packetSize =unpacket_traits::size, + alignedSize = (size/packetSize)*packetSize }; + + copy_using_evaluator_innervec_CompleteUnrolling::run(kernel); + copy_using_evaluator_DefaultTraversal_CompleteUnrolling::run(kernel); + } +}; + +/************************** +*** Inner vectorization *** +**************************/ + +template +struct dense_assignment_loop +{ + typedef typename Kernel::PacketType PacketType; + enum { + SrcAlignment = Kernel::AssignmentTraits::SrcAlignment, + DstAlignment = Kernel::AssignmentTraits::DstAlignment + }; + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + const Index innerSize = kernel.innerSize(); + const Index outerSize = kernel.outerSize(); + const Index packetSize = unpacket_traits::size; + for(Index outer = 0; outer < outerSize; ++outer) + for(Index inner = 0; inner < innerSize; inner+=packetSize) + kernel.template assignPacketByOuterInner(outer, inner); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + copy_using_evaluator_innervec_CompleteUnrolling::run(kernel); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + typedef typename Kernel::AssignmentTraits Traits; + const Index outerSize = kernel.outerSize(); + for(Index outer = 0; outer < outerSize; ++outer) + copy_using_evaluator_innervec_InnerUnrolling::run(kernel, outer); + } +}; + +/*********************** +*** Linear traversal *** +***********************/ + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + const Index size = kernel.size(); + for(Index i = 0; i < size; ++i) + kernel.assignCoeff(i); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + copy_using_evaluator_LinearTraversal_CompleteUnrolling::run(kernel); + } +}; + +/************************** +*** Slice vectorization *** +***************************/ + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel) + { + typedef typename Kernel::Scalar Scalar; + typedef typename Kernel::PacketType PacketType; + enum { + packetSize = unpacket_traits::size, + requestedAlignment = int(Kernel::AssignmentTraits::InnerRequiredAlignment), + alignable = packet_traits::AlignedOnScalar || int(Kernel::AssignmentTraits::DstAlignment)>=sizeof(Scalar), + dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment), + dstAlignment = alignable ? int(requestedAlignment) + : int(Kernel::AssignmentTraits::DstAlignment) + }; + const Scalar *dst_ptr = kernel.dstDataPtr(); + if((!bool(dstIsAligned)) && (UIntPtr(dst_ptr) % sizeof(Scalar))>0) + { + // the pointer is not aligend-on scalar, so alignment is not possible + return dense_assignment_loop::run(kernel); + } + const Index packetAlignedMask = packetSize - 1; + const Index innerSize = kernel.innerSize(); + const Index outerSize = kernel.outerSize(); + const Index alignedStep = alignable ? (packetSize - kernel.outerStride() % packetSize) & packetAlignedMask : 0; + Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned(dst_ptr, innerSize); + + for(Index outer = 0; outer < outerSize; ++outer) + { + const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask); + // do the non-vectorizable part of the assignment + for(Index inner = 0; inner(outer, inner); + + // do the non-vectorizable part of the assignment + for(Index inner = alignedEnd; inner +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + typedef typename Kernel::PacketType PacketType; + + enum { size = DstXprType::InnerSizeAtCompileTime, + packetSize =unpacket_traits::size, + vectorizableSize = (size/packetSize)*packetSize }; + + for(Index outer = 0; outer < kernel.outerSize(); ++outer) + { + copy_using_evaluator_innervec_InnerUnrolling::run(kernel, outer); + copy_using_evaluator_DefaultTraversal_InnerUnrolling::run(kernel, outer); + } + } +}; +#endif + + +/*************************************************************************** +* Part 4 : Generic dense assignment kernel +***************************************************************************/ + +// This class generalize the assignment of a coefficient (or packet) from one dense evaluator +// to another dense writable evaluator. +// It is parametrized by the two evaluators, and the actual assignment functor. +// This abstraction level permits to keep the evaluation loops as simple and as generic as possible. +// One can customize the assignment using this generic dense_assignment_kernel with different +// functors, or by completely overloading it, by-passing a functor. +template +class generic_dense_assignment_kernel +{ +protected: + typedef typename DstEvaluatorTypeT::XprType DstXprType; + typedef typename SrcEvaluatorTypeT::XprType SrcXprType; +public: + + typedef DstEvaluatorTypeT DstEvaluatorType; + typedef SrcEvaluatorTypeT SrcEvaluatorType; + typedef typename DstEvaluatorType::Scalar Scalar; + typedef copy_using_evaluator_traits AssignmentTraits; + typedef typename AssignmentTraits::PacketType PacketType; + + + EIGEN_DEVICE_FUNC generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) + : m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr) + { + #ifdef EIGEN_DEBUG_ASSIGN + AssignmentTraits::debug(); + #endif + } + + EIGEN_DEVICE_FUNC Index size() const { return m_dstExpr.size(); } + EIGEN_DEVICE_FUNC Index innerSize() const { return m_dstExpr.innerSize(); } + EIGEN_DEVICE_FUNC Index outerSize() const { return m_dstExpr.outerSize(); } + EIGEN_DEVICE_FUNC Index rows() const { return m_dstExpr.rows(); } + EIGEN_DEVICE_FUNC Index cols() const { return m_dstExpr.cols(); } + EIGEN_DEVICE_FUNC Index outerStride() const { return m_dstExpr.outerStride(); } + + EIGEN_DEVICE_FUNC DstEvaluatorType& dstEvaluator() { return m_dst; } + EIGEN_DEVICE_FUNC const SrcEvaluatorType& srcEvaluator() const { return m_src; } + + /// Assign src(row,col) to dst(row,col) through the assignment functor. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index row, Index col) + { + m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col)); + } + + /// \sa assignCoeff(Index,Index) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index index) + { + m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index)); + } + + /// \sa assignCoeff(Index,Index) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeffByOuterInner(Index outer, Index inner) + { + Index row = rowIndexByOuterInner(outer, inner); + Index col = colIndexByOuterInner(outer, inner); + assignCoeff(row, col); + } + + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index row, Index col) + { + m_functor.template assignPacket(&m_dst.coeffRef(row,col), m_src.template packet(row,col)); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index index) + { + m_functor.template assignPacket(&m_dst.coeffRef(index), m_src.template packet(index)); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacketByOuterInner(Index outer, Index inner) + { + Index row = rowIndexByOuterInner(outer, inner); + Index col = colIndexByOuterInner(outer, inner); + assignPacket(row, col); + } + + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) + { + typedef typename DstEvaluatorType::ExpressionTraits Traits; + return int(Traits::RowsAtCompileTime) == 1 ? 0 + : int(Traits::ColsAtCompileTime) == 1 ? inner + : int(DstEvaluatorType::Flags)&RowMajorBit ? outer + : inner; + } + + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) + { + typedef typename DstEvaluatorType::ExpressionTraits Traits; + return int(Traits::ColsAtCompileTime) == 1 ? 0 + : int(Traits::RowsAtCompileTime) == 1 ? inner + : int(DstEvaluatorType::Flags)&RowMajorBit ? inner + : outer; + } + + EIGEN_DEVICE_FUNC const Scalar* dstDataPtr() const + { + return m_dstExpr.data(); + } + +protected: + DstEvaluatorType& m_dst; + const SrcEvaluatorType& m_src; + const Functor &m_functor; + // TODO find a way to avoid the needs of the original expression + DstXprType& m_dstExpr; +}; + +/*************************************************************************** +* Part 5 : Entry point for dense rectangular assignment +***************************************************************************/ + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func) +{ + typedef evaluator DstEvaluatorType; + typedef evaluator SrcEvaluatorType; + + SrcEvaluatorType srcEvaluator(src); + + // NOTE To properly handle A = (A*A.transpose())/s with A rectangular, + // we need to resize the destination after the source evaluator has been created. + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + DstEvaluatorType dstEvaluator(dst); + + typedef generic_dense_assignment_kernel Kernel; + Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived()); + + dense_assignment_loop::run(kernel); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src) +{ + call_dense_assignment_loop(dst, src, internal::assign_op()); +} + +/*************************************************************************** +* Part 6 : Generic assignment +***************************************************************************/ + +// Based on the respective shapes of the destination and source, +// the class AssignmentKind determine the kind of assignment mechanism. +// AssignmentKind must define a Kind typedef. +template struct AssignmentKind; + +// Assignement kind defined in this file: +struct Dense2Dense {}; +struct EigenBase2EigenBase {}; + +template struct AssignmentKind { typedef EigenBase2EigenBase Kind; }; +template<> struct AssignmentKind { typedef Dense2Dense Kind; }; + +// This is the main assignment class +template< typename DstXprType, typename SrcXprType, typename Functor, + typename Kind = typename AssignmentKind< typename evaluator_traits::Shape , typename evaluator_traits::Shape >::Kind, + typename EnableIf = void> +struct Assignment; + + +// The only purpose of this call_assignment() function is to deal with noalias() / "assume-aliasing" and automatic transposition. +// Indeed, I (Gael) think that this concept of "assume-aliasing" was a mistake, and it makes thing quite complicated. +// So this intermediate function removes everything related to "assume-aliasing" such that Assignment +// does not has to bother about these annoying details. + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment(Dst& dst, const Src& src) +{ + call_assignment(dst, src, internal::assign_op()); +} +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment(const Dst& dst, const Src& src) +{ + call_assignment(dst, src, internal::assign_op()); +} + +// Deal with "assume-aliasing" +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if< evaluator_assume_aliasing::value, void*>::type = 0) +{ + typename plain_matrix_type::type tmp(src); + call_assignment_no_alias(dst, tmp, func); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if::value, void*>::type = 0) +{ + call_assignment_no_alias(dst, src, func); +} + +// by-pass "assume-aliasing" +// When there is no aliasing, we require that 'dst' has been properly resized +template class StorageBase, typename Src, typename Func> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment(NoAlias& dst, const Src& src, const Func& func) +{ + call_assignment_no_alias(dst.expression(), src, func); +} + + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func) +{ + enum { + NeedToTranspose = ( (int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1) + || (int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1) + ) && int(Dst::SizeAtCompileTime) != 1 + }; + + typedef typename internal::conditional, Dst>::type ActualDstTypeCleaned; + typedef typename internal::conditional, Dst&>::type ActualDstType; + ActualDstType actualDst(dst); + + // TODO check whether this is the right place to perform these checks: + EIGEN_STATIC_ASSERT_LVALUE(Dst) + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned,Src) + EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename ActualDstTypeCleaned::Scalar,typename Src::Scalar); + + Assignment::run(actualDst, src, func); +} +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment_no_alias(Dst& dst, const Src& src) +{ + call_assignment_no_alias(dst, src, internal::assign_op()); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src, const Func& func) +{ + // TODO check whether this is the right place to perform these checks: + EIGEN_STATIC_ASSERT_LVALUE(Dst) + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst,Src) + EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename Dst::Scalar,typename Src::Scalar); + + Assignment::run(dst, src, func); +} +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src) +{ + call_assignment_no_alias_no_transpose(dst, src, internal::assign_op()); +} + +// forward declaration +template void check_for_aliasing(const Dst &dst, const Src &src); + +// Generic Dense to Dense assignment +// Note that the last template argument "Weak" is needed to make it possible to perform +// both partial specialization+SFINAE without ambiguous specialization +template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak> +struct Assignment +{ + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const Functor &func) + { +#ifndef EIGEN_NO_DEBUG + internal::check_for_aliasing(dst, src); +#endif + + call_dense_assignment_loop(dst, src, func); + } +}; + +// Generic assignment through evalTo. +// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism. +// Note that the last template argument "Weak" is needed to make it possible to perform +// both partial specialization+SFINAE without ambiguous specialization +template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak> +struct Assignment +{ + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); + src.evalTo(dst); + } + + // NOTE The following two functions are templated to avoid their instanciation if not needed + // This is needed because some expressions supports evalTo only and/or have 'void' as scalar type. + template + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &/*func*/) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); + src.addTo(dst); + } + + template + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &/*func*/) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); + src.subTo(dst); + } +}; + +} // namespace internal + +} // end namespace Eigen + +#endif // EIGEN_ASSIGN_EVALUATOR_H diff --git a/eigenlib/Eigen/src/Core/Assign_MKL.h b/eigenlib/Eigen/src/Core/Assign_MKL.h old mode 100644 new mode 100755 index 7772951b9..6c2ab9264 --- a/eigenlib/Eigen/src/Core/Assign_MKL.h +++ b/eigenlib/Eigen/src/Core/Assign_MKL.h @@ -1,6 +1,7 @@ /* Copyright (c) 2011, Intel Corporation. All rights reserved. - + Copyright (C) 2015 Gael Guennebaud + Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: @@ -37,17 +38,13 @@ namespace Eigen { namespace internal { -template struct vml_call -{ enum { IsSupported = 0 }; }; - -template +template class vml_assign_traits { private: enum { DstHasDirectAccess = Dst::Flags & DirectAccessBit, SrcHasDirectAccess = Src::Flags & DirectAccessBit, - StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)), InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime) : int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime) @@ -57,165 +54,120 @@ class vml_assign_traits : int(Dst::MaxRowsAtCompileTime), MaxSizeAtCompileTime = Dst::SizeAtCompileTime, - MightEnableVml = vml_call::IsSupported && StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess - && Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1, + MightEnableVml = StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess && Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1, MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit), VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize, - LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD, - MayEnableVml = MightEnableVml && LargeEnough, - MayLinearize = MayEnableVml && MightLinearize + LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD }; public: enum { - Traversal = MayLinearize ? LinearVectorizedTraversal - : MayEnableVml ? InnerVectorizedTraversal - : DefaultTraversal + EnableVml = MightEnableVml && LargeEnough, + Traversal = MightLinearize ? LinearTraversal : DefaultTraversal }; }; -template::Traversal > -struct vml_assign_impl - : assign_impl,Traversal,Unrolling,BuiltIn> -{ -}; - -template -struct vml_assign_impl -{ - typedef typename Derived1::Scalar Scalar; - typedef typename Derived1::Index Index; - static inline void run(Derived1& dst, const CwiseUnaryOp& src) - { - // in case we want to (or have to) skip VML at runtime we can call: - // assign_impl,Traversal,Unrolling,BuiltIn>::run(dst,src); - const Index innerSize = dst.innerSize(); - const Index outerSize = dst.outerSize(); - for(Index outer = 0; outer < outerSize; ++outer) { - const Scalar *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) : - &(src.nestedExpression().coeffRef(0, outer)); - Scalar *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); - vml_call::run(src.functor(), innerSize, src_ptr, dst_ptr ); - } - } -}; - -template -struct vml_assign_impl -{ - static inline void run(Derived1& dst, const CwiseUnaryOp& src) - { - // in case we want to (or have to) skip VML at runtime we can call: - // assign_impl,Traversal,Unrolling,BuiltIn>::run(dst,src); - vml_call::run(src.functor(), dst.size(), src.nestedExpression().data(), dst.data() ); - } -}; - -// Macroses - -#define EIGEN_MKL_VML_SPECIALIZE_ASSIGN(TRAVERSAL,UNROLLING) \ - template \ - struct assign_impl, TRAVERSAL, UNROLLING, Specialized> { \ - static inline void run(Derived1 &dst, const Eigen::CwiseUnaryOp &src) { \ - vml_assign_impl::run(dst, src); \ - } \ - }; - -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,NoUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,CompleteUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,InnerUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,NoUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,CompleteUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,NoUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,CompleteUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,InnerUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,CompleteUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,NoUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(SliceVectorizedTraversal,NoUnrolling) - - +#define EIGEN_PP_EXPAND(ARG) ARG #if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1) -#define EIGEN_MKL_VML_MODE VML_HA +#define EIGEN_VMLMODE_EXPAND_LA , VML_HA #else -#define EIGEN_MKL_VML_MODE VML_LA +#define EIGEN_VMLMODE_EXPAND_LA , VML_LA #endif -#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \ - template<> struct vml_call< scalar_##EIGENOP##_op > { \ - enum { IsSupported = 1 }; \ - static inline void run( const scalar_##EIGENOP##_op& /*func*/, \ - int size, const EIGENTYPE* src, EIGENTYPE* dst) { \ - VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst); \ - } \ +#define EIGEN_VMLMODE_EXPAND__ + +#define EIGEN_VMLMODE_PREFIX_LA vm +#define EIGEN_VMLMODE_PREFIX__ v +#define EIGEN_VMLMODE_PREFIX(VMLMODE) EIGEN_CAT(EIGEN_VMLMODE_PREFIX_,VMLMODE) + +#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \ + template< typename DstXprType, typename SrcXprNested> \ + struct Assignment, SrcXprNested>, assign_op, \ + Dense2Dense, typename enable_if::EnableVml>::type> { \ + typedef CwiseUnaryOp, SrcXprNested> SrcXprType; \ + static void run(DstXprType &dst, const SrcXprType &src, const assign_op &/*func*/) { \ + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \ + if(vml_assign_traits::Traversal==LinearTraversal) { \ + VMLOP(dst.size(), (const VMLTYPE*)src.nestedExpression().data(), \ + (VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE) ); \ + } else { \ + const Index outerSize = dst.outerSize(); \ + for(Index outer = 0; outer < outerSize; ++outer) { \ + const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) : \ + &(src.nestedExpression().coeffRef(0, outer)); \ + EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \ + VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, \ + (VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE)); \ + } \ + } \ + } \ + }; \ + + +#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),s##VMLOP), float, float, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),d##VMLOP), double, double, VMLMODE) + +#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),c##VMLOP), scomplex, MKL_Complex8, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),z##VMLOP), dcomplex, MKL_Complex16, VMLMODE) + +#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE) + + +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sin, Sin, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(asin, Asin, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sinh, Sinh, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cos, Cos, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(acos, Acos, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cosh, Cosh, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tan, Tan, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(atan, Atan, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tanh, Tanh, LA) +// EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs, _) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(exp, Exp, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log, Ln, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log10, Log10, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sqrt, Sqrt, _) + +EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr, _) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(arg, Arg, _) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(round, Round, _) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(floor, Floor, _) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(ceil, Ceil, _) + +#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \ + template< typename DstXprType, typename SrcXprNested, typename Plain> \ + struct Assignment, SrcXprNested, \ + const CwiseNullaryOp,Plain> >, assign_op, \ + Dense2Dense, typename enable_if::EnableVml>::type> { \ + typedef CwiseBinaryOp, SrcXprNested, \ + const CwiseNullaryOp,Plain> > SrcXprType; \ + static void run(DstXprType &dst, const SrcXprType &src, const assign_op &/*func*/) { \ + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \ + VMLTYPE exponent = reinterpret_cast(src.rhs().functor().m_other); \ + if(vml_assign_traits::Traversal==LinearTraversal) \ + { \ + VMLOP( dst.size(), (const VMLTYPE*)src.lhs().data(), exponent, \ + (VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE) ); \ + } else { \ + const Index outerSize = dst.outerSize(); \ + for(Index outer = 0; outer < outerSize; ++outer) { \ + const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.lhs().coeffRef(outer,0)) : \ + &(src.lhs().coeffRef(0, outer)); \ + EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \ + VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, exponent, \ + (VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE)); \ + } \ + } \ + } \ }; - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \ - template<> struct vml_call< scalar_##EIGENOP##_op > { \ - enum { IsSupported = 1 }; \ - static inline void run( const scalar_##EIGENOP##_op& /*func*/, \ - int size, const EIGENTYPE* src, EIGENTYPE* dst) { \ - MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \ - VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst, vmlMode); \ - } \ - }; - -#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \ - template<> struct vml_call< scalar_##EIGENOP##_op > { \ - enum { IsSupported = 1 }; \ - static inline void run( const scalar_##EIGENOP##_op& func, \ - int size, const EIGENTYPE* src, EIGENTYPE* dst) { \ - EIGENTYPE exponent = func.m_exponent; \ - MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \ - VMLOP(&size, (const VMLTYPE*)src, (const VMLTYPE*)&exponent, \ - (VMLTYPE*)dst, &vmlMode); \ - } \ - }; - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vs##VMLOP, float, float) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vd##VMLOP, double, double) - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vc##VMLOP, scomplex, MKL_Complex8) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vz##VMLOP, dcomplex, MKL_Complex16) - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP) - - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vms##VMLOP, float, float) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmd##VMLOP, double, double) - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmc##VMLOP, scomplex, MKL_Complex8) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmz##VMLOP, dcomplex, MKL_Complex16) - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP) - - -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sin, Sin) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(asin, Asin) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(cos, Cos) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(acos, Acos) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(tan, Tan) -//EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(exp, Exp) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(log, Ln) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sqrt, Sqrt) - -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr) - -// The vm*powx functions are not avaibale in the windows version of MKL. -#ifndef _WIN32 -EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmspowx_, float, float) -EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdpowx_, double, double) -EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcpowx_, scomplex, MKL_Complex8) -EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzpowx_, dcomplex, MKL_Complex16) -#endif + +EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmsPowx, float, float, LA) +EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdPowx, double, double, LA) +EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcPowx, scomplex, MKL_Complex8, LA) +EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzPowx, dcomplex, MKL_Complex16, LA) } // end namespace internal diff --git a/eigenlib/Eigen/src/Core/BandMatrix.h b/eigenlib/Eigen/src/Core/BandMatrix.h index ffd7fe8b3..4978c9140 100644 --- a/eigenlib/Eigen/src/Core/BandMatrix.h +++ b/eigenlib/Eigen/src/Core/BandMatrix.h @@ -32,7 +32,7 @@ class BandMatrixBase : public EigenBase }; typedef typename internal::traits::Scalar Scalar; typedef Matrix DenseMatrixType; - typedef typename DenseMatrixType::Index Index; + typedef typename DenseMatrixType::StorageIndex StorageIndex; typedef typename internal::traits::CoefficientsType CoefficientsType; typedef EigenBase Base; @@ -161,15 +161,15 @@ class BandMatrixBase : public EigenBase * * \brief Represents a rectangular matrix with a banded storage * - * \param _Scalar Numeric type, i.e. float, double, int - * \param Rows Number of rows, or \b Dynamic - * \param Cols Number of columns, or \b Dynamic - * \param Supers Number of super diagonal - * \param Subs Number of sub diagonal - * \param _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint - * The former controls \ref TopicStorageOrders "storage order", and defaults to - * column-major. The latter controls whether the matrix represents a selfadjoint - * matrix in which case either Supers of Subs have to be null. + * \tparam _Scalar Numeric type, i.e. float, double, int + * \tparam _Rows Number of rows, or \b Dynamic + * \tparam _Cols Number of columns, or \b Dynamic + * \tparam _Supers Number of super diagonal + * \tparam _Subs Number of sub diagonal + * \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint + * The former controls \ref TopicStorageOrders "storage order", and defaults to + * column-major. The latter controls whether the matrix represents a selfadjoint + * matrix in which case either Supers of Subs have to be null. * * \sa class TridiagonalMatrix */ @@ -179,7 +179,7 @@ struct traits > { typedef _Scalar Scalar; typedef Dense StorageKind; - typedef DenseIndex Index; + typedef Eigen::Index StorageIndex; enum { CoeffReadCost = NumTraits::ReadCost, RowsAtCompileTime = _Rows, @@ -201,10 +201,10 @@ class BandMatrix : public BandMatrixBase::Scalar Scalar; - typedef typename internal::traits::Index Index; + typedef typename internal::traits::StorageIndex StorageIndex; typedef typename internal::traits::CoefficientsType CoefficientsType; - inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs) + explicit inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs) : m_coeffs(1+supers+subs,cols), m_rows(rows), m_supers(supers), m_subs(subs) { @@ -241,7 +241,7 @@ struct traits::CoeffReadCost, RowsAtCompileTime = _Rows, @@ -264,9 +264,9 @@ class BandMatrixWrapper : public BandMatrixBase::Scalar Scalar; typedef typename internal::traits::CoefficientsType CoefficientsType; - typedef typename internal::traits::Index Index; + typedef typename internal::traits::StorageIndex StorageIndex; - inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs) + explicit inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs) : m_coeffs(coeffs), m_rows(rows), m_supers(supers), m_subs(subs) { @@ -302,9 +302,9 @@ class BandMatrixWrapper : public BandMatrixBase class TridiagonalMatrix : public BandMatrix { typedef BandMatrix Base; - typedef typename Base::Index Index; + typedef typename Base::StorageIndex StorageIndex; public: - TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {} + explicit TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {} inline typename Base::template DiagonalIntReturnType<1>::Type super() { return Base::template diagonal<1>(); } @@ -327,6 +327,25 @@ class TridiagonalMatrix : public BandMatrix +struct evaluator_traits > + : public evaluator_traits_base > +{ + typedef BandShape Shape; +}; + +template +struct evaluator_traits > + : public evaluator_traits_base > +{ + typedef BandShape Shape; +}; + +template<> struct AssignmentKind { typedef EigenBase2EigenBase Kind; }; + } // end namespace internal } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/Block.h b/eigenlib/Eigen/src/Core/Block.h index 827894443..11de45c2e 100644 --- a/eigenlib/Eigen/src/Core/Block.h +++ b/eigenlib/Eigen/src/Core/Block.h @@ -13,38 +13,6 @@ namespace Eigen { -/** \class Block - * \ingroup Core_Module - * - * \brief Expression of a fixed-size or dynamic-size block - * - * \param XprType the type of the expression in which we are taking a block - * \param BlockRows the number of rows of the block we are taking at compile time (optional) - * \param BlockCols the number of columns of the block we are taking at compile time (optional) - * - * This class represents an expression of either a fixed-size or dynamic-size block. It is the return - * type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block(Index,Index) and - * most of the time this is the only way it is used. - * - * However, if you want to directly maniputate block expressions, - * for instance if you want to write a function returning such an expression, you - * will need to use this class. - * - * Here is an example illustrating the dynamic case: - * \include class_Block.cpp - * Output: \verbinclude class_Block.out - * - * \note Even though this expression has dynamic size, in the case where \a XprType - * has fixed size, this expression inherits a fixed maximal size which means that evaluating - * it does not cause a dynamic memory allocation. - * - * Here is an example illustrating the fixed-size case: - * \include class_FixedBlock.cpp - * Output: \verbinclude class_FixedBlock.out - * - * \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock - */ - namespace internal { template struct traits > : traits @@ -52,7 +20,7 @@ struct traits > : traits::Scalar Scalar; typedef typename traits::StorageKind StorageKind; typedef typename traits::XprKind XprKind; - typedef typename nested::type XprTypeNested; + typedef typename ref_selector::type XprTypeNested; typedef typename remove_reference::type _XprTypeNested; enum{ MatrixRows = traits::RowsAtCompileTime, @@ -65,10 +33,10 @@ struct traits > : traits::MaxColsAtCompileTime), + XprTypeIsRowMajor = (int(traits::Flags)&RowMajorBit) != 0, - IsDense = is_same::value, - IsRowMajor = (IsDense&&MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1 - : (IsDense&&MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0 + IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1 + : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0 : XprTypeIsRowMajor, HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor), InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime), @@ -78,18 +46,16 @@ struct traits > : traits::ret) : int(inner_stride_at_compile_time::ret), - MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits::size) == 0) - && (InnerStrideAtCompileTime == 1) - ? PacketAccessBit : 0, - MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0, - FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits::Flags&LinearAccessBit))) ? LinearAccessBit : 0, + + // FIXME, this traits is rather specialized for dense object and it needs to be cleaned further FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0, - Flags0 = traits::Flags & ( (HereditaryBits & ~RowMajorBit) | - DirectAccessBit | - MaskPacketAccessBit | - MaskAlignedBit), - Flags = Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit + Flags = (traits::Flags & (DirectAccessBit | (InnerPanel?CompressedAccessBit:0))) | FlagsLvalueBit | FlagsRowMajorBit, + // FIXME DirectAccessBit should not be handled by expressions + // + // Alignment is needed by MapBase's assertions + // We can sefely set it to false here. Internal alignment errors will be detected by an eigen_internal_assert in the respective evaluator + Alignment = 0 }; }; @@ -100,6 +66,40 @@ template class BlockImpl; +/** \class Block + * \ingroup Core_Module + * + * \brief Expression of a fixed-size or dynamic-size block + * + * \tparam XprType the type of the expression in which we are taking a block + * \tparam BlockRows the number of rows of the block we are taking at compile time (optional) + * \tparam BlockCols the number of columns of the block we are taking at compile time (optional) + * \tparam InnerPanel is true, if the block maps to a set of rows of a row major matrix or + * to set of columns of a column major matrix (optional). The parameter allows to determine + * at compile time whether aligned access is possible on the block expression. + * + * This class represents an expression of either a fixed-size or dynamic-size block. It is the return + * type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block(Index,Index) and + * most of the time this is the only way it is used. + * + * However, if you want to directly maniputate block expressions, + * for instance if you want to write a function returning such an expression, you + * will need to use this class. + * + * Here is an example illustrating the dynamic case: + * \include class_Block.cpp + * Output: \verbinclude class_Block.out + * + * \note Even though this expression has dynamic size, in the case where \a XprType + * has fixed size, this expression inherits a fixed maximal size which means that evaluating + * it does not cause a dynamic memory allocation. + * + * Here is an example illustrating the fixed-size case: + * \include class_FixedBlock.cpp + * Output: \verbinclude class_FixedBlock.out + * + * \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock + */ template class Block : public BlockImpl::StorageKind> { @@ -109,9 +109,12 @@ template class typedef Impl Base; EIGEN_GENERIC_PUBLIC_INTERFACE(Block) EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block) + + typedef typename internal::remove_all::type NestedExpression; /** Column or Row constructor */ + EIGEN_DEVICE_FUNC inline Block(XprType& xpr, Index i) : Impl(xpr,i) { eigen_assert( (i>=0) && ( @@ -121,25 +124,27 @@ template class /** Fixed-size constructor */ - inline Block(XprType& xpr, Index a_startRow, Index a_startCol) - : Impl(xpr, a_startRow, a_startCol) + EIGEN_DEVICE_FUNC + inline Block(XprType& xpr, Index startRow, Index startCol) + : Impl(xpr, startRow, startCol) { EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE) - eigen_assert(a_startRow >= 0 && BlockRows >= 1 && a_startRow + BlockRows <= xpr.rows() - && a_startCol >= 0 && BlockCols >= 1 && a_startCol + BlockCols <= xpr.cols()); + eigen_assert(startRow >= 0 && BlockRows >= 0 && startRow + BlockRows <= xpr.rows() + && startCol >= 0 && BlockCols >= 0 && startCol + BlockCols <= xpr.cols()); } /** Dynamic-size constructor */ + EIGEN_DEVICE_FUNC inline Block(XprType& xpr, - Index a_startRow, Index a_startCol, + Index startRow, Index startCol, Index blockRows, Index blockCols) - : Impl(xpr, a_startRow, a_startCol, blockRows, blockCols) + : Impl(xpr, startRow, startCol, blockRows, blockCols) { eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows) && (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols)); - eigen_assert(a_startRow >= 0 && blockRows >= 0 && a_startRow <= xpr.rows() - blockRows - && a_startCol >= 0 && blockCols >= 0 && a_startCol <= xpr.cols() - blockCols); + eigen_assert(startRow >= 0 && blockRows >= 0 && startRow <= xpr.rows() - blockRows + && startCol >= 0 && blockCols >= 0 && startCol <= xpr.cols() - blockCols); } }; @@ -150,14 +155,15 @@ class BlockImpl : public internal::BlockImpl_dense { typedef internal::BlockImpl_dense Impl; - typedef typename XprType::Index Index; + typedef typename XprType::StorageIndex StorageIndex; public: typedef Impl Base; EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl) - inline BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {} - inline BlockImpl(XprType& xpr, Index a_startRow, Index a_startCol) : Impl(xpr, a_startRow, a_startCol) {} - inline BlockImpl(XprType& xpr, Index a_startRow, Index a_startCol, Index blockRows, Index blockCols) - : Impl(xpr, a_startRow, a_startCol, blockRows, blockCols) {} + EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {} + EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index startRow, Index startCol) : Impl(xpr, startRow, startCol) {} + EIGEN_DEVICE_FUNC + inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) + : Impl(xpr, startRow, startCol, blockRows, blockCols) {} }; namespace internal { @@ -167,16 +173,18 @@ template >::type { typedef Block BlockType; + typedef typename internal::ref_selector::non_const_type XprTypeNested; public: typedef typename internal::dense_xpr_base::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(BlockType) EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense) - class InnerIterator; + // class InnerIterator; // FIXME apparently never used /** Column or Row constructor */ + EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, Index i) : m_xpr(xpr), // It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime, @@ -191,75 +199,76 @@ template inline PacketScalar packet(Index rowId, Index colId) const { - return m_xpr.template packet - (rowId + m_startRow.value(), colId + m_startCol.value()); + return m_xpr.template packet(rowId + m_startRow.value(), colId + m_startCol.value()); } template inline void writePacket(Index rowId, Index colId, const PacketScalar& val) { - m_xpr.const_cast_derived().template writePacket - (rowId + m_startRow.value(), colId + m_startCol.value(), val); + m_xpr.template writePacket(rowId + m_startRow.value(), colId + m_startCol.value(), val); } template @@ -273,40 +282,46 @@ template inline void writePacket(Index index, const PacketScalar& val) { - m_xpr.const_cast_derived().template writePacket + m_xpr.template writePacket (m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), val); } #ifdef EIGEN_PARSED_BY_DOXYGEN /** \sa MapBase::data() */ - inline const Scalar* data() const; - inline Index innerStride() const; - inline Index outerStride() const; + EIGEN_DEVICE_FUNC inline const Scalar* data() const; + EIGEN_DEVICE_FUNC inline Index innerStride() const; + EIGEN_DEVICE_FUNC inline Index outerStride() const; #endif - const typename internal::remove_all::type& nestedExpression() const + EIGEN_DEVICE_FUNC + const typename internal::remove_all::type& nestedExpression() const { return m_xpr; } + + EIGEN_DEVICE_FUNC + XprType& nestedExpression() { return m_xpr; } - Index startRow() const + EIGEN_DEVICE_FUNC + StorageIndex startRow() const { return m_startRow.value(); } - Index startCol() const + EIGEN_DEVICE_FUNC + StorageIndex startCol() const { return m_startCol.value(); } protected: - const typename XprType::Nested m_xpr; - const internal::variable_if_dynamic m_startRow; - const internal::variable_if_dynamic m_startCol; - const internal::variable_if_dynamic m_blockRows; - const internal::variable_if_dynamic m_blockCols; + XprTypeNested m_xpr; + const internal::variable_if_dynamic m_startRow; + const internal::variable_if_dynamic m_startCol; + const internal::variable_if_dynamic m_blockRows; + const internal::variable_if_dynamic m_blockCols; }; /** \internal Internal implementation of dense Blocks in the direct access case.*/ @@ -315,6 +330,10 @@ class BlockImpl_dense : public MapBase > { typedef Block BlockType; + typedef typename internal::ref_selector::non_const_type XprTypeNested; + enum { + XprTypeIsRowMajor = (int(traits::Flags)&RowMajorBit) != 0 + }; public: typedef MapBase Base; @@ -323,42 +342,52 @@ class BlockImpl_dense /** Column or Row constructor */ + EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, Index i) - : Base(internal::const_cast_ptr(&xpr.coeffRef( - (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0, - (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)), + : Base(xpr.data() + i * ( ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && (!XprTypeIsRowMajor)) + || ((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && ( XprTypeIsRowMajor)) ? xpr.innerStride() : xpr.outerStride()), BlockRows==1 ? 1 : xpr.rows(), BlockCols==1 ? 1 : xpr.cols()), - m_xpr(xpr) + m_xpr(xpr), + m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0), + m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0) { init(); } /** Fixed-size constructor */ + EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol) - : Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol))), m_xpr(xpr) + : Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol)), + m_xpr(xpr), m_startRow(startRow), m_startCol(startCol) { init(); } /** Dynamic-size constructor */ + EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) - : Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol)), blockRows, blockCols), - m_xpr(xpr) + : Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol), blockRows, blockCols), + m_xpr(xpr), m_startRow(startRow), m_startCol(startCol) { init(); } - const typename internal::remove_all::type& nestedExpression() const + EIGEN_DEVICE_FUNC + const typename internal::remove_all::type& nestedExpression() const { return m_xpr; } + + EIGEN_DEVICE_FUNC + XprType& nestedExpression() { return m_xpr; } /** \sa MapBase::innerStride() */ + EIGEN_DEVICE_FUNC inline Index innerStride() const { return internal::traits::HasSameStorageOrderAsXprType @@ -367,11 +396,24 @@ class BlockImpl_dense } /** \sa MapBase::outerStride() */ + EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_outerStride; } + EIGEN_DEVICE_FUNC + StorageIndex startRow() const + { + return m_startRow.value(); + } + + EIGEN_DEVICE_FUNC + StorageIndex startCol() const + { + return m_startCol.value(); + } + #ifndef __SUNPRO_CC // FIXME sunstudio is not friendly with the above friend... // META-FIXME there is no 'friend' keyword around here. Is this obsolete? @@ -380,6 +422,7 @@ class BlockImpl_dense #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal used by allowAligned() */ + EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols) : Base(data, blockRows, blockCols), m_xpr(xpr) { @@ -388,6 +431,7 @@ class BlockImpl_dense #endif protected: + EIGEN_DEVICE_FUNC void init() { m_outerStride = internal::traits::HasSameStorageOrderAsXprType @@ -395,7 +439,9 @@ class BlockImpl_dense : m_xpr.innerStride(); } - typename XprType::Nested m_xpr; + XprTypeNested m_xpr; + const internal::variable_if_dynamic m_startRow; + const internal::variable_if_dynamic m_startCol; Index m_outerStride; }; diff --git a/eigenlib/Eigen/src/Core/BooleanRedux.h b/eigenlib/Eigen/src/Core/BooleanRedux.h index be9f48a8c..8409d8749 100644 --- a/eigenlib/Eigen/src/Core/BooleanRedux.h +++ b/eigenlib/Eigen/src/Core/BooleanRedux.h @@ -17,9 +17,10 @@ namespace internal { template struct all_unroller { + typedef typename Derived::ExpressionTraits Traits; enum { - col = (UnrollCount-1) / Derived::RowsAtCompileTime, - row = (UnrollCount-1) % Derived::RowsAtCompileTime + col = (UnrollCount-1) / Traits::RowsAtCompileTime, + row = (UnrollCount-1) % Traits::RowsAtCompileTime }; static inline bool run(const Derived &mat) @@ -43,11 +44,12 @@ struct all_unroller template struct any_unroller { + typedef typename Derived::ExpressionTraits Traits; enum { - col = (UnrollCount-1) / Derived::RowsAtCompileTime, - row = (UnrollCount-1) % Derived::RowsAtCompileTime + col = (UnrollCount-1) / Traits::RowsAtCompileTime, + row = (UnrollCount-1) % Traits::RowsAtCompileTime }; - + static inline bool run(const Derived &mat) { return any_unroller::run(mat) || mat.coeff(row, col); @@ -78,19 +80,19 @@ struct any_unroller template inline bool DenseBase::all() const { + typedef internal::evaluator Evaluator; enum { unroll = SizeAtCompileTime != Dynamic - && CoeffReadCost != Dynamic - && NumTraits::AddCost != Dynamic - && SizeAtCompileTime * (CoeffReadCost + NumTraits::AddCost) <= EIGEN_UNROLLING_LIMIT + && SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits::AddCost) <= EIGEN_UNROLLING_LIMIT }; + Evaluator evaluator(derived()); if(unroll) - return internal::all_unroller::run(derived()); + return internal::all_unroller::run(evaluator); else { for(Index j = 0; j < cols(); ++j) for(Index i = 0; i < rows(); ++i) - if (!coeff(i, j)) return false; + if (!evaluator.coeff(i, j)) return false; return true; } } @@ -102,19 +104,19 @@ inline bool DenseBase::all() const template inline bool DenseBase::any() const { + typedef internal::evaluator Evaluator; enum { unroll = SizeAtCompileTime != Dynamic - && CoeffReadCost != Dynamic - && NumTraits::AddCost != Dynamic - && SizeAtCompileTime * (CoeffReadCost + NumTraits::AddCost) <= EIGEN_UNROLLING_LIMIT + && SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits::AddCost) <= EIGEN_UNROLLING_LIMIT }; + Evaluator evaluator(derived()); if(unroll) - return internal::any_unroller::run(derived()); + return internal::any_unroller::run(evaluator); else { for(Index j = 0; j < cols(); ++j) for(Index i = 0; i < rows(); ++i) - if (coeff(i, j)) return true; + if (evaluator.coeff(i, j)) return true; return false; } } @@ -124,7 +126,7 @@ inline bool DenseBase::any() const * \sa all(), any() */ template -inline typename DenseBase::Index DenseBase::count() const +inline Eigen::Index DenseBase::count() const { return derived().template cast().template cast().sum(); } @@ -136,7 +138,11 @@ inline typename DenseBase::Index DenseBase::count() const template inline bool DenseBase::hasNaN() const { +#if EIGEN_COMP_MSVC || (defined __FAST_MATH__) + return derived().array().isNaN().any(); +#else return !((derived().array()==derived().array()).all()); +#endif } /** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values. @@ -146,7 +152,11 @@ inline bool DenseBase::hasNaN() const template inline bool DenseBase::allFinite() const { +#if EIGEN_COMP_MSVC || (defined __FAST_MATH__) + return derived().array().isFinite().all(); +#else return !((derived()-derived()).hasNaN()); +#endif } } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/CMakeLists.txt b/eigenlib/Eigen/src/Core/CMakeLists.txt deleted file mode 100644 index 2346fc2bb..000000000 --- a/eigenlib/Eigen/src/Core/CMakeLists.txt +++ /dev/null @@ -1,10 +0,0 @@ -FILE(GLOB Eigen_Core_SRCS "*.h") - -INSTALL(FILES - ${Eigen_Core_SRCS} - DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core COMPONENT Devel - ) - -ADD_SUBDIRECTORY(products) -ADD_SUBDIRECTORY(util) -ADD_SUBDIRECTORY(arch) diff --git a/eigenlib/Eigen/src/Core/CommaInitializer.h b/eigenlib/Eigen/src/Core/CommaInitializer.h index a036d8c3b..d218e9814 100644 --- a/eigenlib/Eigen/src/Core/CommaInitializer.h +++ b/eigenlib/Eigen/src/Core/CommaInitializer.h @@ -22,14 +22,14 @@ namespace Eigen { * the return type of MatrixBase::operator<<, and most of the time this is the only * way it is used. * - * \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished() + * \sa \blank \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished() */ template struct CommaInitializer { typedef typename XprType::Scalar Scalar; - typedef typename XprType::Index Index; + EIGEN_DEVICE_FUNC inline CommaInitializer(XprType& xpr, const Scalar& s) : m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1) { @@ -37,6 +37,7 @@ struct CommaInitializer } template + EIGEN_DEVICE_FUNC inline CommaInitializer(XprType& xpr, const DenseBase& other) : m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows()) { @@ -46,6 +47,7 @@ struct CommaInitializer /* Copy/Move constructor which transfers ownership. This is crucial in * absence of return value optimization to avoid assertions during destruction. */ // FIXME in C++11 mode this could be replaced by a proper RValue constructor + EIGEN_DEVICE_FUNC inline CommaInitializer(const CommaInitializer& o) : m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) { // Mark original object as finished. In absence of R-value references we need to const_cast: @@ -55,6 +57,7 @@ struct CommaInitializer } /* inserts a scalar value in the target matrix */ + EIGEN_DEVICE_FUNC CommaInitializer& operator,(const Scalar& s) { if (m_col==m_xpr.cols()) @@ -74,11 +77,10 @@ struct CommaInitializer /* inserts a matrix expression in the target matrix */ template + EIGEN_DEVICE_FUNC CommaInitializer& operator,(const DenseBase& other) { - if(other.cols()==0 || other.rows()==0) - return *this; - if (m_col==m_xpr.cols()) + if (m_col==m_xpr.cols() && (other.cols()!=0 || other.rows()!=m_currentBlockRows)) { m_row+=m_currentBlockRows; m_col = 0; @@ -86,24 +88,22 @@ struct CommaInitializer eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows() && "Too many rows passed to comma initializer (operator<<)"); } - eigen_assert(m_col - (m_row, m_col) = other; - else - m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other; + m_xpr.template block + (m_row, m_col, other.rows(), other.cols()) = other; m_col += other.cols(); return *this; } + EIGEN_DEVICE_FUNC inline ~CommaInitializer() +#if defined VERIFY_RAISES_ASSERT && (!defined EIGEN_NO_ASSERTION_CHECKING) && defined EIGEN_EXCEPTIONS + EIGEN_EXCEPTION_SPEC(Eigen::eigen_assert_exception) +#endif { - eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows() - && m_col == m_xpr.cols() - && "Too few coefficients passed to comma initializer (operator<<)"); + finished(); } /** \returns the built matrix once all its coefficients have been set. @@ -113,9 +113,15 @@ struct CommaInitializer * quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished()); * \endcode */ - inline XprType& finished() { return m_xpr; } + EIGEN_DEVICE_FUNC + inline XprType& finished() { + eigen_assert(((m_row+m_currentBlockRows) == m_xpr.rows() || m_xpr.cols() == 0) + && m_col == m_xpr.cols() + && "Too few coefficients passed to comma initializer (operator<<)"); + return m_xpr; + } - XprType& m_xpr; // target expression + XprType& m_xpr; // target expression Index m_row; // current row id Index m_col; // current col id Index m_currentBlockRows; // current block height diff --git a/eigenlib/Eigen/src/Core/ConditionEstimator.h b/eigenlib/Eigen/src/Core/ConditionEstimator.h new file mode 100644 index 000000000..aa7efdc76 --- /dev/null +++ b/eigenlib/Eigen/src/Core/ConditionEstimator.h @@ -0,0 +1,175 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Rasmus Munk Larsen (rmlarsen@google.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CONDITIONESTIMATOR_H +#define EIGEN_CONDITIONESTIMATOR_H + +namespace Eigen { + +namespace internal { + +template +struct rcond_compute_sign { + static inline Vector run(const Vector& v) { + const RealVector v_abs = v.cwiseAbs(); + return (v_abs.array() == static_cast(0)) + .select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs)); + } +}; + +// Partial specialization to avoid elementwise division for real vectors. +template +struct rcond_compute_sign { + static inline Vector run(const Vector& v) { + return (v.array() < static_cast(0)) + .select(-Vector::Ones(v.size()), Vector::Ones(v.size())); + } +}; + +/** + * \returns an estimate of ||inv(matrix)||_1 given a decomposition of + * \a matrix that implements .solve() and .adjoint().solve() methods. + * + * This function implements Algorithms 4.1 and 5.1 from + * http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf + * which also forms the basis for the condition number estimators in + * LAPACK. Since at most 10 calls to the solve method of dec are + * performed, the total cost is O(dims^2), as opposed to O(dims^3) + * needed to compute the inverse matrix explicitly. + * + * The most common usage is in estimating the condition number + * ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be + * computed directly in O(n^2) operations. + * + * Supports the following decompositions: FullPivLU, PartialPivLU, LDLT, and + * LLT. + * + * \sa FullPivLU, PartialPivLU, LDLT, LLT. + */ +template +typename Decomposition::RealScalar rcond_invmatrix_L1_norm_estimate(const Decomposition& dec) +{ + typedef typename Decomposition::MatrixType MatrixType; + typedef typename Decomposition::Scalar Scalar; + typedef typename Decomposition::RealScalar RealScalar; + typedef typename internal::plain_col_type::type Vector; + typedef typename internal::plain_col_type::type RealVector; + const bool is_complex = (NumTraits::IsComplex != 0); + + eigen_assert(dec.rows() == dec.cols()); + const Index n = dec.rows(); + if (n == 0) + return 0; + + // Disable Index to float conversion warning +#ifdef __INTEL_COMPILER + #pragma warning push + #pragma warning ( disable : 2259 ) +#endif + Vector v = dec.solve(Vector::Ones(n) / Scalar(n)); +#ifdef __INTEL_COMPILER + #pragma warning pop +#endif + + // lower_bound is a lower bound on + // ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1 + // and is the objective maximized by the ("super-") gradient ascent + // algorithm below. + RealScalar lower_bound = v.template lpNorm<1>(); + if (n == 1) + return lower_bound; + + // Gradient ascent algorithm follows: We know that the optimum is achieved at + // one of the simplices v = e_i, so in each iteration we follow a + // super-gradient to move towards the optimal one. + RealScalar old_lower_bound = lower_bound; + Vector sign_vector(n); + Vector old_sign_vector; + Index v_max_abs_index = -1; + Index old_v_max_abs_index = v_max_abs_index; + for (int k = 0; k < 4; ++k) + { + sign_vector = internal::rcond_compute_sign::run(v); + if (k > 0 && !is_complex && sign_vector == old_sign_vector) { + // Break if the solution stagnated. + break; + } + // v_max_abs_index = argmax |real( inv(matrix)^T * sign_vector )| + v = dec.adjoint().solve(sign_vector); + v.real().cwiseAbs().maxCoeff(&v_max_abs_index); + if (v_max_abs_index == old_v_max_abs_index) { + // Break if the solution stagnated. + break; + } + // Move to the new simplex e_j, where j = v_max_abs_index. + v = dec.solve(Vector::Unit(n, v_max_abs_index)); // v = inv(matrix) * e_j. + lower_bound = v.template lpNorm<1>(); + if (lower_bound <= old_lower_bound) { + // Break if the gradient step did not increase the lower_bound. + break; + } + if (!is_complex) { + old_sign_vector = sign_vector; + } + old_v_max_abs_index = v_max_abs_index; + old_lower_bound = lower_bound; + } + // The following calculates an independent estimate of ||matrix||_1 by + // multiplying matrix by a vector with entries of slowly increasing + // magnitude and alternating sign: + // v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. + // This improvement to Hager's algorithm above is due to Higham. It was + // added to make the algorithm more robust in certain corner cases where + // large elements in the matrix might otherwise escape detection due to + // exact cancellation (especially when op and op_adjoint correspond to a + // sequence of backsubstitutions and permutations), which could cause + // Hager's algorithm to vastly underestimate ||matrix||_1. + Scalar alternating_sign(RealScalar(1)); + for (Index i = 0; i < n; ++i) { + // The static_cast is needed when Scalar is a complex and RealScalar implements expression templates + v[i] = alternating_sign * static_cast(RealScalar(1) + (RealScalar(i) / (RealScalar(n - 1)))); + alternating_sign = -alternating_sign; + } + v = dec.solve(v); + const RealScalar alternate_lower_bound = (2 * v.template lpNorm<1>()) / (3 * RealScalar(n)); + return numext::maxi(lower_bound, alternate_lower_bound); +} + +/** \brief Reciprocal condition number estimator. + * + * Computing a decomposition of a dense matrix takes O(n^3) operations, while + * this method estimates the condition number quickly and reliably in O(n^2) + * operations. + * + * \returns an estimate of the reciprocal condition number + * (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and + * its decomposition. Supports the following decompositions: FullPivLU, + * PartialPivLU, LDLT, and LLT. + * + * \sa FullPivLU, PartialPivLU, LDLT, LLT. + */ +template +typename Decomposition::RealScalar +rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition& dec) +{ + typedef typename Decomposition::RealScalar RealScalar; + eigen_assert(dec.rows() == dec.cols()); + if (dec.rows() == 0) return RealScalar(1); + if (matrix_norm == RealScalar(0)) return RealScalar(0); + if (dec.rows() == 1) return RealScalar(1); + const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec); + return (inverse_matrix_norm == RealScalar(0) ? RealScalar(0) + : (RealScalar(1) / inverse_matrix_norm) / matrix_norm); +} + +} // namespace internal + +} // namespace Eigen + +#endif diff --git a/eigenlib/Eigen/src/Core/CoreEvaluators.h b/eigenlib/Eigen/src/Core/CoreEvaluators.h new file mode 100644 index 000000000..1d14af652 --- /dev/null +++ b/eigenlib/Eigen/src/Core/CoreEvaluators.h @@ -0,0 +1,1673 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011 Benoit Jacob +// Copyright (C) 2011-2014 Gael Guennebaud +// Copyright (C) 2011-2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_COREEVALUATORS_H +#define EIGEN_COREEVALUATORS_H + +namespace Eigen { + +namespace internal { + +// This class returns the evaluator kind from the expression storage kind. +// Default assumes index based accessors +template +struct storage_kind_to_evaluator_kind { + typedef IndexBased Kind; +}; + +// This class returns the evaluator shape from the expression storage kind. +// It can be Dense, Sparse, Triangular, Diagonal, SelfAdjoint, Band, etc. +template struct storage_kind_to_shape; + +template<> struct storage_kind_to_shape { typedef DenseShape Shape; }; +template<> struct storage_kind_to_shape { typedef SolverShape Shape; }; +template<> struct storage_kind_to_shape { typedef PermutationShape Shape; }; +template<> struct storage_kind_to_shape { typedef TranspositionsShape Shape; }; + +// Evaluators have to be specialized with respect to various criteria such as: +// - storage/structure/shape +// - scalar type +// - etc. +// Therefore, we need specialization of evaluator providing additional template arguments for each kind of evaluators. +// We currently distinguish the following kind of evaluators: +// - unary_evaluator for expressions taking only one arguments (CwiseUnaryOp, CwiseUnaryView, Transpose, MatrixWrapper, ArrayWrapper, Reverse, Replicate) +// - binary_evaluator for expression taking two arguments (CwiseBinaryOp) +// - ternary_evaluator for expression taking three arguments (CwiseTernaryOp) +// - product_evaluator for linear algebra products (Product); special case of binary_evaluator because it requires additional tags for dispatching. +// - mapbase_evaluator for Map, Block, Ref +// - block_evaluator for Block (special dispatching to a mapbase_evaluator or unary_evaluator) + +template< typename T, + typename Arg1Kind = typename evaluator_traits::Kind, + typename Arg2Kind = typename evaluator_traits::Kind, + typename Arg3Kind = typename evaluator_traits::Kind, + typename Arg1Scalar = typename traits::Scalar, + typename Arg2Scalar = typename traits::Scalar, + typename Arg3Scalar = typename traits::Scalar> struct ternary_evaluator; + +template< typename T, + typename LhsKind = typename evaluator_traits::Kind, + typename RhsKind = typename evaluator_traits::Kind, + typename LhsScalar = typename traits::Scalar, + typename RhsScalar = typename traits::Scalar> struct binary_evaluator; + +template< typename T, + typename Kind = typename evaluator_traits::Kind, + typename Scalar = typename T::Scalar> struct unary_evaluator; + +// evaluator_traits contains traits for evaluator + +template +struct evaluator_traits_base +{ + // by default, get evaluator kind and shape from storage + typedef typename storage_kind_to_evaluator_kind::StorageKind>::Kind Kind; + typedef typename storage_kind_to_shape::StorageKind>::Shape Shape; +}; + +// Default evaluator traits +template +struct evaluator_traits : public evaluator_traits_base +{ +}; + +template::Shape > +struct evaluator_assume_aliasing { + static const bool value = false; +}; + +// By default, we assume a unary expression: +template +struct evaluator : public unary_evaluator +{ + typedef unary_evaluator Base; + EIGEN_DEVICE_FUNC explicit evaluator(const T& xpr) : Base(xpr) {} +}; + + +// TODO: Think about const-correctness +template +struct evaluator + : evaluator +{ + EIGEN_DEVICE_FUNC + explicit evaluator(const T& xpr) : evaluator(xpr) {} +}; + +// ---------- base class for all evaluators ---------- + +template +struct evaluator_base : public noncopyable +{ + // TODO that's not very nice to have to propagate all these traits. They are currently only needed to handle outer,inner indices. + typedef traits ExpressionTraits; + + enum { + Alignment = 0 + }; +}; + +// -------------------- Matrix and Array -------------------- +// +// evaluator is a common base class for the +// Matrix and Array evaluators. +// Here we directly specialize evaluator. This is not really a unary expression, and it is, by definition, dense, +// so no need for more sophisticated dispatching. + +template +struct evaluator > + : evaluator_base +{ + typedef PlainObjectBase PlainObjectType; + typedef typename PlainObjectType::Scalar Scalar; + typedef typename PlainObjectType::CoeffReturnType CoeffReturnType; + + enum { + IsRowMajor = PlainObjectType::IsRowMajor, + IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime, + RowsAtCompileTime = PlainObjectType::RowsAtCompileTime, + ColsAtCompileTime = PlainObjectType::ColsAtCompileTime, + + CoeffReadCost = NumTraits::ReadCost, + Flags = traits::EvaluatorFlags, + Alignment = traits::Alignment + }; + + EIGEN_DEVICE_FUNC evaluator() + : m_data(0), + m_outerStride(IsVectorAtCompileTime ? 0 + : int(IsRowMajor) ? ColsAtCompileTime + : RowsAtCompileTime) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC explicit evaluator(const PlainObjectType& m) + : m_data(m.data()), m_outerStride(IsVectorAtCompileTime ? 0 : m.outerStride()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + if (IsRowMajor) + return m_data[row * m_outerStride.value() + col]; + else + return m_data[row + col * m_outerStride.value()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_data[index]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + if (IsRowMajor) + return const_cast(m_data)[row * m_outerStride.value() + col]; + else + return const_cast(m_data)[row + col * m_outerStride.value()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return const_cast(m_data)[index]; + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + if (IsRowMajor) + return ploadt(m_data + row * m_outerStride.value() + col); + else + return ploadt(m_data + row + col * m_outerStride.value()); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return ploadt(m_data + index); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + if (IsRowMajor) + return pstoret + (const_cast(m_data) + row * m_outerStride.value() + col, x); + else + return pstoret + (const_cast(m_data) + row + col * m_outerStride.value(), x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + return pstoret(const_cast(m_data) + index, x); + } + +protected: + const Scalar *m_data; + + // We do not need to know the outer stride for vectors + variable_if_dynamic m_outerStride; +}; + +template +struct evaluator > + : evaluator > > +{ + typedef Matrix XprType; + + EIGEN_DEVICE_FUNC evaluator() {} + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m) + : evaluator >(m) + { } +}; + +template +struct evaluator > + : evaluator > > +{ + typedef Array XprType; + + EIGEN_DEVICE_FUNC evaluator() {} + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m) + : evaluator >(m) + { } +}; + +// -------------------- Transpose -------------------- + +template +struct unary_evaluator, IndexBased> + : evaluator_base > +{ + typedef Transpose XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + Flags = evaluator::Flags ^ RowMajorBit, + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& t) : m_argImpl(t.nestedExpression()) {} + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(col, row); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(col, row); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename XprType::Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_argImpl.template packet(col, row); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_argImpl.template packet(index); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + m_argImpl.template writePacket(col, row, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + m_argImpl.template writePacket(index, x); + } + +protected: + evaluator m_argImpl; +}; + +// -------------------- CwiseNullaryOp -------------------- +// Like Matrix and Array, this is not really a unary expression, so we directly specialize evaluator. +// Likewise, there is not need to more sophisticated dispatching here. + +template::value, + bool has_unary = has_unary_operator::value, + bool has_binary = has_binary_operator::value> +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { return op(i,j); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); } + + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { return op.template packetOp(i,j); } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp(i); } +}; + +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType=0, IndexType=0) const { return op(); } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType=0, IndexType=0) const { return op.template packetOp(); } +}; + +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j=0) const { return op(i,j); } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j=0) const { return op.template packetOp(i,j); } +}; + +// We need the following specialization for vector-only functors assigned to a runtime vector, +// for instance, using linspace and assigning a RowVectorXd to a MatrixXd or even a row of a MatrixXd. +// In this case, i==0 and j is used for the actual iteration. +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { + eigen_assert(i==0 || j==0); + return op(i+j); + } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { + eigen_assert(i==0 || j==0); + return op.template packetOp(i+j); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp(i); } +}; + +template +struct nullary_wrapper {}; + +#if 0 && EIGEN_COMP_MSVC>0 +// Disable this ugly workaround. This is now handled in traits::match, +// but this piece of code might still become handly if some other weird compilation +// erros pop up again. + +// MSVC exhibits a weird compilation error when +// compiling: +// Eigen::MatrixXf A = MatrixXf::Random(3,3); +// Ref R = 2.f*A; +// and that has_*ary_operator> have not been instantiated yet. +// The "problem" is that evaluator<2.f*A> is instantiated by traits::match<2.f*A> +// and at that time has_*ary_operator returns true regardless of T. +// Then nullary_wrapper is badly instantiated as nullary_wrapper<.,.,true,true,true>. +// The trick is thus to defer the proper instantiation of nullary_wrapper when coeff(), +// and packet() are really instantiated as implemented below: + +// This is a simple wrapper around Index to enforce the re-instantiation of +// has_*ary_operator when needed. +template struct nullary_wrapper_workaround_msvc { + nullary_wrapper_workaround_msvc(const T&); + operator T()const; +}; + +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().operator()(op,i,j); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().operator()(op,i); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().template packetOp(op,i,j); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().template packetOp(op,i); + } +}; +#endif // MSVC workaround + +template +struct evaluator > + : evaluator_base > +{ + typedef CwiseNullaryOp XprType; + typedef typename internal::remove_all::type PlainObjectTypeCleaned; + + enum { + CoeffReadCost = internal::functor_traits::Cost, + + Flags = (evaluator::Flags + & ( HereditaryBits + | (functor_has_linear_access::ret ? LinearAccessBit : 0) + | (functor_traits::PacketAccess ? PacketAccessBit : 0))) + | (functor_traits::IsRepeatable ? 0 : EvalBeforeNestingBit), + Alignment = AlignedMax + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& n) + : m_functor(n.functor()), m_wrapper() + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(IndexType row, IndexType col) const + { + return m_wrapper(m_functor, row, col); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(IndexType index) const + { + return m_wrapper(m_functor,index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(IndexType row, IndexType col) const + { + return m_wrapper.template packetOp(m_functor, row, col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(IndexType index) const + { + return m_wrapper.template packetOp(m_functor, index); + } + +protected: + const NullaryOp m_functor; + const internal::nullary_wrapper m_wrapper; +}; + +// -------------------- CwiseUnaryOp -------------------- + +template +struct unary_evaluator, IndexBased > + : evaluator_base > +{ + typedef CwiseUnaryOp XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost + functor_traits::Cost, + + Flags = evaluator::Flags + & (HereditaryBits | LinearAccessBit | (functor_traits::PacketAccess ? PacketAccessBit : 0)), + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& op) + : m_functor(op.functor()), + m_argImpl(op.nestedExpression()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_functor(m_argImpl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_functor(m_argImpl.coeff(index)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_functor.packetOp(m_argImpl.template packet(row, col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_functor.packetOp(m_argImpl.template packet(index)); + } + +protected: + const UnaryOp m_functor; + evaluator m_argImpl; +}; + +// -------------------- CwiseTernaryOp -------------------- + +// this is a ternary expression +template +struct evaluator > + : public ternary_evaluator > +{ + typedef CwiseTernaryOp XprType; + typedef ternary_evaluator > Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {} +}; + +template +struct ternary_evaluator, IndexBased, IndexBased> + : evaluator_base > +{ + typedef CwiseTernaryOp XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost + evaluator::CoeffReadCost + evaluator::CoeffReadCost + functor_traits::Cost, + + Arg1Flags = evaluator::Flags, + Arg2Flags = evaluator::Flags, + Arg3Flags = evaluator::Flags, + SameType = is_same::value && is_same::value, + StorageOrdersAgree = (int(Arg1Flags)&RowMajorBit)==(int(Arg2Flags)&RowMajorBit) && (int(Arg1Flags)&RowMajorBit)==(int(Arg3Flags)&RowMajorBit), + Flags0 = (int(Arg1Flags) | int(Arg2Flags) | int(Arg3Flags)) & ( + HereditaryBits + | (int(Arg1Flags) & int(Arg2Flags) & int(Arg3Flags) & + ( (StorageOrdersAgree ? LinearAccessBit : 0) + | (functor_traits::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) + ) + ) + ), + Flags = (Flags0 & ~RowMajorBit) | (Arg1Flags & RowMajorBit), + Alignment = EIGEN_PLAIN_ENUM_MIN( + EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, evaluator::Alignment), + evaluator::Alignment) + }; + + EIGEN_DEVICE_FUNC explicit ternary_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), + m_arg1Impl(xpr.arg1()), + m_arg2Impl(xpr.arg2()), + m_arg3Impl(xpr.arg3()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_functor(m_arg1Impl.coeff(row, col), m_arg2Impl.coeff(row, col), m_arg3Impl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_functor.packetOp(m_arg1Impl.template packet(row, col), + m_arg2Impl.template packet(row, col), + m_arg3Impl.template packet(row, col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_functor.packetOp(m_arg1Impl.template packet(index), + m_arg2Impl.template packet(index), + m_arg3Impl.template packet(index)); + } + +protected: + const TernaryOp m_functor; + evaluator m_arg1Impl; + evaluator m_arg2Impl; + evaluator m_arg3Impl; +}; + +// -------------------- CwiseBinaryOp -------------------- + +// this is a binary expression +template +struct evaluator > + : public binary_evaluator > +{ + typedef CwiseBinaryOp XprType; + typedef binary_evaluator > Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {} +}; + +template +struct binary_evaluator, IndexBased, IndexBased> + : evaluator_base > +{ + typedef CwiseBinaryOp XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost + evaluator::CoeffReadCost + functor_traits::Cost, + + LhsFlags = evaluator::Flags, + RhsFlags = evaluator::Flags, + SameType = is_same::value, + StorageOrdersAgree = (int(LhsFlags)&RowMajorBit)==(int(RhsFlags)&RowMajorBit), + Flags0 = (int(LhsFlags) | int(RhsFlags)) & ( + HereditaryBits + | (int(LhsFlags) & int(RhsFlags) & + ( (StorageOrdersAgree ? LinearAccessBit : 0) + | (functor_traits::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) + ) + ) + ), + Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit), + Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment,evaluator::Alignment) + }; + + EIGEN_DEVICE_FUNC explicit binary_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), + m_lhsImpl(xpr.lhs()), + m_rhsImpl(xpr.rhs()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_functor(m_lhsImpl.coeff(row, col), m_rhsImpl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_functor(m_lhsImpl.coeff(index), m_rhsImpl.coeff(index)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_functor.packetOp(m_lhsImpl.template packet(row, col), + m_rhsImpl.template packet(row, col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_functor.packetOp(m_lhsImpl.template packet(index), + m_rhsImpl.template packet(index)); + } + +protected: + const BinaryOp m_functor; + evaluator m_lhsImpl; + evaluator m_rhsImpl; +}; + +// -------------------- CwiseUnaryView -------------------- + +template +struct unary_evaluator, IndexBased> + : evaluator_base > +{ + typedef CwiseUnaryView XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost + functor_traits::Cost, + + Flags = (evaluator::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit)), + + Alignment = 0 // FIXME it is not very clear why alignment is necessarily lost... + }; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) + : m_unaryOp(op.functor()), + m_argImpl(op.nestedExpression()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_unaryOp(m_argImpl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_unaryOp(m_argImpl.coeff(index)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_unaryOp(m_argImpl.coeffRef(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_unaryOp(m_argImpl.coeffRef(index)); + } + +protected: + const UnaryOp m_unaryOp; + evaluator m_argImpl; +}; + +// -------------------- Map -------------------- + +// FIXME perhaps the PlainObjectType could be provided by Derived::PlainObject ? +// but that might complicate template specialization +template +struct mapbase_evaluator; + +template +struct mapbase_evaluator : evaluator_base +{ + typedef Derived XprType; + typedef typename XprType::PointerType PointerType; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + enum { + IsRowMajor = XprType::RowsAtCompileTime, + ColsAtCompileTime = XprType::ColsAtCompileTime, + CoeffReadCost = NumTraits::ReadCost + }; + + EIGEN_DEVICE_FUNC explicit mapbase_evaluator(const XprType& map) + : m_data(const_cast(map.data())), + m_innerStride(map.innerStride()), + m_outerStride(map.outerStride()) + { + EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator::Flags&PacketAccessBit, internal::inner_stride_at_compile_time::ret==1), + PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_data[col * colStride() + row * rowStride()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_data[index * m_innerStride.value()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_data[col * colStride() + row * rowStride()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_data[index * m_innerStride.value()]; + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + PointerType ptr = m_data + row * rowStride() + col * colStride(); + return internal::ploadt(ptr); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return internal::ploadt(m_data + index * m_innerStride.value()); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + PointerType ptr = m_data + row * rowStride() + col * colStride(); + return internal::pstoret(ptr, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + internal::pstoret(m_data + index * m_innerStride.value(), x); + } +protected: + EIGEN_DEVICE_FUNC + inline Index rowStride() const { return XprType::IsRowMajor ? m_outerStride.value() : m_innerStride.value(); } + EIGEN_DEVICE_FUNC + inline Index colStride() const { return XprType::IsRowMajor ? m_innerStride.value() : m_outerStride.value(); } + + PointerType m_data; + const internal::variable_if_dynamic m_innerStride; + const internal::variable_if_dynamic m_outerStride; +}; + +template +struct evaluator > + : public mapbase_evaluator, PlainObjectType> +{ + typedef Map XprType; + typedef typename XprType::Scalar Scalar; + // TODO: should check for smaller packet types once we can handle multi-sized packet types + typedef typename packet_traits::type PacketScalar; + + enum { + InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 + ? int(PlainObjectType::InnerStrideAtCompileTime) + : int(StrideType::InnerStrideAtCompileTime), + OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 + ? int(PlainObjectType::OuterStrideAtCompileTime) + : int(StrideType::OuterStrideAtCompileTime), + HasNoInnerStride = InnerStrideAtCompileTime == 1, + HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0, + HasNoStride = HasNoInnerStride && HasNoOuterStride, + IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic, + + PacketAccessMask = bool(HasNoInnerStride) ? ~int(0) : ~int(PacketAccessBit), + LinearAccessMask = bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime) ? ~int(0) : ~int(LinearAccessBit), + Flags = int( evaluator::Flags) & (LinearAccessMask&PacketAccessMask), + + Alignment = int(MapOptions)&int(AlignedMask) + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& map) + : mapbase_evaluator(map) + { } +}; + +// -------------------- Ref -------------------- + +template +struct evaluator > + : public mapbase_evaluator, PlainObjectType> +{ + typedef Ref XprType; + + enum { + Flags = evaluator >::Flags, + Alignment = evaluator >::Alignment + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& ref) + : mapbase_evaluator(ref) + { } +}; + +// -------------------- Block -------------------- + +template::ret> struct block_evaluator; + +template +struct evaluator > + : block_evaluator +{ + typedef Block XprType; + typedef typename XprType::Scalar Scalar; + // TODO: should check for smaller packet types once we can handle multi-sized packet types + typedef typename packet_traits::type PacketScalar; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + + RowsAtCompileTime = traits::RowsAtCompileTime, + ColsAtCompileTime = traits::ColsAtCompileTime, + MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = traits::MaxColsAtCompileTime, + + ArgTypeIsRowMajor = (int(evaluator::Flags)&RowMajorBit) != 0, + IsRowMajor = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? 1 + : (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0 + : ArgTypeIsRowMajor, + HasSameStorageOrderAsArgType = (IsRowMajor == ArgTypeIsRowMajor), + InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime), + InnerStrideAtCompileTime = HasSameStorageOrderAsArgType + ? int(inner_stride_at_compile_time::ret) + : int(outer_stride_at_compile_time::ret), + OuterStrideAtCompileTime = HasSameStorageOrderAsArgType + ? int(outer_stride_at_compile_time::ret) + : int(inner_stride_at_compile_time::ret), + MaskPacketAccessBit = (InnerStrideAtCompileTime == 1) ? PacketAccessBit : 0, + + FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator::Flags&LinearAccessBit))) ? LinearAccessBit : 0, + FlagsRowMajorBit = XprType::Flags&RowMajorBit, + Flags0 = evaluator::Flags & ( (HereditaryBits & ~RowMajorBit) | + DirectAccessBit | + MaskPacketAccessBit), + Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit, + + PacketAlignment = unpacket_traits::alignment, + Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0, + Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, Alignment0) + }; + typedef block_evaluator block_evaluator_type; + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& block) : block_evaluator_type(block) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } +}; + +// no direct-access => dispatch to a unary evaluator +template +struct block_evaluator + : unary_evaluator > +{ + typedef Block XprType; + + EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block) + : unary_evaluator(block) + {} +}; + +template +struct unary_evaluator, IndexBased> + : evaluator_base > +{ + typedef Block XprType; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& block) + : m_argImpl(block.nestedExpression()), + m_startRow(block.startRow()), + m_startCol(block.startCol()) + { } + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + enum { + RowsAtCompileTime = XprType::RowsAtCompileTime + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(m_startRow.value() + row, m_startCol.value() + col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(m_startRow.value() + row, m_startCol.value() + col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_argImpl.template packet(m_startRow.value() + row, m_startCol.value() + col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return packet(RowsAtCompileTime == 1 ? 0 : index, + RowsAtCompileTime == 1 ? index : 0); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + return m_argImpl.template writePacket(m_startRow.value() + row, m_startCol.value() + col, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + return writePacket(RowsAtCompileTime == 1 ? 0 : index, + RowsAtCompileTime == 1 ? index : 0, + x); + } + +protected: + evaluator m_argImpl; + const variable_if_dynamic m_startRow; + const variable_if_dynamic m_startCol; +}; + +// TODO: This evaluator does not actually use the child evaluator; +// all action is via the data() as returned by the Block expression. + +template +struct block_evaluator + : mapbase_evaluator, + typename Block::PlainObject> +{ + typedef Block XprType; + typedef typename XprType::Scalar Scalar; + + EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block) + : mapbase_evaluator(block) + { + // TODO: for the 3.3 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime + eigen_assert(((internal::UIntPtr(block.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator::Alignment)) == 0) && "data is not aligned"); + } +}; + + +// -------------------- Select -------------------- +// NOTE shall we introduce a ternary_evaluator? + +// TODO enable vectorization for Select +template +struct evaluator > + : evaluator_base > +{ + typedef Select XprType; + enum { + CoeffReadCost = evaluator::CoeffReadCost + + EIGEN_PLAIN_ENUM_MAX(evaluator::CoeffReadCost, + evaluator::CoeffReadCost), + + Flags = (unsigned int)evaluator::Flags & evaluator::Flags & HereditaryBits, + + Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, evaluator::Alignment) + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& select) + : m_conditionImpl(select.conditionMatrix()), + m_thenImpl(select.thenMatrix()), + m_elseImpl(select.elseMatrix()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + if (m_conditionImpl.coeff(row, col)) + return m_thenImpl.coeff(row, col); + else + return m_elseImpl.coeff(row, col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + if (m_conditionImpl.coeff(index)) + return m_thenImpl.coeff(index); + else + return m_elseImpl.coeff(index); + } + +protected: + evaluator m_conditionImpl; + evaluator m_thenImpl; + evaluator m_elseImpl; +}; + + +// -------------------- Replicate -------------------- + +template +struct unary_evaluator > + : evaluator_base > +{ + typedef Replicate XprType; + typedef typename XprType::CoeffReturnType CoeffReturnType; + enum { + Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor + }; + typedef typename internal::nested_eval::type ArgTypeNested; + typedef typename internal::remove_all::type ArgTypeNestedCleaned; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + LinearAccessMask = XprType::IsVectorAtCompileTime ? LinearAccessBit : 0, + Flags = (evaluator::Flags & (HereditaryBits|LinearAccessMask) & ~RowMajorBit) | (traits::Flags & RowMajorBit), + + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& replicate) + : m_arg(replicate.nestedExpression()), + m_argImpl(m_arg), + m_rows(replicate.nestedExpression().rows()), + m_cols(replicate.nestedExpression().cols()) + {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + // try to avoid using modulo; this is a pure optimization strategy + const Index actual_row = internal::traits::RowsAtCompileTime==1 ? 0 + : RowFactor==1 ? row + : row % m_rows.value(); + const Index actual_col = internal::traits::ColsAtCompileTime==1 ? 0 + : ColFactor==1 ? col + : col % m_cols.value(); + + return m_argImpl.coeff(actual_row, actual_col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + // try to avoid using modulo; this is a pure optimization strategy + const Index actual_index = internal::traits::RowsAtCompileTime==1 + ? (ColFactor==1 ? index : index%m_cols.value()) + : (RowFactor==1 ? index : index%m_rows.value()); + + return m_argImpl.coeff(actual_index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + const Index actual_row = internal::traits::RowsAtCompileTime==1 ? 0 + : RowFactor==1 ? row + : row % m_rows.value(); + const Index actual_col = internal::traits::ColsAtCompileTime==1 ? 0 + : ColFactor==1 ? col + : col % m_cols.value(); + + return m_argImpl.template packet(actual_row, actual_col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + const Index actual_index = internal::traits::RowsAtCompileTime==1 + ? (ColFactor==1 ? index : index%m_cols.value()) + : (RowFactor==1 ? index : index%m_rows.value()); + + return m_argImpl.template packet(actual_index); + } + +protected: + const ArgTypeNested m_arg; + evaluator m_argImpl; + const variable_if_dynamic m_rows; + const variable_if_dynamic m_cols; +}; + + +// -------------------- PartialReduxExpr -------------------- + +template< typename ArgType, typename MemberOp, int Direction> +struct evaluator > + : evaluator_base > +{ + typedef PartialReduxExpr XprType; + typedef typename internal::nested_eval::type ArgTypeNested; + typedef typename internal::remove_all::type ArgTypeNestedCleaned; + typedef typename ArgType::Scalar InputScalar; + typedef typename XprType::Scalar Scalar; + enum { + TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(ArgType::ColsAtCompileTime) + }; + typedef typename MemberOp::template Cost CostOpType; + enum { + CoeffReadCost = TraversalSize==Dynamic ? HugeCost + : TraversalSize * evaluator::CoeffReadCost + int(CostOpType::value), + + Flags = (traits::Flags&RowMajorBit) | (evaluator::Flags&(HereditaryBits&(~RowMajorBit))) | LinearAccessBit, + + Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType xpr) + : m_arg(xpr.nestedExpression()), m_functor(xpr.functor()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(TraversalSize==Dynamic ? HugeCost : int(CostOpType::value)); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Scalar coeff(Index i, Index j) const + { + if (Direction==Vertical) + return m_functor(m_arg.col(j)); + else + return m_functor(m_arg.row(i)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Scalar coeff(Index index) const + { + if (Direction==Vertical) + return m_functor(m_arg.col(index)); + else + return m_functor(m_arg.row(index)); + } + +protected: + typename internal::add_const_on_value_type::type m_arg; + const MemberOp m_functor; +}; + + +// -------------------- MatrixWrapper and ArrayWrapper -------------------- +// +// evaluator_wrapper_base is a common base class for the +// MatrixWrapper and ArrayWrapper evaluators. + +template +struct evaluator_wrapper_base + : evaluator_base +{ + typedef typename remove_all::type ArgType; + enum { + CoeffReadCost = evaluator::CoeffReadCost, + Flags = evaluator::Flags, + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC explicit evaluator_wrapper_base(const ArgType& arg) : m_argImpl(arg) {} + + typedef typename ArgType::Scalar Scalar; + typedef typename ArgType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(row, col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(row, col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_argImpl.template packet(row, col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_argImpl.template packet(index); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + m_argImpl.template writePacket(row, col, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + m_argImpl.template writePacket(index, x); + } + +protected: + evaluator m_argImpl; +}; + +template +struct unary_evaluator > + : evaluator_wrapper_base > +{ + typedef MatrixWrapper XprType; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper) + : evaluator_wrapper_base >(wrapper.nestedExpression()) + { } +}; + +template +struct unary_evaluator > + : evaluator_wrapper_base > +{ + typedef ArrayWrapper XprType; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper) + : evaluator_wrapper_base >(wrapper.nestedExpression()) + { } +}; + + +// -------------------- Reverse -------------------- + +// defined in Reverse.h: +template struct reverse_packet_cond; + +template +struct unary_evaluator > + : evaluator_base > +{ + typedef Reverse XprType; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + enum { + IsRowMajor = XprType::IsRowMajor, + IsColMajor = !IsRowMajor, + ReverseRow = (Direction == Vertical) || (Direction == BothDirections), + ReverseCol = (Direction == Horizontal) || (Direction == BothDirections), + ReversePacket = (Direction == BothDirections) + || ((Direction == Vertical) && IsColMajor) + || ((Direction == Horizontal) && IsRowMajor), + + CoeffReadCost = evaluator::CoeffReadCost, + + // let's enable LinearAccess only with vectorization because of the product overhead + // FIXME enable DirectAccess with negative strides? + Flags0 = evaluator::Flags, + LinearAccess = ( (Direction==BothDirections) && (int(Flags0)&PacketAccessBit) ) + || ((ReverseRow && XprType::ColsAtCompileTime==1) || (ReverseCol && XprType::RowsAtCompileTime==1)) + ? LinearAccessBit : 0, + + Flags = int(Flags0) & (HereditaryBits | PacketAccessBit | LinearAccess), + + Alignment = 0 // FIXME in some rare cases, Alignment could be preserved, like a Vector4f. + }; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& reverse) + : m_argImpl(reverse.nestedExpression()), + m_rows(ReverseRow ? reverse.nestedExpression().rows() : 1), + m_cols(ReverseCol ? reverse.nestedExpression().cols() : 1) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(ReverseRow ? m_rows.value() - row - 1 : row, + ReverseCol ? m_cols.value() - col - 1 : col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(m_rows.value() * m_cols.value() - index - 1); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(ReverseRow ? m_rows.value() - row - 1 : row, + ReverseCol ? m_cols.value() - col - 1 : col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(m_rows.value() * m_cols.value() - index - 1); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + enum { + PacketSize = unpacket_traits::size, + OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, + OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1 + }; + typedef internal::reverse_packet_cond reverse_packet; + return reverse_packet::run(m_argImpl.template packet( + ReverseRow ? m_rows.value() - row - OffsetRow : row, + ReverseCol ? m_cols.value() - col - OffsetCol : col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + enum { PacketSize = unpacket_traits::size }; + return preverse(m_argImpl.template packet(m_rows.value() * m_cols.value() - index - PacketSize)); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + // FIXME we could factorize some code with packet(i,j) + enum { + PacketSize = unpacket_traits::size, + OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, + OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1 + }; + typedef internal::reverse_packet_cond reverse_packet; + m_argImpl.template writePacket( + ReverseRow ? m_rows.value() - row - OffsetRow : row, + ReverseCol ? m_cols.value() - col - OffsetCol : col, + reverse_packet::run(x)); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + enum { PacketSize = unpacket_traits::size }; + m_argImpl.template writePacket + (m_rows.value() * m_cols.value() - index - PacketSize, preverse(x)); + } + +protected: + evaluator m_argImpl; + + // If we do not reverse rows, then we do not need to know the number of rows; same for columns + // Nonetheless, in this case it is important to set to 1 such that the coeff(index) method works fine for vectors. + const variable_if_dynamic m_rows; + const variable_if_dynamic m_cols; +}; + + +// -------------------- Diagonal -------------------- + +template +struct evaluator > + : evaluator_base > +{ + typedef Diagonal XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + + Flags = (unsigned int)(evaluator::Flags & (HereditaryBits | DirectAccessBit) & ~RowMajorBit) | LinearAccessBit, + + Alignment = 0 + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& diagonal) + : m_argImpl(diagonal.nestedExpression()), + m_index(diagonal.index()) + { } + + typedef typename XprType::Scalar Scalar; + // FIXME having to check whether ArgType is sparse here i not very nice. + typedef typename internal::conditional::value, + typename XprType::CoeffReturnType,Scalar>::type CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index) const + { + return m_argImpl.coeff(row + rowOffset(), row + colOffset()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(index + rowOffset(), index + colOffset()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index) + { + return m_argImpl.coeffRef(row + rowOffset(), row + colOffset()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(index + rowOffset(), index + colOffset()); + } + +protected: + evaluator m_argImpl; + const internal::variable_if_dynamicindex m_index; + +private: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value() > 0 ? 0 : -m_index.value(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; } +}; + + +//---------------------------------------------------------------------- +// deprecated code +//---------------------------------------------------------------------- + +// -------------------- EvalToTemp -------------------- + +// expression class for evaluating nested expression to a temporary + +template class EvalToTemp; + +template +struct traits > + : public traits +{ }; + +template +class EvalToTemp + : public dense_xpr_base >::type +{ + public: + + typedef typename dense_xpr_base::type Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp) + + explicit EvalToTemp(const ArgType& arg) + : m_arg(arg) + { } + + const ArgType& arg() const + { + return m_arg; + } + + Index rows() const + { + return m_arg.rows(); + } + + Index cols() const + { + return m_arg.cols(); + } + + private: + const ArgType& m_arg; +}; + +template +struct evaluator > + : public evaluator +{ + typedef EvalToTemp XprType; + typedef typename ArgType::PlainObject PlainObject; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) + : m_result(xpr.arg()) + { + ::new (static_cast(this)) Base(m_result); + } + + // This constructor is used when nesting an EvalTo evaluator in another evaluator + EIGEN_DEVICE_FUNC evaluator(const ArgType& arg) + : m_result(arg) + { + ::new (static_cast(this)) Base(m_result); + } + +protected: + PlainObject m_result; +}; + +} // namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COREEVALUATORS_H diff --git a/eigenlib/Eigen/src/Core/CoreIterators.h b/eigenlib/Eigen/src/Core/CoreIterators.h index 6da4683d2..4eb42b93a 100644 --- a/eigenlib/Eigen/src/Core/CoreIterators.h +++ b/eigenlib/Eigen/src/Core/CoreIterators.h @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2008-2014 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -15,47 +15,113 @@ namespace Eigen { /* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core */ -/** \ingroup SparseCore_Module - * \class InnerIterator - * \brief An InnerIterator allows to loop over the element of a sparse (or dense) matrix or expression - * - * todo +namespace internal { + +template +class inner_iterator_selector; + +} + +/** \class InnerIterator + * \brief An InnerIterator allows to loop over the element of any matrix expression. + * + * \warning To be used with care because an evaluator is constructed every time an InnerIterator iterator is constructed. + * + * TODO: add a usage example */ +template +class InnerIterator +{ +protected: + typedef internal::inner_iterator_selector::Kind> IteratorType; + typedef internal::evaluator EvaluatorType; + typedef typename internal::traits::Scalar Scalar; +public: + /** Construct an iterator over the \a outerId -th row or column of \a xpr */ + InnerIterator(const XprType &xpr, const Index &outerId) + : m_eval(xpr), m_iter(m_eval, outerId, xpr.innerSize()) + {} + + /// \returns the value of the current coefficient. + EIGEN_STRONG_INLINE Scalar value() const { return m_iter.value(); } + /** Increment the iterator \c *this to the next non-zero coefficient. + * Explicit zeros are not skipped over. To skip explicit zeros, see class SparseView + */ + EIGEN_STRONG_INLINE InnerIterator& operator++() { m_iter.operator++(); return *this; } + /// \returns the column or row index of the current coefficient. + EIGEN_STRONG_INLINE Index index() const { return m_iter.index(); } + /// \returns the row index of the current coefficient. + EIGEN_STRONG_INLINE Index row() const { return m_iter.row(); } + /// \returns the column index of the current coefficient. + EIGEN_STRONG_INLINE Index col() const { return m_iter.col(); } + /// \returns \c true if the iterator \c *this still references a valid coefficient. + EIGEN_STRONG_INLINE operator bool() const { return m_iter; } + +protected: + EvaluatorType m_eval; + IteratorType m_iter; +private: + // If you get here, then you're not using the right InnerIterator type, e.g.: + // SparseMatrix A; + // SparseMatrix::InnerIterator it(A,0); + template InnerIterator(const EigenBase&,Index outer); +}; + +namespace internal { -// generic version for dense matrix and expressions -template class DenseBase::InnerIterator +// Generic inner iterator implementation for dense objects +template +class inner_iterator_selector { - protected: - typedef typename Derived::Scalar Scalar; - typedef typename Derived::Index Index; - - enum { IsRowMajor = (Derived::Flags&RowMajorBit)==RowMajorBit }; - public: - EIGEN_STRONG_INLINE InnerIterator(const Derived& expr, Index outer) - : m_expression(expr), m_inner(0), m_outer(outer), m_end(expr.innerSize()) - {} - - EIGEN_STRONG_INLINE Scalar value() const - { - return (IsRowMajor) ? m_expression.coeff(m_outer, m_inner) - : m_expression.coeff(m_inner, m_outer); - } - - EIGEN_STRONG_INLINE InnerIterator& operator++() { m_inner++; return *this; } - - EIGEN_STRONG_INLINE Index index() const { return m_inner; } - inline Index row() const { return IsRowMajor ? m_outer : index(); } - inline Index col() const { return IsRowMajor ? index() : m_outer; } - - EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; } - - protected: - const Derived& m_expression; - Index m_inner; - const Index m_outer; - const Index m_end; +protected: + typedef evaluator EvaluatorType; + typedef typename traits::Scalar Scalar; + enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit }; + +public: + EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &innerSize) + : m_eval(eval), m_inner(0), m_outer(outerId), m_end(innerSize) + {} + + EIGEN_STRONG_INLINE Scalar value() const + { + return (IsRowMajor) ? m_eval.coeff(m_outer, m_inner) + : m_eval.coeff(m_inner, m_outer); + } + + EIGEN_STRONG_INLINE inner_iterator_selector& operator++() { m_inner++; return *this; } + + EIGEN_STRONG_INLINE Index index() const { return m_inner; } + inline Index row() const { return IsRowMajor ? m_outer : index(); } + inline Index col() const { return IsRowMajor ? index() : m_outer; } + + EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; } + +protected: + const EvaluatorType& m_eval; + Index m_inner; + const Index m_outer; + const Index m_end; }; +// For iterator-based evaluator, inner-iterator is already implemented as +// evaluator<>::InnerIterator +template +class inner_iterator_selector + : public evaluator::InnerIterator +{ +protected: + typedef typename evaluator::InnerIterator Base; + typedef evaluator EvaluatorType; + +public: + EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &/*innerSize*/) + : Base(eval, outerId) + {} +}; + +} // end namespace internal + } // end namespace Eigen #endif // EIGEN_COREITERATORS_H diff --git a/eigenlib/Eigen/src/Core/CwiseBinaryOp.h b/eigenlib/Eigen/src/Core/CwiseBinaryOp.h index 586f77aaf..a36765e39 100644 --- a/eigenlib/Eigen/src/Core/CwiseBinaryOp.h +++ b/eigenlib/Eigen/src/Core/CwiseBinaryOp.h @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2008-2014 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla @@ -13,26 +13,6 @@ namespace Eigen { -/** \class CwiseBinaryOp - * \ingroup Core_Module - * - * \brief Generic expression where a coefficient-wise binary operator is applied to two expressions - * - * \param BinaryOp template functor implementing the operator - * \param Lhs the type of the left-hand side - * \param Rhs the type of the right-hand side - * - * This class represents an expression where a coefficient-wise binary operator is applied to two expressions. - * It is the return type of binary operators, by which we mean only those binary operators where - * both the left-hand side and the right-hand side are Eigen expressions. - * For example, the return type of matrix1+matrix2 is a CwiseBinaryOp. - * - * Most of the time, this is the only way that it is used, so you typically don't have to name - * CwiseBinaryOp types explicitly. - * - * \sa MatrixBase::binaryExpr(const MatrixBase &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp - */ - namespace internal { template struct traits > @@ -52,76 +32,75 @@ struct traits > // we still want to handle the case when the result type is different. typedef typename result_of< BinaryOp( - typename Lhs::Scalar, - typename Rhs::Scalar + const typename Lhs::Scalar&, + const typename Rhs::Scalar& ) >::type Scalar; - typedef typename promote_storage_type::StorageKind, - typename traits::StorageKind>::ret StorageKind; - typedef typename promote_index_type::Index, - typename traits::Index>::type Index; + typedef typename cwise_promote_storage_type::StorageKind, + typename traits::StorageKind, + BinaryOp>::ret StorageKind; + typedef typename promote_index_type::StorageIndex, + typename traits::StorageIndex>::type StorageIndex; typedef typename Lhs::Nested LhsNested; typedef typename Rhs::Nested RhsNested; typedef typename remove_reference::type _LhsNested; typedef typename remove_reference::type _RhsNested; enum { - LhsCoeffReadCost = _LhsNested::CoeffReadCost, - RhsCoeffReadCost = _RhsNested::CoeffReadCost, - LhsFlags = _LhsNested::Flags, - RhsFlags = _RhsNested::Flags, - SameType = is_same::value, - StorageOrdersAgree = (int(Lhs::Flags)&RowMajorBit)==(int(Rhs::Flags)&RowMajorBit), - Flags0 = (int(LhsFlags) | int(RhsFlags)) & ( - HereditaryBits - | (int(LhsFlags) & int(RhsFlags) & - ( AlignedBit - | (StorageOrdersAgree ? LinearAccessBit : 0) - | (functor_traits::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) - ) - ) - ), - Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit), - CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + functor_traits::Cost + Flags = cwise_promote_storage_order::StorageKind,typename traits::StorageKind,_LhsNested::Flags & RowMajorBit,_RhsNested::Flags & RowMajorBit>::value }; }; } // end namespace internal -// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor -// that would take two operands of different types. If there were such an example, then this check should be -// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as -// currently they take only one typename Scalar template parameter. -// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths. -// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to -// add together a float matrix and a double matrix. -#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \ - EIGEN_STATIC_ASSERT((internal::functor_is_product_like::ret \ - ? int(internal::scalar_product_traits::Defined) \ - : int(internal::is_same::value)), \ - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - template class CwiseBinaryOpImpl; -template -class CwiseBinaryOp : internal::no_assignment_operator, +/** \class CwiseBinaryOp + * \ingroup Core_Module + * + * \brief Generic expression where a coefficient-wise binary operator is applied to two expressions + * + * \tparam BinaryOp template functor implementing the operator + * \tparam LhsType the type of the left-hand side + * \tparam RhsType the type of the right-hand side + * + * This class represents an expression where a coefficient-wise binary operator is applied to two expressions. + * It is the return type of binary operators, by which we mean only those binary operators where + * both the left-hand side and the right-hand side are Eigen expressions. + * For example, the return type of matrix1+matrix2 is a CwiseBinaryOp. + * + * Most of the time, this is the only way that it is used, so you typically don't have to name + * CwiseBinaryOp types explicitly. + * + * \sa MatrixBase::binaryExpr(const MatrixBase &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp + */ +template +class CwiseBinaryOp : public CwiseBinaryOpImpl< - BinaryOp, Lhs, Rhs, - typename internal::promote_storage_type::StorageKind, - typename internal::traits::StorageKind>::ret> + BinaryOp, LhsType, RhsType, + typename internal::cwise_promote_storage_type::StorageKind, + typename internal::traits::StorageKind, + BinaryOp>::ret>, + internal::no_assignment_operator { public: + + typedef typename internal::remove_all::type Functor; + typedef typename internal::remove_all::type Lhs; + typedef typename internal::remove_all::type Rhs; typedef typename CwiseBinaryOpImpl< - BinaryOp, Lhs, Rhs, - typename internal::promote_storage_type::StorageKind, - typename internal::traits::StorageKind>::ret>::Base Base; + BinaryOp, LhsType, RhsType, + typename internal::cwise_promote_storage_type::StorageKind, + typename internal::traits::StorageKind, + BinaryOp>::ret>::Base Base; EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp) - typedef typename internal::nested::type LhsNested; - typedef typename internal::nested::type RhsNested; + typedef typename internal::ref_selector::type LhsNested; + typedef typename internal::ref_selector::type RhsNested; typedef typename internal::remove_reference::type _LhsNested; typedef typename internal::remove_reference::type _RhsNested; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& aLhs, const Rhs& aRhs, const BinaryOp& func = BinaryOp()) : m_lhs(aLhs), m_rhs(aRhs), m_functor(func) { @@ -131,6 +110,7 @@ class CwiseBinaryOp : internal::no_assignment_operator, eigen_assert(aLhs.rows() == aRhs.rows() && aLhs.cols() == aRhs.cols()); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { // return the fixed size type if available to enable compile time optimizations if (internal::traits::type>::RowsAtCompileTime==Dynamic) @@ -138,6 +118,7 @@ class CwiseBinaryOp : internal::no_assignment_operator, else return m_lhs.rows(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { // return the fixed size type if available to enable compile time optimizations if (internal::traits::type>::ColsAtCompileTime==Dynamic) @@ -147,10 +128,13 @@ class CwiseBinaryOp : internal::no_assignment_operator, } /** \returns the left hand side nested expression */ + EIGEN_DEVICE_FUNC const _LhsNested& lhs() const { return m_lhs; } /** \returns the right hand side nested expression */ + EIGEN_DEVICE_FUNC const _RhsNested& rhs() const { return m_rhs; } /** \returns the functor representing the binary operation */ + EIGEN_DEVICE_FUNC const BinaryOp& functor() const { return m_functor; } protected: @@ -159,41 +143,13 @@ class CwiseBinaryOp : internal::no_assignment_operator, const BinaryOp m_functor; }; -template -class CwiseBinaryOpImpl - : public internal::dense_xpr_base >::type +// Generic API dispatcher +template +class CwiseBinaryOpImpl + : public internal::generic_xpr_base >::type { - typedef CwiseBinaryOp Derived; - public: - - typedef typename internal::dense_xpr_base >::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE( Derived ) - - EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const - { - return derived().functor()(derived().lhs().coeff(rowId, colId), - derived().rhs().coeff(rowId, colId)); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const - { - return derived().functor().packetOp(derived().lhs().template packet(rowId, colId), - derived().rhs().template packet(rowId, colId)); - } - - EIGEN_STRONG_INLINE const Scalar coeff(Index index) const - { - return derived().functor()(derived().lhs().coeff(index), - derived().rhs().coeff(index)); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index index) const - { - return derived().functor().packetOp(derived().lhs().template packet(index), - derived().rhs().template packet(index)); - } +public: + typedef typename internal::generic_xpr_base >::type Base; }; /** replaces \c *this by \c *this - \a other. @@ -205,8 +161,7 @@ template EIGEN_STRONG_INLINE Derived & MatrixBase::operator-=(const MatrixBase &other) { - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); + call_assignment(derived(), other.derived(), internal::sub_assign_op()); return derived(); } @@ -219,11 +174,11 @@ template EIGEN_STRONG_INLINE Derived & MatrixBase::operator+=(const MatrixBase& other) { - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); + call_assignment(derived(), other.derived(), internal::add_assign_op()); return derived(); } } // end namespace Eigen #endif // EIGEN_CWISE_BINARY_OP_H + diff --git a/eigenlib/Eigen/src/Core/CwiseNullaryOp.h b/eigenlib/Eigen/src/Core/CwiseNullaryOp.h index a93bab2d0..dd498f758 100644 --- a/eigenlib/Eigen/src/Core/CwiseNullaryOp.h +++ b/eigenlib/Eigen/src/Core/CwiseNullaryOp.h @@ -12,13 +12,24 @@ namespace Eigen { +namespace internal { +template +struct traits > : traits +{ + enum { + Flags = traits::Flags & RowMajorBit + }; +}; + +} // namespace internal + /** \class CwiseNullaryOp * \ingroup Core_Module * * \brief Generic expression of a matrix where all coefficients are defined by a functor * - * \param NullaryOp template functor implementing the operator - * \param PlainObjectType the underlying plain matrix/array type + * \tparam NullaryOp template functor implementing the operator + * \tparam PlainObjectType the underlying plain matrix/array type * * This class represents an expression of a generic nullary operator. * It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods, @@ -27,68 +38,49 @@ namespace Eigen { * However, if you want to write a function returning such an expression, you * will need to use this class. * - * \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr() + * The functor NullaryOp must expose one of the following method: + + + + +
\c operator()() if the procedural generation does not depend on the coefficient entries (e.g., random numbers)
\c operator()(Index i)if the procedural generation makes sense for vectors only and that it depends on the coefficient index \c i (e.g., linspace)
\c operator()(Index i,Index j)if the procedural generation depends on the matrix coordinates \c i, \c j (e.g., to generate a checkerboard with 0 and 1)
+ * It is also possible to expose the last two operators if the generation makes sense for matrices but can be optimized for vectors. + * + * See DenseBase::NullaryExpr(Index,const CustomNullaryOp&) for an example binding + * C++11 random number generators. + * + * A nullary expression can also be used to implement custom sophisticated matrix manipulations + * that cannot be covered by the existing set of natively supported matrix manipulations. + * See this \ref TopicCustomizing_NullaryExpr "page" for some examples and additional explanations + * on the behavior of CwiseNullaryOp. + * + * \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr */ - -namespace internal { template -struct traits > : traits -{ - enum { - Flags = (traits::Flags - & ( HereditaryBits - | (functor_has_linear_access::ret ? LinearAccessBit : 0) - | (functor_traits::PacketAccess ? PacketAccessBit : 0))) - | (functor_traits::IsRepeatable ? 0 : EvalBeforeNestingBit), - CoeffReadCost = functor_traits::Cost - }; -}; -} - -template -class CwiseNullaryOp : internal::no_assignment_operator, - public internal::dense_xpr_base< CwiseNullaryOp >::type +class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator { public: typedef typename internal::dense_xpr_base::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp) - CwiseNullaryOp(Index nbRows, Index nbCols, const NullaryOp& func = NullaryOp()) - : m_rows(nbRows), m_cols(nbCols), m_functor(func) + EIGEN_DEVICE_FUNC + CwiseNullaryOp(Index rows, Index cols, const NullaryOp& func = NullaryOp()) + : m_rows(rows), m_cols(cols), m_functor(func) { - eigen_assert(nbRows >= 0 - && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == nbRows) - && nbCols >= 0 - && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == nbCols)); + eigen_assert(rows >= 0 + && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows) + && cols >= 0 + && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); } - EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const - { - return m_functor(rowId, colId); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const - { - return m_functor.packetOp(rowId, colId); - } - - EIGEN_STRONG_INLINE const Scalar coeff(Index index) const - { - return m_functor(index); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index index) const - { - return m_functor.packetOp(index); - } - /** \returns the functor representing the nullary operation */ + EIGEN_DEVICE_FUNC const NullaryOp& functor() const { return m_functor; } protected: @@ -113,10 +105,10 @@ class CwiseNullaryOp : internal::no_assignment_operator, */ template template -EIGEN_STRONG_INLINE const CwiseNullaryOp +EIGEN_STRONG_INLINE const CwiseNullaryOp::PlainObject> DenseBase::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func) { - return CwiseNullaryOp(rows, cols, func); + return CwiseNullaryOp(rows, cols, func); } /** \returns an expression of a matrix defined by a custom functor \a func @@ -132,16 +124,19 @@ DenseBase::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& f * * The template parameter \a CustomNullaryOp is the type of the functor. * + * Here is an example with C++11 random generators: \include random_cpp11.cpp + * Output: \verbinclude random_cpp11.out + * * \sa class CwiseNullaryOp */ template template -EIGEN_STRONG_INLINE const CwiseNullaryOp +EIGEN_STRONG_INLINE const CwiseNullaryOp::PlainObject> DenseBase::NullaryExpr(Index size, const CustomNullaryOp& func) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - if(RowsAtCompileTime == 1) return CwiseNullaryOp(1, size, func); - else return CwiseNullaryOp(size, 1, func); + if(RowsAtCompileTime == 1) return CwiseNullaryOp(1, size, func); + else return CwiseNullaryOp(size, 1, func); } /** \returns an expression of a matrix defined by a custom functor \a func @@ -155,19 +150,19 @@ DenseBase::NullaryExpr(Index size, const CustomNullaryOp& func) */ template template -EIGEN_STRONG_INLINE const CwiseNullaryOp +EIGEN_STRONG_INLINE const CwiseNullaryOp::PlainObject> DenseBase::NullaryExpr(const CustomNullaryOp& func) { - return CwiseNullaryOp(RowsAtCompileTime, ColsAtCompileTime, func); + return CwiseNullaryOp(RowsAtCompileTime, ColsAtCompileTime, func); } /** \returns an expression of a constant matrix of value \a value * - * The parameters \a nbRows and \a nbCols are the number of rows and of columns of + * The parameters \a rows and \a cols are the number of rows and of columns of * the returned matrix. Must be compatible with this DenseBase type. * * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, - * it is redundant to pass \a nbRows and \a nbCols as arguments, so Zero() should be used + * it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used * instead. * * The template parameter \a CustomNullaryOp is the type of the functor. @@ -176,9 +171,9 @@ DenseBase::NullaryExpr(const CustomNullaryOp& func) */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Constant(Index nbRows, Index nbCols, const Scalar& value) +DenseBase::Constant(Index rows, Index cols, const Scalar& value) { - return DenseBase::NullaryExpr(nbRows, nbCols, internal::scalar_constant_op(value)); + return DenseBase::NullaryExpr(rows, cols, internal::scalar_constant_op(value)); } /** \returns an expression of a constant matrix of value \a value @@ -220,46 +215,33 @@ DenseBase::Constant(const Scalar& value) return DenseBase::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op(value)); } -/** - * \brief Sets a linearly space vector. - * - * The function generates 'size' equally spaced values in the closed interval [low,high]. - * This particular version of LinSpaced() uses sequential access, i.e. vector access is - * assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization - * and yields faster code than the random access version. +/** \deprecated because of accuracy loss. In Eigen 3.3, it is an alias for LinSpaced(Index,const Scalar&,const Scalar&) * - * When size is set to 1, a vector of length 1 containing 'high' is returned. - * - * \only_for_vectors - * - * Example: \include DenseBase_LinSpaced_seq.cpp - * Output: \verbinclude DenseBase_LinSpaced_seq.out - * - * \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp + * \sa LinSpaced(Index,Scalar,Scalar), setLinSpaced(Index,const Scalar&,const Scalar&) */ template -EIGEN_STRONG_INLINE const typename DenseBase::SequentialLinSpacedReturnType +EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType DenseBase::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return DenseBase::NullaryExpr(size, internal::linspaced_op(low,high,size)); + return DenseBase::NullaryExpr(size, internal::linspaced_op(low,high,size)); } -/** - * \copydoc DenseBase::LinSpaced(Sequential_t, Index, const Scalar&, const Scalar&) - * Special version for fixed size types which does not require the size parameter. +/** \deprecated because of accuracy loss. In Eigen 3.3, it is an alias for LinSpaced(const Scalar&,const Scalar&) + * + * \sa LinSpaced(Scalar,Scalar) */ template -EIGEN_STRONG_INLINE const typename DenseBase::SequentialLinSpacedReturnType +EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType DenseBase::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) - return DenseBase::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op(low,high,Derived::SizeAtCompileTime)); + return DenseBase::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op(low,high,Derived::SizeAtCompileTime)); } /** - * \brief Sets a linearly space vector. + * \brief Sets a linearly spaced vector. * * The function generates 'size' equally spaced values in the closed interval [low,high]. * When size is set to 1, a vector of length 1 containing 'high' is returned. @@ -269,14 +251,24 @@ DenseBase::LinSpaced(Sequential_t, const Scalar& low, const Scalar& hig * Example: \include DenseBase_LinSpaced.cpp * Output: \verbinclude DenseBase_LinSpaced.out * - * \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp + * For integer scalar types, an even spacing is possible if and only if the length of the range, + * i.e., \c high-low is a scalar multiple of \c size-1, or if \c size is a scalar multiple of the + * number of values \c high-low+1 (meaning each value can be repeated the same number of time). + * If one of these two considions is not satisfied, then \c high is lowered to the largest value + * satisfying one of this constraint. + * Here are some examples: + * + * Example: \include DenseBase_LinSpacedInt.cpp + * Output: \verbinclude DenseBase_LinSpacedInt.out + * + * \sa setLinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp */ template EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType DenseBase::LinSpaced(Index size, const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return DenseBase::NullaryExpr(size, internal::linspaced_op(low,high,size)); + return DenseBase::NullaryExpr(size, internal::linspaced_op(low,high,size)); } /** @@ -289,7 +281,7 @@ DenseBase::LinSpaced(const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) - return DenseBase::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op(low,high,Derived::SizeAtCompileTime)); + return DenseBase::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op(low,high,Derived::SizeAtCompileTime)); } /** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */ @@ -297,9 +289,10 @@ template bool DenseBase::isApproxToConstant (const Scalar& val, const RealScalar& prec) const { + typename internal::nested_eval::type self(derived()); for(Index j = 0; j < cols(); ++j) for(Index i = 0; i < rows(); ++i) - if(!internal::isApprox(this->coeff(i, j), val, prec)) + if(!internal::isApprox(self.coeff(i, j), val, prec)) return false; return true; } @@ -324,7 +317,7 @@ EIGEN_STRONG_INLINE void DenseBase::fill(const Scalar& val) setConstant(val); } -/** Sets all coefficients in this expression to \a value. +/** Sets all coefficients in this expression to value \a val. * * \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes() */ @@ -334,7 +327,7 @@ EIGEN_STRONG_INLINE Derived& DenseBase::setConstant(const Scalar& val) return derived() = Constant(rows(), cols(), val); } -/** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value. +/** Resizes to the given \a size, and sets all coefficients in this expression to the given value \a val. * * \only_for_vectors * @@ -351,10 +344,10 @@ PlainObjectBase::setConstant(Index size, const Scalar& val) return setConstant(val); } -/** Resizes to the given size, and sets all coefficients in this expression to the given \a value. +/** Resizes to the given size, and sets all coefficients in this expression to the given value \a val. * - * \param nbRows the new number of rows - * \param nbCols the new number of columns + * \param rows the new number of rows + * \param cols the new number of columns * \param val the value to which all coefficients are set * * Example: \include Matrix_setConstant_int_int.cpp @@ -364,14 +357,14 @@ PlainObjectBase::setConstant(Index size, const Scalar& val) */ template EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setConstant(Index nbRows, Index nbCols, const Scalar& val) +PlainObjectBase::setConstant(Index rows, Index cols, const Scalar& val) { - resize(nbRows, nbCols); + resize(rows, cols); return setConstant(val); } /** - * \brief Sets a linearly space vector. + * \brief Sets a linearly spaced vector. * * The function generates 'size' equally spaced values in the closed interval [low,high]. * When size is set to 1, a vector of length 1 containing 'high' is returned. @@ -381,24 +374,30 @@ PlainObjectBase::setConstant(Index nbRows, Index nbCols, const Scalar& * Example: \include DenseBase_setLinSpaced.cpp * Output: \verbinclude DenseBase_setLinSpaced.out * - * \sa CwiseNullaryOp + * For integer scalar types, do not miss the explanations on the definition + * of \link LinSpaced(Index,const Scalar&,const Scalar&) even spacing \endlink. + * + * \sa LinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp */ template EIGEN_STRONG_INLINE Derived& DenseBase::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op(low,high,newSize)); + return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op(low,high,newSize)); } /** - * \brief Sets a linearly space vector. + * \brief Sets a linearly spaced vector. * - * The function fill *this with equally spaced values in the closed interval [low,high]. + * The function fills \c *this with equally spaced values in the closed interval [low,high]. * When size is set to 1, a vector of length 1 containing 'high' is returned. * * \only_for_vectors * - * \sa setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp + * For integer scalar types, do not miss the explanations on the definition + * of \link LinSpaced(Index,const Scalar&,const Scalar&) even spacing \endlink. + * + * \sa LinSpaced(Index,const Scalar&,const Scalar&), setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp */ template EIGEN_STRONG_INLINE Derived& DenseBase::setLinSpaced(const Scalar& low, const Scalar& high) @@ -425,9 +424,9 @@ EIGEN_STRONG_INLINE Derived& DenseBase::setLinSpaced(const Scalar& low, */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Zero(Index nbRows, Index nbCols) +DenseBase::Zero(Index rows, Index cols) { - return Constant(nbRows, nbCols, Scalar(0)); + return Constant(rows, cols, Scalar(0)); } /** \returns an expression of a zero vector. @@ -481,9 +480,10 @@ DenseBase::Zero() template bool DenseBase::isZero(const RealScalar& prec) const { + typename internal::nested_eval::type self(derived()); for(Index j = 0; j < cols(); ++j) for(Index i = 0; i < rows(); ++i) - if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast(1), prec)) + if(!internal::isMuchSmallerThan(self.coeff(i, j), static_cast(1), prec)) return false; return true; } @@ -520,8 +520,8 @@ PlainObjectBase::setZero(Index newSize) /** Resizes to the given size, and sets all coefficients in this expression to zero. * - * \param nbRows the new number of rows - * \param nbCols the new number of columns + * \param rows the new number of rows + * \param cols the new number of columns * * Example: \include Matrix_setZero_int_int.cpp * Output: \verbinclude Matrix_setZero_int_int.out @@ -530,9 +530,9 @@ PlainObjectBase::setZero(Index newSize) */ template EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setZero(Index nbRows, Index nbCols) +PlainObjectBase::setZero(Index rows, Index cols) { - resize(nbRows, nbCols); + resize(rows, cols); return setConstant(Scalar(0)); } @@ -540,7 +540,7 @@ PlainObjectBase::setZero(Index nbRows, Index nbCols) /** \returns an expression of a matrix where all coefficients equal one. * - * The parameters \a nbRows and \a nbCols are the number of rows and of columns of + * The parameters \a rows and \a cols are the number of rows and of columns of * the returned matrix. Must be compatible with this MatrixBase type. * * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, @@ -554,9 +554,9 @@ PlainObjectBase::setZero(Index nbRows, Index nbCols) */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Ones(Index nbRows, Index nbCols) +DenseBase::Ones(Index rows, Index cols) { - return Constant(nbRows, nbCols, Scalar(1)); + return Constant(rows, cols, Scalar(1)); } /** \returns an expression of a vector where all coefficients equal one. @@ -646,8 +646,8 @@ PlainObjectBase::setOnes(Index newSize) /** Resizes to the given size, and sets all coefficients in this expression to one. * - * \param nbRows the new number of rows - * \param nbCols the new number of columns + * \param rows the new number of rows + * \param cols the new number of columns * * Example: \include Matrix_setOnes_int_int.cpp * Output: \verbinclude Matrix_setOnes_int_int.out @@ -656,9 +656,9 @@ PlainObjectBase::setOnes(Index newSize) */ template EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setOnes(Index nbRows, Index nbCols) +PlainObjectBase::setOnes(Index rows, Index cols) { - resize(nbRows, nbCols); + resize(rows, cols); return setConstant(Scalar(1)); } @@ -666,7 +666,7 @@ PlainObjectBase::setOnes(Index nbRows, Index nbCols) /** \returns an expression of the identity matrix (not necessarily square). * - * The parameters \a nbRows and \a nbCols are the number of rows and of columns of + * The parameters \a rows and \a cols are the number of rows and of columns of * the returned matrix. Must be compatible with this MatrixBase type. * * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, @@ -680,9 +680,9 @@ PlainObjectBase::setOnes(Index nbRows, Index nbCols) */ template EIGEN_STRONG_INLINE const typename MatrixBase::IdentityReturnType -MatrixBase::Identity(Index nbRows, Index nbCols) +MatrixBase::Identity(Index rows, Index cols) { - return DenseBase::NullaryExpr(nbRows, nbCols, internal::scalar_identity_op()); + return DenseBase::NullaryExpr(rows, cols, internal::scalar_identity_op()); } /** \returns an expression of the identity matrix (not necessarily square). @@ -716,18 +716,19 @@ template bool MatrixBase::isIdentity (const RealScalar& prec) const { + typename internal::nested_eval::type self(derived()); for(Index j = 0; j < cols(); ++j) { for(Index i = 0; i < rows(); ++i) { if(i == j) { - if(!internal::isApprox(this->coeff(i, j), static_cast(1), prec)) + if(!internal::isApprox(self.coeff(i, j), static_cast(1), prec)) return false; } else { - if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast(1), prec)) + if(!internal::isMuchSmallerThan(self.coeff(i, j), static_cast(1), prec)) return false; } } @@ -740,6 +741,7 @@ namespace internal { template=16)> struct setIdentity_impl { + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Derived& run(Derived& m) { return m = Derived::Identity(m.rows(), m.cols()); @@ -749,11 +751,11 @@ struct setIdentity_impl template struct setIdentity_impl { - typedef typename Derived::Index Index; + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Derived& run(Derived& m) { m.setZero(); - const Index size = (std::min)(m.rows(), m.cols()); + const Index size = numext::mini(m.rows(), m.cols()); for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1); return m; } @@ -776,8 +778,8 @@ EIGEN_STRONG_INLINE Derived& MatrixBase::setIdentity() /** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this. * - * \param nbRows the new number of rows - * \param nbCols the new number of columns + * \param rows the new number of rows + * \param cols the new number of columns * * Example: \include Matrix_setIdentity_int_int.cpp * Output: \verbinclude Matrix_setIdentity_int_int.out @@ -785,9 +787,9 @@ EIGEN_STRONG_INLINE Derived& MatrixBase::setIdentity() * \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity() */ template -EIGEN_STRONG_INLINE Derived& MatrixBase::setIdentity(Index nbRows, Index nbCols) +EIGEN_STRONG_INLINE Derived& MatrixBase::setIdentity(Index rows, Index cols) { - derived().resize(nbRows, nbCols); + derived().resize(rows, cols); return setIdentity(); } diff --git a/eigenlib/Eigen/src/Core/CwiseTernaryOp.h b/eigenlib/Eigen/src/Core/CwiseTernaryOp.h new file mode 100644 index 000000000..9f3576fec --- /dev/null +++ b/eigenlib/Eigen/src/Core/CwiseTernaryOp.h @@ -0,0 +1,197 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// Copyright (C) 2016 Eugene Brevdo +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CWISE_TERNARY_OP_H +#define EIGEN_CWISE_TERNARY_OP_H + +namespace Eigen { + +namespace internal { +template +struct traits > { + // we must not inherit from traits since it has + // the potential to cause problems with MSVC + typedef typename remove_all::type Ancestor; + typedef typename traits::XprKind XprKind; + enum { + RowsAtCompileTime = traits::RowsAtCompileTime, + ColsAtCompileTime = traits::ColsAtCompileTime, + MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = traits::MaxColsAtCompileTime + }; + + // even though we require Arg1, Arg2, and Arg3 to have the same scalar type + // (see CwiseTernaryOp constructor), + // we still want to handle the case when the result type is different. + typedef typename result_of::type Scalar; + + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::StorageIndex StorageIndex; + + typedef typename Arg1::Nested Arg1Nested; + typedef typename Arg2::Nested Arg2Nested; + typedef typename Arg3::Nested Arg3Nested; + typedef typename remove_reference::type _Arg1Nested; + typedef typename remove_reference::type _Arg2Nested; + typedef typename remove_reference::type _Arg3Nested; + enum { Flags = _Arg1Nested::Flags & RowMajorBit }; +}; +} // end namespace internal + +template +class CwiseTernaryOpImpl; + +/** \class CwiseTernaryOp + * \ingroup Core_Module + * + * \brief Generic expression where a coefficient-wise ternary operator is + * applied to two expressions + * + * \tparam TernaryOp template functor implementing the operator + * \tparam Arg1Type the type of the first argument + * \tparam Arg2Type the type of the second argument + * \tparam Arg3Type the type of the third argument + * + * This class represents an expression where a coefficient-wise ternary + * operator is applied to three expressions. + * It is the return type of ternary operators, by which we mean only those + * ternary operators where + * all three arguments are Eigen expressions. + * For example, the return type of betainc(matrix1, matrix2, matrix3) is a + * CwiseTernaryOp. + * + * Most of the time, this is the only way that it is used, so you typically + * don't have to name + * CwiseTernaryOp types explicitly. + * + * \sa MatrixBase::ternaryExpr(const MatrixBase &, const + * MatrixBase &, const CustomTernaryOp &) const, class CwiseBinaryOp, + * class CwiseUnaryOp, class CwiseNullaryOp + */ +template +class CwiseTernaryOp : public CwiseTernaryOpImpl< + TernaryOp, Arg1Type, Arg2Type, Arg3Type, + typename internal::traits::StorageKind>, + internal::no_assignment_operator +{ + public: + typedef typename internal::remove_all::type Arg1; + typedef typename internal::remove_all::type Arg2; + typedef typename internal::remove_all::type Arg3; + + typedef typename CwiseTernaryOpImpl< + TernaryOp, Arg1Type, Arg2Type, Arg3Type, + typename internal::traits::StorageKind>::Base Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseTernaryOp) + + typedef typename internal::ref_selector::type Arg1Nested; + typedef typename internal::ref_selector::type Arg2Nested; + typedef typename internal::ref_selector::type Arg3Nested; + typedef typename internal::remove_reference::type _Arg1Nested; + typedef typename internal::remove_reference::type _Arg2Nested; + typedef typename internal::remove_reference::type _Arg3Nested; + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CwiseTernaryOp(const Arg1& a1, const Arg2& a2, + const Arg3& a3, + const TernaryOp& func = TernaryOp()) + : m_arg1(a1), m_arg2(a2), m_arg3(a3), m_functor(func) { + // require the sizes to match + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg2) + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg3) + + // The index types should match + EIGEN_STATIC_ASSERT((internal::is_same< + typename internal::traits::StorageKind, + typename internal::traits::StorageKind>::value), + STORAGE_KIND_MUST_MATCH) + EIGEN_STATIC_ASSERT((internal::is_same< + typename internal::traits::StorageKind, + typename internal::traits::StorageKind>::value), + STORAGE_KIND_MUST_MATCH) + + eigen_assert(a1.rows() == a2.rows() && a1.cols() == a2.cols() && + a1.rows() == a3.rows() && a1.cols() == a3.cols()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index rows() const { + // return the fixed size type if available to enable compile time + // optimizations + if (internal::traits::type>:: + RowsAtCompileTime == Dynamic && + internal::traits::type>:: + RowsAtCompileTime == Dynamic) + return m_arg3.rows(); + else if (internal::traits::type>:: + RowsAtCompileTime == Dynamic && + internal::traits::type>:: + RowsAtCompileTime == Dynamic) + return m_arg2.rows(); + else + return m_arg1.rows(); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index cols() const { + // return the fixed size type if available to enable compile time + // optimizations + if (internal::traits::type>:: + ColsAtCompileTime == Dynamic && + internal::traits::type>:: + ColsAtCompileTime == Dynamic) + return m_arg3.cols(); + else if (internal::traits::type>:: + ColsAtCompileTime == Dynamic && + internal::traits::type>:: + ColsAtCompileTime == Dynamic) + return m_arg2.cols(); + else + return m_arg1.cols(); + } + + /** \returns the first argument nested expression */ + EIGEN_DEVICE_FUNC + const _Arg1Nested& arg1() const { return m_arg1; } + /** \returns the first argument nested expression */ + EIGEN_DEVICE_FUNC + const _Arg2Nested& arg2() const { return m_arg2; } + /** \returns the third argument nested expression */ + EIGEN_DEVICE_FUNC + const _Arg3Nested& arg3() const { return m_arg3; } + /** \returns the functor representing the ternary operation */ + EIGEN_DEVICE_FUNC + const TernaryOp& functor() const { return m_functor; } + + protected: + Arg1Nested m_arg1; + Arg2Nested m_arg2; + Arg3Nested m_arg3; + const TernaryOp m_functor; +}; + +// Generic API dispatcher +template +class CwiseTernaryOpImpl + : public internal::generic_xpr_base< + CwiseTernaryOp >::type { + public: + typedef typename internal::generic_xpr_base< + CwiseTernaryOp >::type Base; +}; + +} // end namespace Eigen + +#endif // EIGEN_CWISE_TERNARY_OP_H diff --git a/eigenlib/Eigen/src/Core/CwiseUnaryOp.h b/eigenlib/Eigen/src/Core/CwiseUnaryOp.h index f2de749f9..1d2dd19f2 100644 --- a/eigenlib/Eigen/src/Core/CwiseUnaryOp.h +++ b/eigenlib/Eigen/src/Core/CwiseUnaryOp.h @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2008-2014 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla @@ -13,41 +13,18 @@ namespace Eigen { -/** \class CwiseUnaryOp - * \ingroup Core_Module - * - * \brief Generic expression where a coefficient-wise unary operator is applied to an expression - * - * \param UnaryOp template functor implementing the operator - * \param XprType the type of the expression to which we are applying the unary operator - * - * This class represents an expression where a unary operator is applied to an expression. - * It is the return type of all operations taking exactly 1 input expression, regardless of the - * presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix - * is considered unary, because only the right-hand side is an expression, and its - * return type is a specialization of CwiseUnaryOp. - * - * Most of the time, this is the only way that it is used, so you typically don't have to name - * CwiseUnaryOp types explicitly. - * - * \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp - */ - namespace internal { template struct traits > : traits { typedef typename result_of< - UnaryOp(typename XprType::Scalar) + UnaryOp(const typename XprType::Scalar&) >::type Scalar; typedef typename XprType::Nested XprTypeNested; typedef typename remove_reference::type _XprTypeNested; enum { - Flags = _XprTypeNested::Flags & ( - HereditaryBits | LinearAccessBit | AlignedBit - | (functor_traits::PacketAccess ? PacketAccessBit : 0)), - CoeffReadCost = _XprTypeNested::CoeffReadCost + functor_traits::Cost + Flags = _XprTypeNested::Flags & RowMajorBit }; }; } @@ -55,70 +32,70 @@ struct traits > template class CwiseUnaryOpImpl; +/** \class CwiseUnaryOp + * \ingroup Core_Module + * + * \brief Generic expression where a coefficient-wise unary operator is applied to an expression + * + * \tparam UnaryOp template functor implementing the operator + * \tparam XprType the type of the expression to which we are applying the unary operator + * + * This class represents an expression where a unary operator is applied to an expression. + * It is the return type of all operations taking exactly 1 input expression, regardless of the + * presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix + * is considered unary, because only the right-hand side is an expression, and its + * return type is a specialization of CwiseUnaryOp. + * + * Most of the time, this is the only way that it is used, so you typically don't have to name + * CwiseUnaryOp types explicitly. + * + * \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp + */ template -class CwiseUnaryOp : internal::no_assignment_operator, - public CwiseUnaryOpImpl::StorageKind> +class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator { public: typedef typename CwiseUnaryOpImpl::StorageKind>::Base Base; EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp) + typedef typename internal::ref_selector::type XprTypeNested; + typedef typename internal::remove_all::type NestedExpression; - inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp()) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp()) : m_xpr(xpr), m_functor(func) {} - EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); } - EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index rows() const { return m_xpr.rows(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index cols() const { return m_xpr.cols(); } /** \returns the functor representing the unary operation */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const UnaryOp& functor() const { return m_functor; } /** \returns the nested expression */ - const typename internal::remove_all::type& + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const typename internal::remove_all::type& nestedExpression() const { return m_xpr; } /** \returns the nested expression */ - typename internal::remove_all::type& - nestedExpression() { return m_xpr.const_cast_derived(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename internal::remove_all::type& + nestedExpression() { return m_xpr; } protected: - typename XprType::Nested m_xpr; + XprTypeNested m_xpr; const UnaryOp m_functor; }; -// This is the generic implementation for dense storage. -// It can be used for any expression types implementing the dense concept. -template -class CwiseUnaryOpImpl - : public internal::dense_xpr_base >::type +// Generic API dispatcher +template +class CwiseUnaryOpImpl + : public internal::generic_xpr_base >::type { - public: - - typedef CwiseUnaryOp Derived; - typedef typename internal::dense_xpr_base >::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Derived) - - EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const - { - return derived().functor()(derived().nestedExpression().coeff(rowId, colId)); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const - { - return derived().functor().packetOp(derived().nestedExpression().template packet(rowId, colId)); - } - - EIGEN_STRONG_INLINE const Scalar coeff(Index index) const - { - return derived().functor()(derived().nestedExpression().coeff(index)); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index index) const - { - return derived().functor().packetOp(derived().nestedExpression().template packet(index)); - } +public: + typedef typename internal::generic_xpr_base >::type Base; }; } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/CwiseUnaryView.h b/eigenlib/Eigen/src/Core/CwiseUnaryView.h index b2638d326..271033056 100644 --- a/eigenlib/Eigen/src/Core/CwiseUnaryView.h +++ b/eigenlib/Eigen/src/Core/CwiseUnaryView.h @@ -12,33 +12,19 @@ namespace Eigen { -/** \class CwiseUnaryView - * \ingroup Core_Module - * - * \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector - * - * \param ViewOp template functor implementing the view - * \param MatrixType the type of the matrix we are applying the unary operator - * - * This class represents a lvalue expression of a generic unary view operator of a matrix or a vector. - * It is the return type of real() and imag(), and most of the time this is the only way it is used. - * - * \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp - */ - namespace internal { template struct traits > : traits { typedef typename result_of< - ViewOp(typename traits::Scalar) + ViewOp(const typename traits::Scalar&) >::type Scalar; typedef typename MatrixType::Nested MatrixTypeNested; typedef typename remove_all::type _MatrixTypeNested; enum { - Flags = (traits<_MatrixTypeNested>::Flags & (HereditaryBits | LvalueBit | LinearAccessBit | DirectAccessBit)), - CoeffReadCost = traits<_MatrixTypeNested>::CoeffReadCost + functor_traits::Cost, + FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, + Flags = traits<_MatrixTypeNested>::Flags & (RowMajorBit | FlagsLvalueBit | DirectAccessBit), // FIXME DirectAccessBit should not be handled by expressions MatrixTypeInnerStride = inner_stride_at_compile_time::ret, // need to cast the sizeof's from size_t to int explicitly, otherwise: // "error: no integral type can represent all of the enumerator values @@ -55,6 +41,19 @@ struct traits > template class CwiseUnaryViewImpl; +/** \class CwiseUnaryView + * \ingroup Core_Module + * + * \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector + * + * \tparam ViewOp template functor implementing the view + * \tparam MatrixType the type of the matrix we are applying the unary operator + * + * This class represents a lvalue expression of a generic unary view operator of a matrix or a vector. + * It is the return type of real() and imag(), and most of the time this is the only way it is used. + * + * \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp + */ template class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> { @@ -62,8 +61,10 @@ class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind>::Base Base; EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView) + typedef typename internal::ref_selector::non_const_type MatrixTypeNested; + typedef typename internal::remove_all::type NestedExpression; - inline CwiseUnaryView(const MatrixType& mat, const ViewOp& func = ViewOp()) + explicit inline CwiseUnaryView(MatrixType& mat, const ViewOp& func = ViewOp()) : m_matrix(mat), m_functor(func) {} EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryView) @@ -75,19 +76,27 @@ class CwiseUnaryView : public CwiseUnaryViewImpl::type& + const typename internal::remove_all::type& nestedExpression() const { return m_matrix; } /** \returns the nested expression */ - typename internal::remove_all::type& + typename internal::remove_reference::type& nestedExpression() { return m_matrix.const_cast_derived(); } protected: - // FIXME changed from MatrixType::Nested because of a weird compilation error with sun CC - typename internal::nested::type m_matrix; + MatrixTypeNested m_matrix; ViewOp m_functor; }; +// Generic API dispatcher +template +class CwiseUnaryViewImpl + : public internal::generic_xpr_base >::type +{ +public: + typedef typename internal::generic_xpr_base >::type Base; +}; + template class CwiseUnaryViewImpl : public internal::dense_xpr_base< CwiseUnaryView >::type @@ -100,38 +109,18 @@ class CwiseUnaryViewImpl EIGEN_DENSE_PUBLIC_INTERFACE(Derived) EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryViewImpl) - inline Scalar* data() { return &coeffRef(0); } - inline const Scalar* data() const { return &coeff(0); } + EIGEN_DEVICE_FUNC inline Scalar* data() { return &(this->coeffRef(0)); } + EIGEN_DEVICE_FUNC inline const Scalar* data() const { return &(this->coeff(0)); } - inline Index innerStride() const + EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().nestedExpression().innerStride() * sizeof(typename internal::traits::Scalar) / sizeof(Scalar); } - inline Index outerStride() const + EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().nestedExpression().outerStride() * sizeof(typename internal::traits::Scalar) / sizeof(Scalar); } - - EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const - { - return derived().functor()(derived().nestedExpression().coeff(row, col)); - } - - EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const - { - return derived().functor()(derived().nestedExpression().coeff(index)); - } - - EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col) - { - return derived().functor()(const_cast_derived().nestedExpression().coeffRef(row, col)); - } - - EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) - { - return derived().functor()(const_cast_derived().nestedExpression().coeffRef(index)); - } }; } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/DenseBase.h b/eigenlib/Eigen/src/Core/DenseBase.h index 32f60d8dc..bd74e8a13 100644 --- a/eigenlib/Eigen/src/Core/DenseBase.h +++ b/eigenlib/Eigen/src/Core/DenseBase.h @@ -34,37 +34,45 @@ static inline void check_DenseIndex_is_signed() { * \tparam Derived is the derived type, e.g., a matrix type or an expression. * * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN. + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN. * - * \sa \ref TopicClassHierarchy + * \sa \blank \ref TopicClassHierarchy */ template class DenseBase #ifndef EIGEN_PARSED_BY_DOXYGEN - : public internal::special_scalar_op_base::Scalar, - typename NumTraits::Scalar>::Real> -#else : public DenseCoeffsBase +#else + : public DenseCoeffsBase #endif // not EIGEN_PARSED_BY_DOXYGEN { public: - using internal::special_scalar_op_base::Scalar, - typename NumTraits::Scalar>::Real>::operator*; - class InnerIterator; + /** Inner iterator type to iterate over the coefficients of a row or column. + * \sa class InnerIterator + */ + typedef Eigen::InnerIterator InnerIterator; typedef typename internal::traits::StorageKind StorageKind; - /** \brief The type of indices - * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. - * \sa \ref TopicPreprocessorDirectives. - */ - typedef typename internal::traits::Index Index; + /** + * \brief The type used to store indices + * \details This typedef is relevant for types that store multiple indices such as + * PermutationMatrix or Transpositions, otherwise it defaults to Eigen::Index + * \sa \blank \ref TopicPreprocessorDirectives, Eigen::Index, SparseMatrixBase. + */ + typedef typename internal::traits::StorageIndex StorageIndex; + /** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex, etc. */ typedef typename internal::traits::Scalar Scalar; - typedef typename internal::packet_traits::type PacketScalar; + + /** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex, etc. + * + * It is an alias for the Scalar type */ + typedef Scalar value_type; + typedef typename NumTraits::Real RealScalar; - typedef DenseCoeffsBase Base; + using Base::derived; using Base::const_cast_derived; using Base::rows; @@ -74,16 +82,6 @@ template class DenseBase using Base::colIndexByOuterInner; using Base::coeff; using Base::coeffByOuterInner; - using Base::packet; - using Base::packetByOuterInner; - using Base::writePacket; - using Base::writePacketByOuterInner; - using Base::coeffRef; - using Base::coeffRefByOuterInner; - using Base::copyCoeff; - using Base::copyCoeffByOuterInner; - using Base::copyPacket; - using Base::copyPacketByOuterInner; using Base::operator(); using Base::operator[]; using Base::x; @@ -169,30 +167,54 @@ template class DenseBase InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), - CoeffReadCost = internal::traits::CoeffReadCost, - /**< This is a rough measure of how expensive it is to read one coefficient from - * this expression. - */ - InnerStrideAtCompileTime = internal::inner_stride_at_compile_time::ret, OuterStrideAtCompileTime = internal::outer_stride_at_compile_time::ret }; + + typedef typename internal::find_best_packet::type PacketScalar; - enum { ThisConstantIsPrivateInPlainObjectBase }; + enum { IsPlainObjectBase = 0 }; + + /** The plain matrix type corresponding to this expression. + * \sa PlainObject */ + typedef Matrix::Scalar, + internal::traits::RowsAtCompileTime, + internal::traits::ColsAtCompileTime, + AutoAlign | (internal::traits::Flags&RowMajorBit ? RowMajor : ColMajor), + internal::traits::MaxRowsAtCompileTime, + internal::traits::MaxColsAtCompileTime + > PlainMatrix; + + /** The plain array type corresponding to this expression. + * \sa PlainObject */ + typedef Array::Scalar, + internal::traits::RowsAtCompileTime, + internal::traits::ColsAtCompileTime, + AutoAlign | (internal::traits::Flags&RowMajorBit ? RowMajor : ColMajor), + internal::traits::MaxRowsAtCompileTime, + internal::traits::MaxColsAtCompileTime + > PlainArray; + + /** \brief The plain matrix or array type corresponding to this expression. + * + * This is not necessarily exactly the return type of eval(). In the case of plain matrices, + * the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed + * that the return type of eval() is either PlainObject or const PlainObject&. + */ + typedef typename internal::conditional::XprKind,MatrixXpr >::value, + PlainMatrix, PlainArray>::type PlainObject; /** \returns the number of nonzero coefficients which is in practice the number * of stored coefficients. */ + EIGEN_DEVICE_FUNC inline Index nonZeros() const { return size(); } - /** \returns true if either the number of rows or the number of columns is equal to 1. - * In other words, this function returns - * \code rows()==1 || cols()==1 \endcode - * \sa rows(), cols(), IsVectorAtCompileTime. */ /** \returns the outer size. * * \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a * column-major matrix, and the number of rows for a row-major matrix. */ + EIGEN_DEVICE_FUNC Index outerSize() const { return IsVectorAtCompileTime ? 1 @@ -204,6 +226,7 @@ template class DenseBase * \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a * column-major matrix, and the number of columns for a row-major matrix. */ + EIGEN_DEVICE_FUNC Index innerSize() const { return IsVectorAtCompileTime ? this->size() @@ -214,6 +237,7 @@ template class DenseBase * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does * nothing else. */ + EIGEN_DEVICE_FUNC void resize(Index newSize) { EIGEN_ONLY_USED_FOR_DEBUG(newSize); @@ -224,22 +248,22 @@ template class DenseBase * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does * nothing else. */ - void resize(Index nbRows, Index nbCols) + EIGEN_DEVICE_FUNC + void resize(Index rows, Index cols) { - EIGEN_ONLY_USED_FOR_DEBUG(nbRows); - EIGEN_ONLY_USED_FOR_DEBUG(nbCols); - eigen_assert(nbRows == this->rows() && nbCols == this->cols() + EIGEN_ONLY_USED_FOR_DEBUG(rows); + EIGEN_ONLY_USED_FOR_DEBUG(cols); + eigen_assert(rows == this->rows() && cols == this->cols() && "DenseBase::resize() does not actually allow to resize."); } #ifndef EIGEN_PARSED_BY_DOXYGEN - /** \internal Represents a matrix with all coefficients equal to one another*/ - typedef CwiseNullaryOp,Derived> ConstantReturnType; - /** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */ - typedef CwiseNullaryOp,Derived> SequentialLinSpacedReturnType; + typedef CwiseNullaryOp,PlainObject> ConstantReturnType; + /** \internal \deprecated Represents a vector with linearly spaced coefficients that allows sequential access only. */ + typedef CwiseNullaryOp,PlainObject> SequentialLinSpacedReturnType; /** \internal Represents a vector with linearly spaced coefficients that allows random access. */ - typedef CwiseNullaryOp,Derived> RandomAccessLinSpacedReturnType; + typedef CwiseNullaryOp,PlainObject> RandomAccessLinSpacedReturnType; /** \internal the return type of MatrixBase::eigenvalues() */ typedef Matrix::Scalar>::Real, internal::traits::ColsAtCompileTime, 1> EigenvaluesReturnType; @@ -247,120 +271,133 @@ template class DenseBase /** Copies \a other into *this. \returns a reference to *this. */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const DenseBase& other); /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const DenseBase& other); template + EIGEN_DEVICE_FUNC Derived& operator=(const EigenBase &other); template + EIGEN_DEVICE_FUNC Derived& operator+=(const EigenBase &other); template + EIGEN_DEVICE_FUNC Derived& operator-=(const EigenBase &other); template + EIGEN_DEVICE_FUNC Derived& operator=(const ReturnByValue& func); - /** \internal Copies \a other into *this without evaluating other. \returns a reference to *this. */ + /** \ínternal + * Copies \a other into *this without evaluating other. \returns a reference to *this. + * \deprecated */ template + EIGEN_DEVICE_FUNC Derived& lazyAssign(const DenseBase& other); - /** \internal Evaluates \a other into *this. \returns a reference to *this. */ - template - Derived& lazyAssign(const ReturnByValue& other); - + EIGEN_DEVICE_FUNC CommaInitializer operator<< (const Scalar& s); + /** \deprecated it now returns \c *this */ template - const Flagged flagged() const; + EIGEN_DEPRECATED + const Derived& flagged() const + { return derived(); } template + EIGEN_DEVICE_FUNC CommaInitializer operator<< (const DenseBase& other); - Eigen::Transpose transpose(); - typedef typename internal::add_const >::type ConstTransposeReturnType; + typedef Transpose TransposeReturnType; + EIGEN_DEVICE_FUNC + TransposeReturnType transpose(); + typedef typename internal::add_const >::type ConstTransposeReturnType; + EIGEN_DEVICE_FUNC ConstTransposeReturnType transpose() const; + EIGEN_DEVICE_FUNC void transposeInPlace(); -#ifndef EIGEN_NO_DEBUG - protected: - template - void checkTransposeAliasing(const OtherDerived& other) const; - public: -#endif - - static const ConstantReturnType + EIGEN_DEVICE_FUNC static const ConstantReturnType Constant(Index rows, Index cols, const Scalar& value); - static const ConstantReturnType + EIGEN_DEVICE_FUNC static const ConstantReturnType Constant(Index size, const Scalar& value); - static const ConstantReturnType + EIGEN_DEVICE_FUNC static const ConstantReturnType Constant(const Scalar& value); - static const SequentialLinSpacedReturnType + EIGEN_DEVICE_FUNC static const SequentialLinSpacedReturnType LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high); - static const RandomAccessLinSpacedReturnType + EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType LinSpaced(Index size, const Scalar& low, const Scalar& high); - static const SequentialLinSpacedReturnType + EIGEN_DEVICE_FUNC static const SequentialLinSpacedReturnType LinSpaced(Sequential_t, const Scalar& low, const Scalar& high); - static const RandomAccessLinSpacedReturnType + EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType LinSpaced(const Scalar& low, const Scalar& high); - template - static const CwiseNullaryOp + template EIGEN_DEVICE_FUNC + static const CwiseNullaryOp NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func); - template - static const CwiseNullaryOp + template EIGEN_DEVICE_FUNC + static const CwiseNullaryOp NullaryExpr(Index size, const CustomNullaryOp& func); - template - static const CwiseNullaryOp + template EIGEN_DEVICE_FUNC + static const CwiseNullaryOp NullaryExpr(const CustomNullaryOp& func); - static const ConstantReturnType Zero(Index rows, Index cols); - static const ConstantReturnType Zero(Index size); - static const ConstantReturnType Zero(); - static const ConstantReturnType Ones(Index rows, Index cols); - static const ConstantReturnType Ones(Index size); - static const ConstantReturnType Ones(); - - void fill(const Scalar& value); - Derived& setConstant(const Scalar& value); - Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high); - Derived& setLinSpaced(const Scalar& low, const Scalar& high); - Derived& setZero(); - Derived& setOnes(); - Derived& setRandom(); - - template + EIGEN_DEVICE_FUNC static const ConstantReturnType Zero(Index rows, Index cols); + EIGEN_DEVICE_FUNC static const ConstantReturnType Zero(Index size); + EIGEN_DEVICE_FUNC static const ConstantReturnType Zero(); + EIGEN_DEVICE_FUNC static const ConstantReturnType Ones(Index rows, Index cols); + EIGEN_DEVICE_FUNC static const ConstantReturnType Ones(Index size); + EIGEN_DEVICE_FUNC static const ConstantReturnType Ones(); + + EIGEN_DEVICE_FUNC void fill(const Scalar& value); + EIGEN_DEVICE_FUNC Derived& setConstant(const Scalar& value); + EIGEN_DEVICE_FUNC Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high); + EIGEN_DEVICE_FUNC Derived& setLinSpaced(const Scalar& low, const Scalar& high); + EIGEN_DEVICE_FUNC Derived& setZero(); + EIGEN_DEVICE_FUNC Derived& setOnes(); + EIGEN_DEVICE_FUNC Derived& setRandom(); + + template EIGEN_DEVICE_FUNC bool isApprox(const DenseBase& other, const RealScalar& prec = NumTraits::dummy_precision()) const; + EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const RealScalar& other, const RealScalar& prec = NumTraits::dummy_precision()) const; - template + template EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const DenseBase& other, const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isZero(const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isOnes(const RealScalar& prec = NumTraits::dummy_precision()) const; + EIGEN_DEVICE_FUNC bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits::dummy_precision()) const; + EIGEN_DEVICE_FUNC bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits::dummy_precision()) const; + EIGEN_DEVICE_FUNC bool isZero(const RealScalar& prec = NumTraits::dummy_precision()) const; + EIGEN_DEVICE_FUNC bool isOnes(const RealScalar& prec = NumTraits::dummy_precision()) const; inline bool hasNaN() const; inline bool allFinite() const; - inline Derived& operator*=(const Scalar& other); - inline Derived& operator/=(const Scalar& other); + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator*=(const Scalar& other); + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator/=(const Scalar& other); typedef typename internal::add_const_on_value_type::type>::type EvalReturnType; /** \returns the matrix or vector obtained by evaluating this expression. * * Notice that in the case of a plain matrix or vector (not an expression) this function just returns * a const reference, in order to avoid a useless copy. + * + * \warning Be carefull with eval() and the auto C++ keyword, as detailed in this \link TopicPitfalls_auto_keyword page \endlink. */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvalReturnType eval() const { // Even though MSVC does not honor strong inlining when the return type @@ -368,61 +405,68 @@ template class DenseBase // size types on MSVC. return typename internal::eval::type(derived()); } - + /** swaps *this with the expression \a other. * */ template - void swap(const DenseBase& other, - int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase) + EIGEN_DEVICE_FUNC + void swap(const DenseBase& other) { - SwapWrapper(derived()).lazyAssign(other.derived()); + EIGEN_STATIC_ASSERT(!OtherDerived::IsPlainObjectBase,THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); + eigen_assert(rows()==other.rows() && cols()==other.cols()); + call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); } /** swaps *this with the matrix or array \a other. * */ template + EIGEN_DEVICE_FUNC void swap(PlainObjectBase& other) { - SwapWrapper(derived()).lazyAssign(other.derived()); + eigen_assert(rows()==other.rows() && cols()==other.cols()); + call_assignment(derived(), other.derived(), internal::swap_assign_op()); } + EIGEN_DEVICE_FUNC inline const NestByValue nestByValue() const; + EIGEN_DEVICE_FUNC inline const ForceAlignedAccess forceAlignedAccess() const; + EIGEN_DEVICE_FUNC inline ForceAlignedAccess forceAlignedAccess(); + template EIGEN_DEVICE_FUNC + inline const typename internal::conditional,Derived&>::type forceAlignedAccessIf() const; + template EIGEN_DEVICE_FUNC + inline typename internal::conditional,Derived&>::type forceAlignedAccessIf(); - inline const NestByValue nestByValue() const; - inline const ForceAlignedAccess forceAlignedAccess() const; - inline ForceAlignedAccess forceAlignedAccess(); - template inline const typename internal::conditional,Derived&>::type forceAlignedAccessIf() const; - template inline typename internal::conditional,Derived&>::type forceAlignedAccessIf(); + EIGEN_DEVICE_FUNC Scalar sum() const; + EIGEN_DEVICE_FUNC Scalar mean() const; + EIGEN_DEVICE_FUNC Scalar trace() const; - Scalar sum() const; - Scalar mean() const; - Scalar trace() const; + EIGEN_DEVICE_FUNC Scalar prod() const; - Scalar prod() const; + EIGEN_DEVICE_FUNC typename internal::traits::Scalar minCoeff() const; + EIGEN_DEVICE_FUNC typename internal::traits::Scalar maxCoeff() const; - typename internal::traits::Scalar minCoeff() const; - typename internal::traits::Scalar maxCoeff() const; - - template + template EIGEN_DEVICE_FUNC typename internal::traits::Scalar minCoeff(IndexType* row, IndexType* col) const; - template + template EIGEN_DEVICE_FUNC typename internal::traits::Scalar maxCoeff(IndexType* row, IndexType* col) const; - template + template EIGEN_DEVICE_FUNC typename internal::traits::Scalar minCoeff(IndexType* index) const; - template + template EIGEN_DEVICE_FUNC typename internal::traits::Scalar maxCoeff(IndexType* index) const; template - typename internal::result_of::Scalar)>::type - redux(const BinaryOp& func) const; + EIGEN_DEVICE_FUNC + Scalar redux(const BinaryOp& func) const; template + EIGEN_DEVICE_FUNC void visit(Visitor& func) const; inline const WithFormat format(const IOFormat& fmt) const; /** \returns the unique coefficient of a 1x1 expression */ + EIGEN_DEVICE_FUNC CoeffReturnType value() const { EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) @@ -430,8 +474,8 @@ template class DenseBase return derived().coeff(0,0); } - bool all(void) const; - bool any(void) const; + bool all() const; + bool any() const; Index count() const; typedef VectorwiseOp RowwiseReturnType; @@ -439,14 +483,35 @@ template class DenseBase typedef VectorwiseOp ColwiseReturnType; typedef const VectorwiseOp ConstColwiseReturnType; - ConstRowwiseReturnType rowwise() const; - RowwiseReturnType rowwise(); - ConstColwiseReturnType colwise() const; - ColwiseReturnType colwise(); + /** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations + * + * Example: \include MatrixBase_rowwise.cpp + * Output: \verbinclude MatrixBase_rowwise.out + * + * \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting + */ + //Code moved here due to a CUDA compiler bug + EIGEN_DEVICE_FUNC inline ConstRowwiseReturnType rowwise() const { + return ConstRowwiseReturnType(derived()); + } + EIGEN_DEVICE_FUNC RowwiseReturnType rowwise(); + + /** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations + * + * Example: \include MatrixBase_colwise.cpp + * Output: \verbinclude MatrixBase_colwise.out + * + * \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting + */ + EIGEN_DEVICE_FUNC inline ConstColwiseReturnType colwise() const { + return ConstColwiseReturnType(derived()); + } + EIGEN_DEVICE_FUNC ColwiseReturnType colwise(); - static const CwiseNullaryOp,Derived> Random(Index rows, Index cols); - static const CwiseNullaryOp,Derived> Random(Index size); - static const CwiseNullaryOp,Derived> Random(); + typedef CwiseNullaryOp,PlainObject> RandomReturnType; + static const RandomReturnType Random(Index rows, Index cols); + static const RandomReturnType Random(Index size); + static const RandomReturnType Random(); template const Select @@ -464,45 +529,56 @@ template class DenseBase template RealScalar lpNorm() const; template - inline const Replicate replicate() const; - - typedef Replicate ReplicateReturnType; - inline const ReplicateReturnType replicate(Index rowFacor,Index colFactor) const; + EIGEN_DEVICE_FUNC + const Replicate replicate() const; + /** + * \return an expression of the replication of \c *this + * + * Example: \include MatrixBase_replicate_int_int.cpp + * Output: \verbinclude MatrixBase_replicate_int_int.out + * + * \sa VectorwiseOp::replicate(), DenseBase::replicate(), class Replicate + */ + //Code moved here due to a CUDA compiler bug + EIGEN_DEVICE_FUNC + const Replicate replicate(Index rowFactor, Index colFactor) const + { + return Replicate(derived(), rowFactor, colFactor); + } typedef Reverse ReverseReturnType; typedef const Reverse ConstReverseReturnType; - ReverseReturnType reverse(); - ConstReverseReturnType reverse() const; - void reverseInPlace(); + EIGEN_DEVICE_FUNC ReverseReturnType reverse(); + /** This is the const version of reverse(). */ + //Code moved here due to a CUDA compiler bug + EIGEN_DEVICE_FUNC ConstReverseReturnType reverse() const + { + return ConstReverseReturnType(derived()); + } + EIGEN_DEVICE_FUNC void reverseInPlace(); #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase +#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND) # include "../plugins/BlockMethods.h" # ifdef EIGEN_DENSEBASE_PLUGIN # include EIGEN_DENSEBASE_PLUGIN # endif #undef EIGEN_CURRENT_STORAGE_BASE_CLASS - -#ifdef EIGEN2_SUPPORT - - Block corner(CornerType type, Index cRows, Index cCols); - const Block corner(CornerType type, Index cRows, Index cCols) const; - template - Block corner(CornerType type); - template - const Block corner(CornerType type) const; - -#endif // EIGEN2_SUPPORT - +#undef EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +#undef EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF // disable the use of evalTo for dense objects with a nice compilation error - template inline void evalTo(Dest& ) const + template + EIGEN_DEVICE_FUNC + inline void evalTo(Dest& ) const { EIGEN_STATIC_ASSERT((internal::is_same::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS); } protected: /** Default constructor. Do nothing. */ - DenseBase() + EIGEN_DEVICE_FUNC DenseBase() { /* Just checks for self-consistency of the flags. * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down @@ -515,9 +591,9 @@ template class DenseBase } private: - explicit DenseBase(int); - DenseBase(int,int); - template explicit DenseBase(const DenseBase&); + EIGEN_DEVICE_FUNC explicit DenseBase(int); + EIGEN_DEVICE_FUNC DenseBase(int,int); + template EIGEN_DEVICE_FUNC explicit DenseBase(const DenseBase&); }; } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/DenseCoeffsBase.h b/eigenlib/Eigen/src/Core/DenseCoeffsBase.h index 3c890f215..c4af48ab6 100644 --- a/eigenlib/Eigen/src/Core/DenseCoeffsBase.h +++ b/eigenlib/Eigen/src/Core/DenseCoeffsBase.h @@ -35,7 +35,6 @@ class DenseCoeffsBase : public EigenBase { public: typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; @@ -61,6 +60,7 @@ class DenseCoeffsBase : public EigenBase using Base::size; using Base::derived; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const { return int(Derived::RowsAtCompileTime) == 1 ? 0 @@ -69,6 +69,7 @@ class DenseCoeffsBase : public EigenBase : inner; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const { return int(Derived::ColsAtCompileTime) == 1 ? 0 @@ -91,13 +92,15 @@ class DenseCoeffsBase : public EigenBase * * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const { eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - return derived().coeff(row, col); + && col >= 0 && col < cols()); + return internal::evaluator(derived()).coeff(row,col); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const { return coeff(rowIndexByOuterInner(outer, inner), @@ -108,11 +111,12 @@ class DenseCoeffsBase : public EigenBase * * \sa operator()(Index,Index), operator[](Index) */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const { eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); - return derived().coeff(row, col); + return coeff(row, col); } /** Short version: don't use this function, use @@ -130,11 +134,14 @@ class DenseCoeffsBase : public EigenBase * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { + EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, + THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) eigen_internal_assert(index >= 0 && index < size()); - return derived().coeff(index); + return internal::evaluator(derived()).coeff(index); } @@ -146,15 +153,14 @@ class DenseCoeffsBase : public EigenBase * z() const, w() const */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType operator[](Index index) const { - #ifndef EIGEN2_SUPPORT EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) - #endif eigen_assert(index >= 0 && index < size()); - return derived().coeff(index); + return coeff(index); } /** \returns the coefficient at given index. @@ -167,32 +173,49 @@ class DenseCoeffsBase : public EigenBase * z() const, w() const */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType operator()(Index index) const { eigen_assert(index >= 0 && index < size()); - return derived().coeff(index); + return coeff(index); } /** equivalent to operator[](0). */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType x() const { return (*this)[0]; } /** equivalent to operator[](1). */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType - y() const { return (*this)[1]; } + y() const + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS); + return (*this)[1]; + } /** equivalent to operator[](2). */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType - z() const { return (*this)[2]; } + z() const + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS); + return (*this)[2]; + } /** equivalent to operator[](3). */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType - w() const { return (*this)[3]; } + w() const + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS); + return (*this)[3]; + } /** \internal * \returns the packet of coefficients starting at the given row and column. It is your responsibility @@ -207,9 +230,9 @@ class DenseCoeffsBase : public EigenBase template EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const { - eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - return derived().template packet(row,col); + typedef typename internal::packet_traits::type DefaultPacketType; + eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); + return internal::evaluator(derived()).template packet(row,col); } @@ -234,8 +257,11 @@ class DenseCoeffsBase : public EigenBase template EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { + EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, + THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) + typedef typename internal::packet_traits::type DefaultPacketType; eigen_internal_assert(index >= 0 && index < size()); - return derived().template packet(index); + return internal::evaluator(derived()).template packet(index); } protected: @@ -278,7 +304,6 @@ class DenseCoeffsBase : public DenseCoeffsBase Base; typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; @@ -311,13 +336,15 @@ class DenseCoeffsBase : public DenseCoeffsBase= 0 && row < rows() - && col >= 0 && col < cols()); - return derived().coeffRef(row, col); + && col >= 0 && col < cols()); + return internal::evaluator(derived()).coeffRef(row,col); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRefByOuterInner(Index outer, Index inner) { @@ -330,12 +357,13 @@ class DenseCoeffsBase : public DenseCoeffsBase= 0 && row < rows() && col >= 0 && col < cols()); - return derived().coeffRef(row, col); + return coeffRef(row, col); } @@ -354,11 +382,14 @@ class DenseCoeffsBase : public DenseCoeffsBase::Flags & LinearAccessBit, + THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) eigen_internal_assert(index >= 0 && index < size()); - return derived().coeffRef(index); + return internal::evaluator(derived()).coeffRef(index); } /** \returns a reference to the coefficient at given index. @@ -368,15 +399,14 @@ class DenseCoeffsBase : public DenseCoeffsBase= 0 && index < size()); - return derived().coeffRef(index); + return coeffRef(index); } /** \returns a reference to the coefficient at given index. @@ -388,167 +418,49 @@ class DenseCoeffsBase : public DenseCoeffsBase= 0 && index < size()); - return derived().coeffRef(index); + return coeffRef(index); } /** equivalent to operator[](0). */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& x() { return (*this)[0]; } /** equivalent to operator[](1). */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& - y() { return (*this)[1]; } - - /** equivalent to operator[](2). */ - - EIGEN_STRONG_INLINE Scalar& - z() { return (*this)[2]; } - - /** equivalent to operator[](3). */ - - EIGEN_STRONG_INLINE Scalar& - w() { return (*this)[3]; } - - /** \internal - * Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility - * to ensure that a packet really starts there. This method is only available on expressions having the - * PacketAccessBit. - * - * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select - * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets - * starting at an address which is a multiple of the packet size. - */ - - template - EIGEN_STRONG_INLINE void writePacket - (Index row, Index col, const typename internal::packet_traits::type& val) + y() { - eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - derived().template writePacket(row,col,val); + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS); + return (*this)[1]; } + /** equivalent to operator[](2). */ - /** \internal */ - template - EIGEN_STRONG_INLINE void writePacketByOuterInner - (Index outer, Index inner, const typename internal::packet_traits::type& val) - { - writePacket(rowIndexByOuterInner(outer, inner), - colIndexByOuterInner(outer, inner), - val); - } - - /** \internal - * Stores the given packet of coefficients, at the given index in this expression. It is your responsibility - * to ensure that a packet really starts there. This method is only available on expressions having the - * PacketAccessBit and the LinearAccessBit. - * - * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select - * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets - * starting at an address which is a multiple of the packet size. - */ - template - EIGEN_STRONG_INLINE void writePacket - (Index index, const typename internal::packet_traits::type& val) - { - eigen_internal_assert(index >= 0 && index < size()); - derived().template writePacket(index,val); - } - -#ifndef EIGEN_PARSED_BY_DOXYGEN - - /** \internal Copies the coefficient at position (row,col) of other into *this. - * - * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code - * with usual assignments. - * - * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. - */ - - template - EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase& other) - { - eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - derived().coeffRef(row, col) = other.derived().coeff(row, col); - } - - /** \internal Copies the coefficient at the given index of other into *this. - * - * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code - * with usual assignments. - * - * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. - */ - - template - EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase& other) - { - eigen_internal_assert(index >= 0 && index < size()); - derived().coeffRef(index) = other.derived().coeff(index); - } - - - template - EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase& other) - { - const Index row = rowIndexByOuterInner(outer,inner); - const Index col = colIndexByOuterInner(outer,inner); - // derived() is important here: copyCoeff() may be reimplemented in Derived! - derived().copyCoeff(row, col, other); - } - - /** \internal Copies the packet at position (row,col) of other into *this. - * - * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code - * with usual assignments. - * - * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. - */ - - template - EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase& other) + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + z() { - eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - derived().template writePacket(row, col, - other.derived().template packet(row, col)); + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS); + return (*this)[2]; } - /** \internal Copies the packet at the given index of other into *this. - * - * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code - * with usual assignments. - * - * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. - */ - - template - EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase& other) - { - eigen_internal_assert(index >= 0 && index < size()); - derived().template writePacket(index, - other.derived().template packet(index)); - } + /** equivalent to operator[](3). */ - /** \internal */ - template - EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase& other) + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + w() { - const Index row = rowIndexByOuterInner(outer,inner); - const Index col = colIndexByOuterInner(outer,inner); - // derived() is important here: copyCoeff() may be reimplemented in Derived! - derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other); + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS); + return (*this)[3]; } -#endif - }; /** \brief Base class providing direct read-only coefficient access to matrices and arrays. @@ -560,7 +472,7 @@ class DenseCoeffsBase : public DenseCoeffsBase which defines functions to access entries read-only using * \c operator() . * - * \sa \ref TopicClassHierarchy + * \sa \blank \ref TopicClassHierarchy */ template class DenseCoeffsBase : public DenseCoeffsBase @@ -568,7 +480,6 @@ class DenseCoeffsBase : public DenseCoeffsBase Base; - typedef typename internal::traits::Index Index; typedef typename internal::traits::Scalar Scalar; typedef typename NumTraits::Real RealScalar; @@ -581,6 +492,7 @@ class DenseCoeffsBase : public DenseCoeffsBase : public DenseCoeffsBase : public DenseCoeffsBase : public DenseCoeffsBase : public DenseCoeffsBase which defines functions to access entries read/write using * \c operator(). * - * \sa \ref TopicClassHierarchy + * \sa \blank \ref TopicClassHierarchy */ template class DenseCoeffsBase @@ -639,7 +554,6 @@ class DenseCoeffsBase public: typedef DenseCoeffsBase Base; - typedef typename internal::traits::Index Index; typedef typename internal::traits::Scalar Scalar; typedef typename NumTraits::Real RealScalar; @@ -652,6 +566,7 @@ class DenseCoeffsBase * * \sa outerStride(), rowStride(), colStride() */ + EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().innerStride(); @@ -662,6 +577,7 @@ class DenseCoeffsBase * * \sa innerStride(), rowStride(), colStride() */ + EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().outerStride(); @@ -677,6 +593,7 @@ class DenseCoeffsBase * * \sa innerStride(), outerStride(), colStride() */ + EIGEN_DEVICE_FUNC inline Index rowStride() const { return Derived::IsRowMajor ? outerStride() : innerStride(); @@ -686,6 +603,7 @@ class DenseCoeffsBase * * \sa innerStride(), outerStride(), rowStride() */ + EIGEN_DEVICE_FUNC inline Index colStride() const { return Derived::IsRowMajor ? innerStride() : outerStride(); @@ -694,33 +612,42 @@ class DenseCoeffsBase namespace internal { -template +template struct first_aligned_impl { - static inline typename Derived::Index run(const Derived&) + static inline Index run(const Derived&) { return 0; } }; -template -struct first_aligned_impl +template +struct first_aligned_impl { - static inline typename Derived::Index run(const Derived& m) + static inline Index run(const Derived& m) { - return internal::first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size()); + return internal::first_aligned(m.data(), m.size()); } }; -/** \internal \returns the index of the first element of the array that is well aligned for vectorization. +/** \internal \returns the index of the first element of the array stored by \a m that is properly aligned with respect to \a Alignment for vectorization. + * + * \tparam Alignment requested alignment in Bytes. * * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more * documentation. */ +template +static inline Index first_aligned(const DenseBase& m) +{ + enum { ReturnZero = (int(evaluator::Alignment) >= Alignment) || !(Derived::Flags & DirectAccessBit) }; + return first_aligned_impl::run(m.derived()); +} + template -static inline typename Derived::Index first_aligned(const Derived& m) +static inline Index first_default_aligned(const DenseBase& m) { - return first_aligned_impl - - ::run(m); + typedef typename Derived::Scalar Scalar; + typedef typename packet_traits::type DefaultPacketType; + return internal::first_aligned::alignment),Derived>(m); } template::ret> diff --git a/eigenlib/Eigen/src/Core/DenseStorage.h b/eigenlib/Eigen/src/Core/DenseStorage.h index a72738e55..82201d96a 100644 --- a/eigenlib/Eigen/src/Core/DenseStorage.h +++ b/eigenlib/Eigen/src/Core/DenseStorage.h @@ -3,7 +3,7 @@ // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2009 Benoit Jacob -// Copyright (C) 2010 Hauke Heibel +// Copyright (C) 2010-2013 Hauke Heibel // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -24,7 +24,9 @@ namespace internal { struct constructor_without_unaligned_array_assert {}; -template void check_static_allocation_size() +template +EIGEN_DEVICE_FUNC +void check_static_allocation_size() { // if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit #if EIGEN_STACK_ALLOCATION_LIMIT @@ -38,18 +40,19 @@ template void check_static_allocation_size() */ template + : compute_default_alignment::value > struct plain_array { T array[Size]; - plain_array() + EIGEN_DEVICE_FUNC + plain_array() { check_static_allocation_size(); } - plain_array(constructor_without_unaligned_array_assert) + EIGEN_DEVICE_FUNC + plain_array(constructor_without_unaligned_array_assert) { check_static_allocation_size(); } @@ -64,29 +67,88 @@ struct plain_array template EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; } #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \ - eigen_assert((reinterpret_cast(eigen_unaligned_array_assert_workaround_gcc47(array)) & sizemask) == 0 \ + eigen_assert((internal::UIntPtr(eigen_unaligned_array_assert_workaround_gcc47(array)) & (sizemask)) == 0 \ && "this assertion is explained here: " \ "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \ " **** READ THIS WEB PAGE !!! ****"); #else #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \ - eigen_assert((reinterpret_cast(array) & sizemask) == 0 \ + eigen_assert((internal::UIntPtr(array) & (sizemask)) == 0 \ && "this assertion is explained here: " \ "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \ " **** READ THIS WEB PAGE !!! ****"); #endif +template +struct plain_array +{ + EIGEN_ALIGN_TO_BOUNDARY(8) T array[Size]; + + EIGEN_DEVICE_FUNC + plain_array() + { + EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(7); + check_static_allocation_size(); + } + + EIGEN_DEVICE_FUNC + plain_array(constructor_without_unaligned_array_assert) + { + check_static_allocation_size(); + } +}; + template struct plain_array { - EIGEN_USER_ALIGN16 T array[Size]; + EIGEN_ALIGN_TO_BOUNDARY(16) T array[Size]; + + EIGEN_DEVICE_FUNC + plain_array() + { + EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(15); + check_static_allocation_size(); + } + + EIGEN_DEVICE_FUNC + plain_array(constructor_without_unaligned_array_assert) + { + check_static_allocation_size(); + } +}; + +template +struct plain_array +{ + EIGEN_ALIGN_TO_BOUNDARY(32) T array[Size]; + EIGEN_DEVICE_FUNC plain_array() + { + EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(31); + check_static_allocation_size(); + } + + EIGEN_DEVICE_FUNC + plain_array(constructor_without_unaligned_array_assert) { - EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf); check_static_allocation_size(); } +}; +template +struct plain_array +{ + EIGEN_ALIGN_TO_BOUNDARY(64) T array[Size]; + + EIGEN_DEVICE_FUNC + plain_array() + { + EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(63); + check_static_allocation_size(); + } + + EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) { check_static_allocation_size(); @@ -96,9 +158,9 @@ struct plain_array template struct plain_array { - EIGEN_USER_ALIGN16 T array[1]; - plain_array() {} - plain_array(constructor_without_unaligned_array_assert) {} + T array[1]; + EIGEN_DEVICE_FUNC plain_array() {} + EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) {} }; } // end namespace internal @@ -122,33 +184,50 @@ template class DenseSt { internal::plain_array m_data; public: - inline DenseStorage() {} - inline DenseStorage(internal::constructor_without_unaligned_array_assert) + EIGEN_DEVICE_FUNC DenseStorage() {} + EIGEN_DEVICE_FUNC + explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()) {} - inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {} - inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); } - static inline DenseIndex rows(void) {return _Rows;} - static inline DenseIndex cols(void) {return _Cols;} - inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {} - inline void resize(DenseIndex,DenseIndex,DenseIndex) {} - inline const T *data() const { return m_data.array; } - inline T *data() { return m_data.array; } + EIGEN_DEVICE_FUNC + DenseStorage(const DenseStorage& other) : m_data(other.m_data) {} + EIGEN_DEVICE_FUNC + DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) m_data = other.m_data; + return *this; + } + EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN + eigen_internal_assert(size==rows*cols && rows==_Rows && cols==_Cols); + EIGEN_UNUSED_VARIABLE(size); + EIGEN_UNUSED_VARIABLE(rows); + EIGEN_UNUSED_VARIABLE(cols); + } + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); } + EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;} + EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {} + EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {} + EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } + EIGEN_DEVICE_FUNC T *data() { return m_data.array; } }; // null matrix template class DenseStorage { public: - inline DenseStorage() {} - inline DenseStorage(internal::constructor_without_unaligned_array_assert) {} - inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {} - inline void swap(DenseStorage& ) {} - static inline DenseIndex rows(void) {return _Rows;} - static inline DenseIndex cols(void) {return _Cols;} - inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {} - inline void resize(DenseIndex,DenseIndex,DenseIndex) {} - inline const T *data() const { return 0; } - inline T *data() { return 0; } + EIGEN_DEVICE_FUNC DenseStorage() {} + EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) {} + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage&) {} + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage&) { return *this; } + EIGEN_DEVICE_FUNC DenseStorage(Index,Index,Index) {} + EIGEN_DEVICE_FUNC void swap(DenseStorage& ) {} + EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;} + EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {} + EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {} + EIGEN_DEVICE_FUNC const T *data() const { return 0; } + EIGEN_DEVICE_FUNC T *data() { return 0; } }; // more specializations for null matrices; these are necessary to resolve ambiguities @@ -165,86 +244,157 @@ template class DenseStorage class DenseStorage { internal::plain_array m_data; - DenseIndex m_rows; - DenseIndex m_cols; + Index m_rows; + Index m_cols; public: - inline DenseStorage() : m_rows(0), m_cols(0) {} - inline DenseStorage(internal::constructor_without_unaligned_array_assert) + EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0), m_cols(0) {} + EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {} - inline DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) : m_rows(nbRows), m_cols(nbCols) {} - inline void swap(DenseStorage& other) + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows), m_cols(other.m_cols) {} + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + m_data = other.m_data; + m_rows = other.m_rows; + m_cols = other.m_cols; + } + return *this; + } + EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {} + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); } - inline DenseIndex rows() const {return m_rows;} - inline DenseIndex cols() const {return m_cols;} - inline void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; } - inline void resize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; } - inline const T *data() const { return m_data.array; } - inline T *data() { return m_data.array; } + EIGEN_DEVICE_FUNC Index rows() const {return m_rows;} + EIGEN_DEVICE_FUNC Index cols() const {return m_cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; } + EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; } + EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } + EIGEN_DEVICE_FUNC T *data() { return m_data.array; } }; // dynamic-size matrix with fixed-size storage and fixed width template class DenseStorage { internal::plain_array m_data; - DenseIndex m_rows; + Index m_rows; public: - inline DenseStorage() : m_rows(0) {} - inline DenseStorage(internal::constructor_without_unaligned_array_assert) + EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {} + EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {} - inline DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex) : m_rows(nbRows) {} - inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); } - inline DenseIndex rows(void) const {return m_rows;} - inline DenseIndex cols(void) const {return _Cols;} - inline void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; } - inline void resize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; } - inline const T *data() const { return m_data.array; } - inline T *data() { return m_data.array; } + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows) {} + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + m_data = other.m_data; + m_rows = other.m_rows; + } + return *this; + } + EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index) : m_rows(rows) {} + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); } + EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;} + EIGEN_DEVICE_FUNC Index cols(void) const {return _Cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index) { m_rows = rows; } + EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index) { m_rows = rows; } + EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } + EIGEN_DEVICE_FUNC T *data() { return m_data.array; } }; // dynamic-size matrix with fixed-size storage and fixed height template class DenseStorage { internal::plain_array m_data; - DenseIndex m_cols; + Index m_cols; public: - inline DenseStorage() : m_cols(0) {} - inline DenseStorage(internal::constructor_without_unaligned_array_assert) + EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {} + EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {} - inline DenseStorage(DenseIndex, DenseIndex, DenseIndex nbCols) : m_cols(nbCols) {} - inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); } - inline DenseIndex rows(void) const {return _Rows;} - inline DenseIndex cols(void) const {return m_cols;} - inline void conservativeResize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; } - inline void resize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; } - inline const T *data() const { return m_data.array; } - inline T *data() { return m_data.array; } + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_cols(other.m_cols) {} + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + m_data = other.m_data; + m_cols = other.m_cols; + } + return *this; + } + EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {} + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); } + EIGEN_DEVICE_FUNC Index rows(void) const {return _Rows;} + EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;} + void conservativeResize(Index, Index, Index cols) { m_cols = cols; } + void resize(Index, Index, Index cols) { m_cols = cols; } + EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } + EIGEN_DEVICE_FUNC T *data() { return m_data.array; } }; // purely dynamic matrix. template class DenseStorage { T *m_data; - DenseIndex m_rows; - DenseIndex m_cols; + Index m_rows; + Index m_cols; public: - inline DenseStorage() : m_data(0), m_rows(0), m_cols(0) {} - inline DenseStorage(internal::constructor_without_unaligned_array_assert) + EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0), m_cols(0) {} + EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0), m_cols(0) {} - inline DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols) - : m_data(internal::conditional_aligned_new_auto(size)), m_rows(nbRows), m_cols(nbCols) - { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } - inline ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, m_rows*m_cols); } - inline void swap(DenseStorage& other) + EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) + : m_data(internal::conditional_aligned_new_auto(size)), m_rows(rows), m_cols(cols) + { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN + eigen_internal_assert(size==rows*cols && rows>=0 && cols >=0); + } + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) + : m_data(internal::conditional_aligned_new_auto(other.m_rows*other.m_cols)) + , m_rows(other.m_rows) + , m_cols(other.m_cols) + { + internal::smart_copy(other.m_data, other.m_data+other.m_rows*other.m_cols, m_data); + } + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + DenseStorage tmp(other); + this->swap(tmp); + } + return *this; + } +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT + : m_data(std::move(other.m_data)) + , m_rows(std::move(other.m_rows)) + , m_cols(std::move(other.m_cols)) + { + other.m_data = nullptr; + other.m_rows = 0; + other.m_cols = 0; + } + EIGEN_DEVICE_FUNC + DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT + { + using std::swap; + swap(m_data, other.m_data); + swap(m_rows, other.m_rows); + swap(m_cols, other.m_cols); + return *this; + } +#endif + EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, m_rows*m_cols); } + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); } - inline DenseIndex rows(void) const {return m_rows;} - inline DenseIndex cols(void) const {return m_cols;} - inline void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols) + EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;} + EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;} + void conservativeResize(Index size, Index rows, Index cols) { m_data = internal::conditional_aligned_realloc_new_auto(m_data, size, m_rows*m_cols); - m_rows = nbRows; - m_cols = nbCols; + m_rows = rows; + m_cols = cols; } - void resize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols) + EIGEN_DEVICE_FUNC void resize(Index size, Index rows, Index cols) { if(size != m_rows*m_cols) { @@ -255,33 +405,70 @@ template class DenseStorage class DenseStorage { T *m_data; - DenseIndex m_cols; + Index m_cols; public: - inline DenseStorage() : m_data(0), m_cols(0) {} - inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {} - inline DenseStorage(DenseIndex size, DenseIndex, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto(size)), m_cols(nbCols) - { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } - inline ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, _Rows*m_cols); } - inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); } - static inline DenseIndex rows(void) {return _Rows;} - inline DenseIndex cols(void) const {return m_cols;} - inline void conservativeResize(DenseIndex size, DenseIndex, DenseIndex nbCols) + EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_cols(0) {} + explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {} + EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto(size)), m_cols(cols) + { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN + eigen_internal_assert(size==rows*cols && rows==_Rows && cols >=0); + EIGEN_UNUSED_VARIABLE(rows); + } + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) + : m_data(internal::conditional_aligned_new_auto(_Rows*other.m_cols)) + , m_cols(other.m_cols) + { + internal::smart_copy(other.m_data, other.m_data+_Rows*m_cols, m_data); + } + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + DenseStorage tmp(other); + this->swap(tmp); + } + return *this; + } +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT + : m_data(std::move(other.m_data)) + , m_cols(std::move(other.m_cols)) + { + other.m_data = nullptr; + other.m_cols = 0; + } + EIGEN_DEVICE_FUNC + DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT + { + using std::swap; + swap(m_data, other.m_data); + swap(m_cols, other.m_cols); + return *this; + } +#endif + EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, _Rows*m_cols); } + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); } + EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;} + EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index size, Index, Index cols) { m_data = internal::conditional_aligned_realloc_new_auto(m_data, size, _Rows*m_cols); - m_cols = nbCols; + m_cols = cols; } - EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex, DenseIndex nbCols) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index, Index cols) { if(size != _Rows*m_cols) { @@ -292,32 +479,69 @@ template class DenseStorage class DenseStorage { T *m_data; - DenseIndex m_rows; + Index m_rows; public: - inline DenseStorage() : m_data(0), m_rows(0) {} - inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {} - inline DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex) : m_data(internal::conditional_aligned_new_auto(size)), m_rows(nbRows) - { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } - inline ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, _Cols*m_rows); } - inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); } - inline DenseIndex rows(void) const {return m_rows;} - static inline DenseIndex cols(void) {return _Cols;} - inline void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex) + EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0) {} + explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {} + EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto(size)), m_rows(rows) + { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN + eigen_internal_assert(size==rows*cols && rows>=0 && cols == _Cols); + EIGEN_UNUSED_VARIABLE(cols); + } + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) + : m_data(internal::conditional_aligned_new_auto(other.m_rows*_Cols)) + , m_rows(other.m_rows) + { + internal::smart_copy(other.m_data, other.m_data+other.m_rows*_Cols, m_data); + } + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + DenseStorage tmp(other); + this->swap(tmp); + } + return *this; + } +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT + : m_data(std::move(other.m_data)) + , m_rows(std::move(other.m_rows)) + { + other.m_data = nullptr; + other.m_rows = 0; + } + EIGEN_DEVICE_FUNC + DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT + { + using std::swap; + swap(m_data, other.m_data); + swap(m_rows, other.m_rows); + return *this; + } +#endif + EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, _Cols*m_rows); } + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); } + EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;} + EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;} + void conservativeResize(Index size, Index rows, Index) { m_data = internal::conditional_aligned_realloc_new_auto(m_data, size, m_rows*_Cols); - m_rows = nbRows; + m_rows = rows; } - EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex nbRows, DenseIndex) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index rows, Index) { if(size != m_rows*_Cols) { @@ -328,10 +552,10 @@ template class DenseStorage struct traits > : traits { - typedef typename nested::type MatrixTypeNested; + typedef typename ref_selector::type MatrixTypeNested; typedef typename remove_reference::type _MatrixTypeNested; typedef typename MatrixType::StorageKind StorageKind; enum { @@ -52,8 +52,7 @@ struct traits > MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))), MaxColsAtCompileTime = 1, MaskLvalueBit = is_lvalue::value ? LvalueBit : 0, - Flags = (unsigned int)_MatrixTypeNested::Flags & (HereditaryBits | LinearAccessBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit, - CoeffReadCost = _MatrixTypeNested::CoeffReadCost, + Flags = (unsigned int)_MatrixTypeNested::Flags & (RowMajorBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit, // FIXME DirectAccessBit should not be handled by expressions MatrixTypeOuterStride = outer_stride_at_compile_time::ret, InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1, OuterStrideAtCompileTime = 0 @@ -70,20 +69,28 @@ template class Diagonal typedef typename internal::dense_xpr_base::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal) - inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) {} + EIGEN_DEVICE_FUNC + explicit inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) {} EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal) + EIGEN_DEVICE_FUNC inline Index rows() const - { return m_index.value()<0 ? (std::min)(m_matrix.cols(),m_matrix.rows()+m_index.value()) : (std::min)(m_matrix.rows(),m_matrix.cols()-m_index.value()); } + { + return m_index.value()<0 ? numext::mini(m_matrix.cols(),m_matrix.rows()+m_index.value()) + : numext::mini(m_matrix.rows(),m_matrix.cols()-m_index.value()); + } + EIGEN_DEVICE_FUNC inline Index cols() const { return 1; } + EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_matrix.outerStride() + 1; } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return 0; @@ -95,62 +102,75 @@ template class Diagonal const Scalar >::type ScalarWithConstIfNotLvalue; - inline ScalarWithConstIfNotLvalue* data() { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); } - inline const Scalar* data() const { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); } + EIGEN_DEVICE_FUNC + inline ScalarWithConstIfNotLvalue* data() { return &(m_matrix.coeffRef(rowOffset(), colOffset())); } + EIGEN_DEVICE_FUNC + inline const Scalar* data() const { return &(m_matrix.coeffRef(rowOffset(), colOffset())); } + EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index) { EIGEN_STATIC_ASSERT_LVALUE(MatrixType) - return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset()); + return m_matrix.coeffRef(row+rowOffset(), row+colOffset()); } + EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index row, Index) const { - return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset()); + return m_matrix.coeffRef(row+rowOffset(), row+colOffset()); } + EIGEN_DEVICE_FUNC inline CoeffReturnType coeff(Index row, Index) const { return m_matrix.coeff(row+rowOffset(), row+colOffset()); } + EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index idx) { EIGEN_STATIC_ASSERT_LVALUE(MatrixType) - return m_matrix.const_cast_derived().coeffRef(idx+rowOffset(), idx+colOffset()); + return m_matrix.coeffRef(idx+rowOffset(), idx+colOffset()); } + EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index idx) const { - return m_matrix.const_cast_derived().coeffRef(idx+rowOffset(), idx+colOffset()); + return m_matrix.coeffRef(idx+rowOffset(), idx+colOffset()); } + EIGEN_DEVICE_FUNC inline CoeffReturnType coeff(Index idx) const { return m_matrix.coeff(idx+rowOffset(), idx+colOffset()); } - const typename internal::remove_all::type& + EIGEN_DEVICE_FUNC + inline const typename internal::remove_all::type& nestedExpression() const { return m_matrix; } - int index() const + EIGEN_DEVICE_FUNC + inline Index index() const { return m_index.value(); } protected: - typename MatrixType::Nested m_matrix; + typename internal::ref_selector::non_const_type m_matrix; const internal::variable_if_dynamicindex m_index; private: // some compilers may fail to optimize std::max etc in case of compile-time constants... + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index absDiagIndex() const { return m_index.value()>0 ? m_index.value() : -m_index.value(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value()>0 ? 0 : -m_index.value(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value()>0 ? m_index.value() : 0; } - // triger a compile time error is someone try to call packet + // trigger a compile-time error if someone try to call packet template typename MatrixType::PacketReturnType packet(Index) const; template typename MatrixType::PacketReturnType packet(Index,Index) const; }; @@ -167,7 +187,7 @@ template inline typename MatrixBase::DiagonalReturnType MatrixBase::diagonal() { - return derived(); + return DiagonalReturnType(derived()); } /** This is the const version of diagonal(). */ @@ -216,20 +236,20 @@ MatrixBase::diagonal(Index index) const * * \sa MatrixBase::diagonal(), class Diagonal */ template -template -inline typename MatrixBase::template DiagonalIndexReturnType::Type +template +inline typename MatrixBase::template DiagonalIndexReturnType::Type MatrixBase::diagonal() { - return derived(); + return typename DiagonalIndexReturnType::Type(derived()); } /** This is the const version of diagonal(). */ template -template -inline typename MatrixBase::template ConstDiagonalIndexReturnType::Type +template +inline typename MatrixBase::template ConstDiagonalIndexReturnType::Type MatrixBase::diagonal() const { - return derived(); + return typename ConstDiagonalIndexReturnType::Type(derived()); } } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/DiagonalMatrix.h b/eigenlib/Eigen/src/Core/DiagonalMatrix.h index e6c220f41..ecfdce8ef 100644 --- a/eigenlib/Eigen/src/Core/DiagonalMatrix.h +++ b/eigenlib/Eigen/src/Core/DiagonalMatrix.h @@ -22,7 +22,7 @@ class DiagonalBase : public EigenBase typedef typename DiagonalVectorType::Scalar Scalar; typedef typename DiagonalVectorType::RealScalar RealScalar; typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; + typedef typename internal::traits::StorageIndex StorageIndex; enum { RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, @@ -30,79 +30,61 @@ class DiagonalBase : public EigenBase MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, IsVectorAtCompileTime = 0, - Flags = 0 + Flags = NoPreferredStorageOrderBit }; typedef Matrix DenseMatrixType; typedef DenseMatrixType DenseType; typedef DiagonalMatrix PlainObject; + EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast(this); } + EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast(this); } + EIGEN_DEVICE_FUNC DenseMatrixType toDenseMatrix() const { return derived(); } - template - void evalTo(MatrixBase &other) const; - template - void addTo(MatrixBase &other) const - { other.diagonal() += diagonal(); } - template - void subTo(MatrixBase &other) const - { other.diagonal() -= diagonal(); } - + + EIGEN_DEVICE_FUNC inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); } + EIGEN_DEVICE_FUNC inline DiagonalVectorType& diagonal() { return derived().diagonal(); } + EIGEN_DEVICE_FUNC inline Index rows() const { return diagonal().size(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return diagonal().size(); } - /** \returns the diagonal matrix product of \c *this by the matrix \a matrix. - */ template - const DiagonalProduct + EIGEN_DEVICE_FUNC + const Product operator*(const MatrixBase &matrix) const { - return DiagonalProduct(matrix.derived(), derived()); + return Product(derived(),matrix.derived()); } - inline const DiagonalWrapper, const DiagonalVectorType> > + typedef DiagonalWrapper, const DiagonalVectorType> > InverseReturnType; + EIGEN_DEVICE_FUNC + inline const InverseReturnType inverse() const { - return diagonal().cwiseInverse(); + return InverseReturnType(diagonal().cwiseInverse()); } - inline const DiagonalWrapper, const DiagonalVectorType> > + EIGEN_DEVICE_FUNC + inline const DiagonalWrapper operator*(const Scalar& scalar) const { - return diagonal() * scalar; + return DiagonalWrapper(diagonal() * scalar); } - friend inline const DiagonalWrapper, const DiagonalVectorType> > + EIGEN_DEVICE_FUNC + friend inline const DiagonalWrapper operator*(const Scalar& scalar, const DiagonalBase& other) { - return other.diagonal() * scalar; - } - - #ifdef EIGEN2_SUPPORT - template - bool isApprox(const DiagonalBase& other, typename NumTraits::Real precision = NumTraits::dummy_precision()) const - { - return diagonal().isApprox(other.diagonal(), precision); + return DiagonalWrapper(scalar * other.diagonal()); } - template - bool isApprox(const MatrixBase& other, typename NumTraits::Real precision = NumTraits::dummy_precision()) const - { - return toDenseMatrix().isApprox(other, precision); - } - #endif }; -template -template -void DiagonalBase::evalTo(MatrixBase &other) const -{ - other.setZero(); - other.diagonal() = diagonal(); -} #endif /** \class DiagonalMatrix @@ -124,10 +106,9 @@ struct traits > : traits > { typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType; - typedef Dense StorageKind; - typedef DenseIndex Index; + typedef DiagonalShape StorageKind; enum { - Flags = LvalueBit + Flags = LvalueBit | NoPreferredStorageOrderBit }; }; } @@ -141,7 +122,7 @@ class DiagonalMatrix typedef const DiagonalMatrix& Nested; typedef _Scalar Scalar; typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; + typedef typename internal::traits::StorageIndex StorageIndex; #endif protected: @@ -151,24 +132,31 @@ class DiagonalMatrix public: /** const version of diagonal(). */ + EIGEN_DEVICE_FUNC inline const DiagonalVectorType& diagonal() const { return m_diagonal; } /** \returns a reference to the stored vector of diagonal coefficients. */ + EIGEN_DEVICE_FUNC inline DiagonalVectorType& diagonal() { return m_diagonal; } /** Default constructor without initialization */ + EIGEN_DEVICE_FUNC inline DiagonalMatrix() {} /** Constructs a diagonal matrix with given dimension */ - inline DiagonalMatrix(Index dim) : m_diagonal(dim) {} + EIGEN_DEVICE_FUNC + explicit inline DiagonalMatrix(Index dim) : m_diagonal(dim) {} /** 2D constructor. */ + EIGEN_DEVICE_FUNC inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {} /** 3D constructor. */ + EIGEN_DEVICE_FUNC inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {} /** Copy constructor. */ template + EIGEN_DEVICE_FUNC inline DiagonalMatrix(const DiagonalBase& other) : m_diagonal(other.diagonal()) {} #ifndef EIGEN_PARSED_BY_DOXYGEN @@ -178,11 +166,13 @@ class DiagonalMatrix /** generic constructor from expression of the diagonal coefficients */ template + EIGEN_DEVICE_FUNC explicit inline DiagonalMatrix(const MatrixBase& other) : m_diagonal(other) {} /** Copy operator. */ template + EIGEN_DEVICE_FUNC DiagonalMatrix& operator=(const DiagonalBase& other) { m_diagonal = other.diagonal(); @@ -193,6 +183,7 @@ class DiagonalMatrix /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ + EIGEN_DEVICE_FUNC DiagonalMatrix& operator=(const DiagonalMatrix& other) { m_diagonal = other.diagonal(); @@ -201,14 +192,19 @@ class DiagonalMatrix #endif /** Resizes to given size. */ + EIGEN_DEVICE_FUNC inline void resize(Index size) { m_diagonal.resize(size); } /** Sets all coefficients to zero. */ + EIGEN_DEVICE_FUNC inline void setZero() { m_diagonal.setZero(); } /** Resizes and sets all coefficients to zero. */ + EIGEN_DEVICE_FUNC inline void setZero(Index size) { m_diagonal.setZero(size); } /** Sets this matrix to be the identity matrix of the current size. */ + EIGEN_DEVICE_FUNC inline void setIdentity() { m_diagonal.setOnes(); } /** Sets this matrix to be the identity matrix of the given size. */ + EIGEN_DEVICE_FUNC inline void setIdentity(Index size) { m_diagonal.setOnes(size); } }; @@ -232,14 +228,15 @@ struct traits > { typedef _DiagonalVectorType DiagonalVectorType; typedef typename DiagonalVectorType::Scalar Scalar; - typedef typename DiagonalVectorType::Index Index; - typedef typename DiagonalVectorType::StorageKind StorageKind; + typedef typename DiagonalVectorType::StorageIndex StorageIndex; + typedef DiagonalShape StorageKind; + typedef typename traits::XprKind XprKind; enum { RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, - MaxRowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, - MaxColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, - Flags = traits::Flags & LvalueBit + MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, + MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, + Flags = (traits::Flags & LvalueBit) | NoPreferredStorageOrderBit }; }; } @@ -255,9 +252,11 @@ class DiagonalWrapper #endif /** Constructor from expression of diagonal coefficients to wrap. */ - inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {} + EIGEN_DEVICE_FUNC + explicit inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {} /** \returns a const reference to the wrapped expression of diagonal coefficients. */ + EIGEN_DEVICE_FUNC const DiagonalVectorType& diagonal() const { return m_diagonal; } protected: @@ -277,7 +276,7 @@ template inline const DiagonalWrapper MatrixBase::asDiagonal() const { - return derived(); + return DiagonalWrapper(derived()); } /** \returns true if *this is approximately equal to a diagonal matrix, @@ -291,12 +290,11 @@ MatrixBase::asDiagonal() const template bool MatrixBase::isDiagonal(const RealScalar& prec) const { - using std::abs; if(cols() != rows()) return false; RealScalar maxAbsOnDiagonal = static_cast(-1); for(Index j = 0; j < cols(); ++j) { - RealScalar absOnDiagonal = abs(coeff(j,j)); + RealScalar absOnDiagonal = numext::abs(coeff(j,j)); if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal; } for(Index j = 0; j < cols(); ++j) @@ -308,6 +306,38 @@ bool MatrixBase::isDiagonal(const RealScalar& prec) const return true; } +namespace internal { + +template<> struct storage_kind_to_shape { typedef DiagonalShape Shape; }; + +struct Diagonal2Dense {}; + +template<> struct AssignmentKind { typedef Diagonal2Dense Kind; }; + +// Diagonal matrix to Dense assignment +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + dst.setZero(); + dst.diagonal() = src.diagonal(); + } + + static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &/*func*/) + { dst.diagonal() += src.diagonal(); } + + static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &/*func*/) + { dst.diagonal() -= src.diagonal(); } +}; + +} // namespace internal + } // end namespace Eigen #endif // EIGEN_DIAGONALMATRIX_H diff --git a/eigenlib/Eigen/src/Core/DiagonalProduct.h b/eigenlib/Eigen/src/Core/DiagonalProduct.h index 00f8f2915..d372b938f 100644 --- a/eigenlib/Eigen/src/Core/DiagonalProduct.h +++ b/eigenlib/Eigen/src/Core/DiagonalProduct.h @@ -13,116 +13,14 @@ namespace Eigen { -namespace internal { -template -struct traits > - : traits -{ - typedef typename scalar_product_traits::ReturnType Scalar; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - - _StorageOrder = MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor, - _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft) - ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)), - _SameTypes = is_same::value, - // FIXME currently we need same types, but in the future the next rule should be the one - //_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))), - _Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))), - _LinearAccessMask = (RowsAtCompileTime==1 || ColsAtCompileTime==1) ? LinearAccessBit : 0, - - Flags = ((HereditaryBits|_LinearAccessMask|AlignedBit) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0),//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit), - CoeffReadCost = NumTraits::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost - }; -}; -} - -template -class DiagonalProduct : internal::no_assignment_operator, - public MatrixBase > -{ - public: - - typedef MatrixBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(DiagonalProduct) - - inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal) - : m_matrix(matrix), m_diagonal(diagonal) - { - eigen_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols())); - } - - EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); } - EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); } - - EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const - { - return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col); - } - - EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const - { - enum { - StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor - }; - return coeff(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const - { - enum { - StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor - }; - const Index indexInDiagonalVector = ProductOrder == OnTheLeft ? row : col; - return packet_impl(row,col,indexInDiagonalVector,typename internal::conditional< - ((int(StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft) - ||(int(StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)), internal::true_type, internal::false_type>::type()); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const - { - enum { - StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor - }; - return packet(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); - } - - protected: - template - EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const - { - return internal::pmul(m_matrix.template packet(row, col), - internal::pset1(m_diagonal.diagonal().coeff(id))); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const - { - enum { - InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime, - DiagonalVectorPacketLoadMode = (LoadMode == Aligned && (((InnerSize%16) == 0) || (int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit)==AlignedBit) ? Aligned : Unaligned) - }; - return internal::pmul(m_matrix.template packet(row, col), - m_diagonal.diagonal().template packet(id)); - } - - typename MatrixType::Nested m_matrix; - typename DiagonalType::Nested m_diagonal; -}; - /** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal. */ template template -inline const DiagonalProduct +inline const Product MatrixBase::operator*(const DiagonalBase &a_diagonal) const { - return DiagonalProduct(derived(), a_diagonal.derived()); + return Product(derived(),a_diagonal.derived()); } } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/Dot.h b/eigenlib/Eigen/src/Core/Dot.h index 9d7651f1f..06ef18b8b 100644 --- a/eigenlib/Eigen/src/Core/Dot.h +++ b/eigenlib/Eigen/src/Core/Dot.h @@ -28,26 +28,31 @@ template struct dot_nocheck { - typedef typename scalar_product_traits::Scalar,typename traits::Scalar>::ReturnType ResScalar; + typedef scalar_conj_product_op::Scalar,typename traits::Scalar> conj_prod; + typedef typename conj_prod::result_type ResScalar; + EIGEN_DEVICE_FUNC static inline ResScalar run(const MatrixBase& a, const MatrixBase& b) { - return a.template binaryExpr::Scalar,typename traits::Scalar> >(b).sum(); + return a.template binaryExpr(b).sum(); } }; template struct dot_nocheck { - typedef typename scalar_product_traits::Scalar,typename traits::Scalar>::ReturnType ResScalar; + typedef scalar_conj_product_op::Scalar,typename traits::Scalar> conj_prod; + typedef typename conj_prod::result_type ResScalar; + EIGEN_DEVICE_FUNC static inline ResScalar run(const MatrixBase& a, const MatrixBase& b) { - return a.transpose().template binaryExpr::Scalar,typename traits::Scalar> >(b).sum(); + return a.transpose().template binaryExpr(b).sum(); } }; } // end namespace internal -/** \returns the dot product of *this with other. +/** \fn MatrixBase::dot + * \returns the dot product of *this with other. * * \only_for_vectors * @@ -59,55 +64,30 @@ struct dot_nocheck */ template template -typename internal::scalar_product_traits::Scalar,typename internal::traits::Scalar>::ReturnType +EIGEN_DEVICE_FUNC +typename ScalarBinaryOpTraits::Scalar,typename internal::traits::Scalar>::ReturnType MatrixBase::dot(const MatrixBase& other) const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) +#if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG)) typedef internal::scalar_conj_product_op func; EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar); - +#endif + eigen_assert(size() == other.size()); return internal::dot_nocheck::run(*this, other); } -#ifdef EIGEN2_SUPPORT -/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable - * (conjugating the second variable). Of course this only makes a difference in the complex case. - * - * This method is only available in EIGEN2_SUPPORT mode. - * - * \only_for_vectors - * - * \sa dot() - */ -template -template -typename internal::traits::Scalar -MatrixBase::eigen2_dot(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - eigen_assert(size() == other.size()); - - return internal::dot_nocheck::run(other,*this); -} -#endif - - //---------- implementation of L2 norm and related functions ---------- /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm. * In both cases, it consists in the sum of the square of all the matrix entries. * For vectors, this is also equals to the dot product of \c *this with itself. * - * \sa dot(), norm() + * \sa dot(), norm(), lpNorm() */ template EIGEN_STRONG_INLINE typename NumTraits::Scalar>::Real MatrixBase::squaredNorm() const @@ -119,16 +99,18 @@ EIGEN_STRONG_INLINE typename NumTraits::Scala * In both cases, it consists in the square root of the sum of the square of all the matrix entries. * For vectors, this is also equals to the square root of the dot product of \c *this with itself. * - * \sa dot(), squaredNorm() + * \sa lpNorm(), dot(), squaredNorm() */ template inline typename NumTraits::Scalar>::Real MatrixBase::norm() const { - using std::sqrt; - return sqrt(squaredNorm()); + return numext::sqrt(squaredNorm()); } -/** \returns an expression of the quotient of *this by its own norm. +/** \returns an expression of the quotient of \c *this by its own norm. + * + * \warning If the input vector is too small (i.e., this->norm()==0), + * then this function returns a copy of the input. * * \only_for_vectors * @@ -138,22 +120,77 @@ template inline const typename MatrixBase::PlainObject MatrixBase::normalized() const { - typedef typename internal::nested::type Nested; - typedef typename internal::remove_reference::type _Nested; + typedef typename internal::nested_eval::type _Nested; _Nested n(derived()); - return n / n.norm(); + RealScalar z = n.squaredNorm(); + // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU + if(z>RealScalar(0)) + return n / numext::sqrt(z); + else + return n; } /** Normalizes the vector, i.e. divides it by its own norm. * * \only_for_vectors * + * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. + * * \sa norm(), normalized() */ template inline void MatrixBase::normalize() { - *this /= norm(); + RealScalar z = squaredNorm(); + // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU + if(z>RealScalar(0)) + derived() /= numext::sqrt(z); +} + +/** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow. + * + * \only_for_vectors + * + * This method is analogue to the normalized() method, but it reduces the risk of + * underflow and overflow when computing the norm. + * + * \warning If the input vector is too small (i.e., this->norm()==0), + * then this function returns a copy of the input. + * + * \sa stableNorm(), stableNormalize(), normalized() + */ +template +inline const typename MatrixBase::PlainObject +MatrixBase::stableNormalized() const +{ + typedef typename internal::nested_eval::type _Nested; + _Nested n(derived()); + RealScalar w = n.cwiseAbs().maxCoeff(); + RealScalar z = (n/w).squaredNorm(); + if(z>RealScalar(0)) + return n / (numext::sqrt(z)*w); + else + return n; +} + +/** Normalizes the vector while avoid underflow and overflow + * + * \only_for_vectors + * + * This method is analogue to the normalize() method, but it reduces the risk of + * underflow and overflow when computing the norm. + * + * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. + * + * \sa stableNorm(), stableNormalized(), normalize() + */ +template +inline void MatrixBase::stableNormalize() +{ + RealScalar w = cwiseAbs().maxCoeff(); + RealScalar z = (derived()/w).squaredNorm(); + if(z>RealScalar(0)) + derived() /= numext::sqrt(z)*w; } //---------- implementation of other norms ---------- @@ -164,9 +201,10 @@ template struct lpNorm_selector { typedef typename NumTraits::Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC static inline RealScalar run(const MatrixBase& m) { - using std::pow; + EIGEN_USING_STD_MATH(pow) return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p); } }; @@ -174,6 +212,7 @@ struct lpNorm_selector template struct lpNorm_selector { + EIGEN_DEVICE_FUNC static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) { return m.cwiseAbs().sum(); @@ -183,6 +222,7 @@ struct lpNorm_selector template struct lpNorm_selector { + EIGEN_DEVICE_FUNC static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) { return m.norm(); @@ -192,23 +232,35 @@ struct lpNorm_selector template struct lpNorm_selector { - static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) + typedef typename NumTraits::Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const MatrixBase& m) { + if(Derived::SizeAtCompileTime==0 || (Derived::SizeAtCompileTime==Dynamic && m.size()==0)) + return RealScalar(0); return m.cwiseAbs().maxCoeff(); } }; } // end namespace internal -/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values - * of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$ - * norm, that is the maximum of the absolute values of the coefficients of *this. +/** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values + * of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$ + * norm, that is the maximum of the absolute values of the coefficients of \c *this. + * + * In all cases, if \c *this is empty, then the value 0 is returned. + * + * \note For matrices, this function does not compute the operator-norm. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink. * * \sa norm() */ template template +#ifndef EIGEN_PARSED_BY_DOXYGEN inline typename NumTraits::Scalar>::Real +#else +MatrixBase::RealScalar +#endif MatrixBase::lpNorm() const { return internal::lpNorm_selector::run(*this); @@ -227,8 +279,8 @@ template bool MatrixBase::isOrthogonal (const MatrixBase& other, const RealScalar& prec) const { - typename internal::nested::type nested(derived()); - typename internal::nested::type otherNested(other.derived()); + typename internal::nested_eval::type nested(derived()); + typename internal::nested_eval::type otherNested(other.derived()); return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); } @@ -246,13 +298,13 @@ bool MatrixBase::isOrthogonal template bool MatrixBase::isUnitary(const RealScalar& prec) const { - typename Derived::Nested nested(derived()); + typename internal::nested_eval::type self(derived()); for(Index i = 0; i < cols(); ++i) { - if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast(1), prec)) + if(!internal::isApprox(self.col(i).squaredNorm(), static_cast(1), prec)) return false; for(Index j = 0; j < i; ++j) - if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast(1), prec)) + if(!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast(1), prec)) return false; } return true; diff --git a/eigenlib/Eigen/src/Core/EigenBase.h b/eigenlib/Eigen/src/Core/EigenBase.h index fadb45852..f76995af9 100644 --- a/eigenlib/Eigen/src/Core/EigenBase.h +++ b/eigenlib/Eigen/src/Core/EigenBase.h @@ -13,7 +13,9 @@ namespace Eigen { -/** Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T). +/** \class EigenBase + * + * Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T). * * In other words, an EigenBase object is an object that can be copied into a MatrixBase. * @@ -21,39 +23,57 @@ namespace Eigen { * * Notice that this class is trivial, it is only used to disambiguate overloaded functions. * - * \sa \ref TopicClassHierarchy + * \sa \blank \ref TopicClassHierarchy */ template struct EigenBase { // typedef typename internal::plain_matrix_type::type PlainObject; - + + /** \brief The interface type of indices + * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. + * \deprecated Since Eigen 3.3, its usage is deprecated. Use Eigen::Index instead. + * \sa StorageIndex, \ref TopicPreprocessorDirectives. + */ + typedef Eigen::Index Index; + + // FIXME is it needed? typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; /** \returns a reference to the derived object */ + EIGEN_DEVICE_FUNC Derived& derived() { return *static_cast(this); } /** \returns a const reference to the derived object */ + EIGEN_DEVICE_FUNC const Derived& derived() const { return *static_cast(this); } + EIGEN_DEVICE_FUNC inline Derived& const_cast_derived() const { return *static_cast(const_cast(this)); } + EIGEN_DEVICE_FUNC inline const Derived& const_derived() const { return *static_cast(this); } /** \returns the number of rows. \sa cols(), RowsAtCompileTime */ + EIGEN_DEVICE_FUNC inline Index rows() const { return derived().rows(); } /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/ + EIGEN_DEVICE_FUNC inline Index cols() const { return derived().cols(); } /** \returns the number of coefficients, which is rows()*cols(). * \sa rows(), cols(), SizeAtCompileTime. */ + EIGEN_DEVICE_FUNC inline Index size() const { return rows() * cols(); } /** \internal Don't use it, but do the equivalent: \code dst = *this; \endcode */ - template inline void evalTo(Dest& dst) const + template + EIGEN_DEVICE_FUNC + inline void evalTo(Dest& dst) const { derived().evalTo(dst); } /** \internal Don't use it, but do the equivalent: \code dst += *this; \endcode */ - template inline void addTo(Dest& dst) const + template + EIGEN_DEVICE_FUNC + inline void addTo(Dest& dst) const { // This is the default implementation, // derived class can reimplement it in a more optimized way. @@ -63,7 +83,9 @@ template struct EigenBase } /** \internal Don't use it, but do the equivalent: \code dst -= *this; \endcode */ - template inline void subTo(Dest& dst) const + template + EIGEN_DEVICE_FUNC + inline void subTo(Dest& dst) const { // This is the default implementation, // derived class can reimplement it in a more optimized way. @@ -73,7 +95,8 @@ template struct EigenBase } /** \internal Don't use it, but do the equivalent: \code dst.applyOnTheRight(*this); \endcode */ - template inline void applyThisOnTheRight(Dest& dst) const + template + EIGEN_DEVICE_FUNC inline void applyThisOnTheRight(Dest& dst) const { // This is the default implementation, // derived class can reimplement it in a more optimized way. @@ -81,7 +104,8 @@ template struct EigenBase } /** \internal Don't use it, but do the equivalent: \code dst.applyOnTheLeft(*this); \endcode */ - template inline void applyThisOnTheLeft(Dest& dst) const + template + EIGEN_DEVICE_FUNC inline void applyThisOnTheLeft(Dest& dst) const { // This is the default implementation, // derived class can reimplement it in a more optimized way. @@ -106,7 +130,7 @@ template template Derived& DenseBase::operator=(const EigenBase &other) { - other.derived().evalTo(derived()); + call_assignment(derived(), other.derived()); return derived(); } @@ -114,7 +138,7 @@ template template Derived& DenseBase::operator+=(const EigenBase &other) { - other.derived().addTo(derived()); + call_assignment(derived(), other.derived(), internal::add_assign_op()); return derived(); } @@ -122,7 +146,7 @@ template template Derived& DenseBase::operator-=(const EigenBase &other) { - other.derived().subTo(derived()); + call_assignment(derived(), other.derived(), internal::sub_assign_op()); return derived(); } diff --git a/eigenlib/Eigen/src/Core/Flagged.h b/eigenlib/Eigen/src/Core/Flagged.h deleted file mode 100644 index 1f2955fc1..000000000 --- a/eigenlib/Eigen/src/Core/Flagged.h +++ /dev/null @@ -1,140 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_FLAGGED_H -#define EIGEN_FLAGGED_H - -namespace Eigen { - -/** \class Flagged - * \ingroup Core_Module - * - * \brief Expression with modified flags - * - * \param ExpressionType the type of the object of which we are modifying the flags - * \param Added the flags added to the expression - * \param Removed the flags removed from the expression (has priority over Added). - * - * This class represents an expression whose flags have been modified. - * It is the return type of MatrixBase::flagged() - * and most of the time this is the only way it is used. - * - * \sa MatrixBase::flagged() - */ - -namespace internal { -template -struct traits > : traits -{ - enum { Flags = (ExpressionType::Flags | Added) & ~Removed }; -}; -} - -template class Flagged - : public MatrixBase > -{ - public: - - typedef MatrixBase Base; - - EIGEN_DENSE_PUBLIC_INTERFACE(Flagged) - typedef typename internal::conditional::ret, - ExpressionType, const ExpressionType&>::type ExpressionTypeNested; - typedef typename ExpressionType::InnerIterator InnerIterator; - - inline Flagged(const ExpressionType& matrix) : m_matrix(matrix) {} - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - inline Index outerStride() const { return m_matrix.outerStride(); } - inline Index innerStride() const { return m_matrix.innerStride(); } - - inline CoeffReturnType coeff(Index row, Index col) const - { - return m_matrix.coeff(row, col); - } - - inline CoeffReturnType coeff(Index index) const - { - return m_matrix.coeff(index); - } - - inline const Scalar& coeffRef(Index row, Index col) const - { - return m_matrix.const_cast_derived().coeffRef(row, col); - } - - inline const Scalar& coeffRef(Index index) const - { - return m_matrix.const_cast_derived().coeffRef(index); - } - - inline Scalar& coeffRef(Index row, Index col) - { - return m_matrix.const_cast_derived().coeffRef(row, col); - } - - inline Scalar& coeffRef(Index index) - { - return m_matrix.const_cast_derived().coeffRef(index); - } - - template - inline const PacketScalar packet(Index row, Index col) const - { - return m_matrix.template packet(row, col); - } - - template - inline void writePacket(Index row, Index col, const PacketScalar& x) - { - m_matrix.const_cast_derived().template writePacket(row, col, x); - } - - template - inline const PacketScalar packet(Index index) const - { - return m_matrix.template packet(index); - } - - template - inline void writePacket(Index index, const PacketScalar& x) - { - m_matrix.const_cast_derived().template writePacket(index, x); - } - - const ExpressionType& _expression() const { return m_matrix; } - - template - typename ExpressionType::PlainObject solveTriangular(const MatrixBase& other) const; - - template - void solveTriangularInPlace(const MatrixBase& other) const; - - protected: - ExpressionTypeNested m_matrix; -}; - -/** \returns an expression of *this with added and removed flags - * - * This is mostly for internal use. - * - * \sa class Flagged - */ -template -template -inline const Flagged -DenseBase::flagged() const -{ - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_FLAGGED_H diff --git a/eigenlib/Eigen/src/Core/ForceAlignedAccess.h b/eigenlib/Eigen/src/Core/ForceAlignedAccess.h index 807c7a293..7b08b45e6 100644 --- a/eigenlib/Eigen/src/Core/ForceAlignedAccess.h +++ b/eigenlib/Eigen/src/Core/ForceAlignedAccess.h @@ -39,29 +39,29 @@ template class ForceAlignedAccess typedef typename internal::dense_xpr_base::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess) - inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {} + EIGEN_DEVICE_FUNC explicit inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {} - inline Index rows() const { return m_expression.rows(); } - inline Index cols() const { return m_expression.cols(); } - inline Index outerStride() const { return m_expression.outerStride(); } - inline Index innerStride() const { return m_expression.innerStride(); } + EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); } + EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); } - inline const CoeffReturnType coeff(Index row, Index col) const + EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index row, Index col) const { return m_expression.coeff(row, col); } - inline Scalar& coeffRef(Index row, Index col) + EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) { return m_expression.const_cast_derived().coeffRef(row, col); } - inline const CoeffReturnType coeff(Index index) const + EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index index) const { return m_expression.coeff(index); } - inline Scalar& coeffRef(Index index) + EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index) { return m_expression.const_cast_derived().coeffRef(index); } @@ -90,7 +90,7 @@ template class ForceAlignedAccess m_expression.const_cast_derived().template writePacket(index, x); } - operator const ExpressionType&() const { return m_expression; } + EIGEN_DEVICE_FUNC operator const ExpressionType&() const { return m_expression; } protected: const ExpressionType& m_expression; @@ -127,7 +127,7 @@ template inline typename internal::add_const_on_value_type,Derived&>::type>::type MatrixBase::forceAlignedAccessIf() const { - return derived(); + return derived(); // FIXME This should not work but apparently is never used } /** \returns an expression of *this with forced aligned access if \a Enable is true. @@ -138,7 +138,7 @@ template inline typename internal::conditional,Derived&>::type MatrixBase::forceAlignedAccessIf() { - return derived(); + return derived(); // FIXME This should not work but apparently is never used } } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/Functors.h b/eigenlib/Eigen/src/Core/Functors.h deleted file mode 100644 index 5f14c6587..000000000 --- a/eigenlib/Eigen/src/Core/Functors.h +++ /dev/null @@ -1,1026 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_FUNCTORS_H -#define EIGEN_FUNCTORS_H - -namespace Eigen { - -namespace internal { - -// associative functors: - -/** \internal - * \brief Template functor to compute the sum of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum() - */ -template struct scalar_sum_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::padd(a,b); } - template - EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const - { return internal::predux(a); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasAdd - }; -}; - -/** \internal - * \brief Template functor to compute the product of two scalars - * - * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() - */ -template struct scalar_product_op { - enum { - // TODO vectorize mixed product - Vectorizable = is_same::value && packet_traits::HasMul && packet_traits::HasMul - }; - typedef typename scalar_product_traits::ReturnType result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op) - EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pmul(a,b); } - template - EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const - { return internal::predux_mul(a); } -}; -template -struct functor_traits > { - enum { - Cost = (NumTraits::MulCost + NumTraits::MulCost)/2, // rough estimate! - PacketAccess = scalar_product_op::Vectorizable - }; -}; - -/** \internal - * \brief Template functor to compute the conjugate product of two scalars - * - * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y) - */ -template struct scalar_conj_product_op { - - enum { - Conj = NumTraits::IsComplex - }; - - typedef typename scalar_product_traits::ReturnType result_type; - - EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op) - EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const - { return conj_helper().pmul(a,b); } - - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return conj_helper().pmul(a,b); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::MulCost, - PacketAccess = internal::is_same::value && packet_traits::HasMul - }; -}; - -/** \internal - * \brief Template functor to compute the min of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() - */ -template struct scalar_min_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pmin(a,b); } - template - EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const - { return internal::predux_min(a); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasMin - }; -}; - -/** \internal - * \brief Template functor to compute the max of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() - */ -template struct scalar_max_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pmax(a,b); } - template - EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const - { return internal::predux_max(a); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasMax - }; -}; - -/** \internal - * \brief Template functor to compute the hypot of two scalars - * - * \sa MatrixBase::stableNorm(), class Redux - */ -template struct scalar_hypot_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op) -// typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const - { - using std::max; - using std::min; - using std::sqrt; - Scalar p = (max)(_x, _y); - Scalar q = (min)(_x, _y); - Scalar qp = q/p; - return p * sqrt(Scalar(1) + qp*qp); - } -}; -template -struct functor_traits > { - enum { Cost = 5 * NumTraits::MulCost, PacketAccess=0 }; -}; - -/** \internal - * \brief Template functor to compute the pow of two scalars - */ -template struct scalar_binary_pow_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op) - inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return numext::pow(a, b); } -}; -template -struct functor_traits > { - enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; -}; - -// other binary functors: - -/** \internal - * \brief Template functor to compute the difference of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::operator- - */ -template struct scalar_difference_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::psub(a,b); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasSub - }; -}; - -/** \internal - * \brief Template functor to compute the quotient of two scalars - * - * \sa class CwiseBinaryOp, Cwise::operator/() - */ -template struct scalar_quotient_op { - enum { - // TODO vectorize mixed product - Vectorizable = is_same::value && packet_traits::HasDiv && packet_traits::HasDiv - }; - typedef typename scalar_product_traits::ReturnType result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op) - EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pdiv(a,b); } -}; -template -struct functor_traits > { - enum { - Cost = (NumTraits::MulCost + NumTraits::MulCost), // rough estimate! - PacketAccess = scalar_quotient_op::Vectorizable - }; -}; - - - -/** \internal - * \brief Template functor to compute the and of two booleans - * - * \sa class CwiseBinaryOp, ArrayBase::operator&& - */ -struct scalar_boolean_and_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op) - EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; } -}; -template<> struct functor_traits { - enum { - Cost = NumTraits::AddCost, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functor to compute the or of two booleans - * - * \sa class CwiseBinaryOp, ArrayBase::operator|| - */ -struct scalar_boolean_or_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op) - EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; } -}; -template<> struct functor_traits { - enum { - Cost = NumTraits::AddCost, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functors for comparison of two scalars - * \todo Implement packet-comparisons - */ -template struct scalar_cmp_op; - -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = false - }; -}; - -template -struct result_of(Scalar,Scalar)> { - typedef bool type; -}; - - -template struct scalar_cmp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a==b;} -}; -template struct scalar_cmp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a struct scalar_cmp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<=b;} -}; -template struct scalar_cmp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return !(a<=b || b<=a);} -}; -template struct scalar_cmp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a!=b;} -}; - -// unary functors: - -/** \internal - * \brief Template functor to compute the opposite of a scalar - * - * \sa class CwiseUnaryOp, MatrixBase::operator- - */ -template struct scalar_opposite_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pnegate(a); } -}; -template -struct functor_traits > -{ enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasNegate }; -}; - -/** \internal - * \brief Template functor to compute the absolute value of a scalar - * - * \sa class CwiseUnaryOp, Cwise::abs - */ -template struct scalar_abs_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using std::abs; return abs(a); } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pabs(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasAbs - }; -}; - -/** \internal - * \brief Template functor to compute the squared absolute value of a scalar - * - * \sa class CwiseUnaryOp, Cwise::abs2 - */ -template struct scalar_abs2_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pmul(a,a); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasAbs2 }; }; - -/** \internal - * \brief Template functor to compute the conjugate of a complex value - * - * \sa class CwiseUnaryOp, MatrixBase::conjugate() - */ -template struct scalar_conjugate_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::IsComplex ? NumTraits::AddCost : 0, - PacketAccess = packet_traits::HasConj - }; -}; - -/** \internal - * \brief Template functor to cast a scalar to another type - * - * \sa class CwiseUnaryOp, MatrixBase::cast() - */ -template -struct scalar_cast_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) - typedef NewType result_type; - EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast(a); } -}; -template -struct functor_traits > -{ enum { Cost = is_same::value ? 0 : NumTraits::AddCost, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the real part of a complex - * - * \sa class CwiseUnaryOp, MatrixBase::real() - */ -template -struct scalar_real_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the imaginary part of a complex - * - * \sa class CwiseUnaryOp, MatrixBase::imag() - */ -template -struct scalar_imag_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the real part of a complex as a reference - * - * \sa class CwiseUnaryOp, MatrixBase::real() - */ -template -struct scalar_real_ref_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast(&a)); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the imaginary part of a complex as a reference - * - * \sa class CwiseUnaryOp, MatrixBase::imag() - */ -template -struct scalar_imag_ref_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast(&a)); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * - * \brief Template functor to compute the exponential of a scalar - * - * \sa class CwiseUnaryOp, Cwise::exp() - */ -template struct scalar_exp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op) - inline const Scalar operator() (const Scalar& a) const { using std::exp; return exp(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::pexp(a); } -}; -template -struct functor_traits > -{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasExp }; }; - -/** \internal - * - * \brief Template functor to compute the logarithm of a scalar - * - * \sa class CwiseUnaryOp, Cwise::log() - */ -template struct scalar_log_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op) - inline const Scalar operator() (const Scalar& a) const { using std::log; return log(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::plog(a); } -}; -template -struct functor_traits > -{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasLog }; }; - -/** \internal - * \brief Template functor to multiply a scalar by a fixed other one - * - * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ - */ -/* NOTE why doing the pset1() in packetOp *is* an optimization ? - * indeed it seems better to declare m_other as a Packet and do the pset1() once - * in the constructor. However, in practice: - * - GCC does not like m_other as a Packet and generate a load every time it needs it - * - on the other hand GCC is able to moves the pset1() outside the loop :) - * - simpler code ;) - * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) - */ -template -struct scalar_multiple_op { - typedef typename packet_traits::type Packet; - // FIXME default copy constructors seems bugged with std::complex<> - EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { } - EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { } - EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pmul(a, pset1(m_other)); } - typename add_const_on_value_type::Nested>::type m_other; -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; - -template -struct scalar_multiple2_op { - typedef typename scalar_product_traits::ReturnType result_type; - EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { } - EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { } - EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; } - typename add_const_on_value_type::Nested>::type m_other; -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to divide a scalar by a fixed other one - * - * This functor is used to implement the quotient of a matrix by - * a scalar where the scalar type is not necessarily a floating point type. - * - * \sa class CwiseUnaryOp, MatrixBase::operator/ - */ -template -struct scalar_quotient1_op { - typedef typename packet_traits::type Packet; - // FIXME default copy constructors seems bugged with std::complex<> - EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { } - EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {} - EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; } - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pdiv(a, pset1(m_other)); } - typename add_const_on_value_type::Nested>::type m_other; -}; -template -struct functor_traits > -{ enum { Cost = 2 * NumTraits::MulCost, PacketAccess = packet_traits::HasDiv }; }; - -// nullary functors - -template -struct scalar_constant_op { - typedef typename packet_traits::type Packet; - EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { } - EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { } - template - EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; } - template - EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1(m_other); } - const Scalar m_other; -}; -template -struct functor_traits > -// FIXME replace this packet test by a safe one -{ enum { Cost = 1, PacketAccess = packet_traits::Vectorizable, IsRepeatable = true }; }; - -template struct scalar_identity_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op) - template - EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false, IsRepeatable = true }; }; - -template struct linspaced_op_impl; - -// linear access for packet ops: -// 1) initialization -// base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0]) -// 2) each step (where size is 1 for coeff access or PacketSize for packet access) -// base += [size*step, ..., size*step] -// -// TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp) -// in order to avoid the padd() in operator() ? -template -struct linspaced_op_impl -{ - typedef typename packet_traits::type Packet; - - linspaced_op_impl(const Scalar& low, const Scalar& step) : - m_low(low), m_step(step), - m_packetStep(pset1(packet_traits::size*step)), - m_base(padd(pset1(low), pmul(pset1(step),plset(-packet_traits::size)))) {} - - template - EIGEN_STRONG_INLINE const Scalar operator() (Index i) const - { - m_base = padd(m_base, pset1(m_step)); - return m_low+Scalar(i)*m_step; - } - - template - EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); } - - const Scalar m_low; - const Scalar m_step; - const Packet m_packetStep; - mutable Packet m_base; -}; - -// random access for packet ops: -// 1) each step -// [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) -template -struct linspaced_op_impl -{ - typedef typename packet_traits::type Packet; - - linspaced_op_impl(const Scalar& low, const Scalar& step) : - m_low(low), m_step(step), - m_lowPacket(pset1(m_low)), m_stepPacket(pset1(m_step)), m_interPacket(plset(0)) {} - - template - EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } - - template - EIGEN_STRONG_INLINE const Packet packetOp(Index i) const - { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1(Scalar(i)),m_interPacket))); } - - const Scalar m_low; - const Scalar m_step; - const Packet m_lowPacket; - const Packet m_stepPacket; - const Packet m_interPacket; -}; - -// ----- Linspace functor ---------------------------------------------------------------- - -// Forward declaration (we default to random access which does not really give -// us a speed gain when using packet access but it allows to use the functor in -// nested expressions). -template struct linspaced_op; -template struct functor_traits< linspaced_op > -{ enum { Cost = 1, PacketAccess = packet_traits::HasSetLinear, IsRepeatable = true }; }; -template struct linspaced_op -{ - typedef typename packet_traits::type Packet; - linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {} - - template - EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); } - - // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since - // there row==0 and col is used for the actual iteration. - template - EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const - { - eigen_assert(col==0 || row==0); - return impl(col + row); - } - - template - EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); } - - // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since - // there row==0 and col is used for the actual iteration. - template - EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const - { - eigen_assert(col==0 || row==0); - return impl.packetOp(col + row); - } - - // This proxy object handles the actual required temporaries, the different - // implementations (random vs. sequential access) as well as the - // correct piping to size 2/4 packet operations. - const linspaced_op_impl impl; -}; - -// all functors allow linear access, except scalar_identity_op. So we fix here a quick meta -// to indicate whether a functor allows linear access, just always answering 'yes' except for -// scalar_identity_op. -// FIXME move this to functor_traits adding a functor_default -template struct functor_has_linear_access { enum { ret = 1 }; }; -template struct functor_has_linear_access > { enum { ret = 0 }; }; - -// In Eigen, any binary op (Product, CwiseBinaryOp) require the Lhs and Rhs to have the same scalar type, except for multiplication -// where the mixing of different types is handled by scalar_product_traits -// In particular, real * complex is allowed. -// FIXME move this to functor_traits adding a functor_default -template struct functor_is_product_like { enum { ret = 0 }; }; -template struct functor_is_product_like > { enum { ret = 1 }; }; -template struct functor_is_product_like > { enum { ret = 1 }; }; -template struct functor_is_product_like > { enum { ret = 1 }; }; - - -/** \internal - * \brief Template functor to add a scalar to a fixed other one - * \sa class CwiseUnaryOp, Array::operator+ - */ -/* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */ -template -struct scalar_add_op { - typedef typename packet_traits::type Packet; - // FIXME default copy constructors seems bugged with std::complex<> - inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { } - inline scalar_add_op(const Scalar& other) : m_other(other) { } - inline Scalar operator() (const Scalar& a) const { return a + m_other; } - inline const Packet packetOp(const Packet& a) const - { return internal::padd(a, pset1(m_other)); } - const Scalar m_other; -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasAdd }; }; - -/** \internal - * \brief Template functor to compute the square root of a scalar - * \sa class CwiseUnaryOp, Cwise::sqrt() - */ -template struct scalar_sqrt_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op) - inline const Scalar operator() (const Scalar& a) const { using std::sqrt; return sqrt(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); } -}; -template -struct functor_traits > -{ enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasSqrt - }; -}; - -/** \internal - * \brief Template functor to compute the cosine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::cos() - */ -template struct scalar_cos_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op) - inline Scalar operator() (const Scalar& a) const { using std::cos; return cos(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::pcos(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasCos - }; -}; - -/** \internal - * \brief Template functor to compute the sine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::sin() - */ -template struct scalar_sin_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op) - inline const Scalar operator() (const Scalar& a) const { using std::sin; return sin(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::psin(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasSin - }; -}; - - -/** \internal - * \brief Template functor to compute the tan of a scalar - * \sa class CwiseUnaryOp, ArrayBase::tan() - */ -template struct scalar_tan_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op) - inline const Scalar operator() (const Scalar& a) const { using std::tan; return tan(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::ptan(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasTan - }; -}; - -/** \internal - * \brief Template functor to compute the arc cosine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::acos() - */ -template struct scalar_acos_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op) - inline const Scalar operator() (const Scalar& a) const { using std::acos; return acos(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::pacos(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasACos - }; -}; - -/** \internal - * \brief Template functor to compute the arc sine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::asin() - */ -template struct scalar_asin_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op) - inline const Scalar operator() (const Scalar& a) const { using std::asin; return asin(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::pasin(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasASin - }; -}; - -/** \internal - * \brief Template functor to raise a scalar to a power - * \sa class CwiseUnaryOp, Cwise::pow - */ -template -struct scalar_pow_op { - // FIXME default copy constructors seems bugged with std::complex<> - inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { } - inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {} - inline Scalar operator() (const Scalar& a) const { return numext::pow(a, m_exponent); } - const Scalar m_exponent; -}; -template -struct functor_traits > -{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to compute the quotient between a scalar and array entries. - * \sa class CwiseUnaryOp, Cwise::inverse() - */ -template -struct scalar_inverse_mult_op { - scalar_inverse_mult_op(const Scalar& other) : m_other(other) {} - inline Scalar operator() (const Scalar& a) const { return m_other / a; } - template - inline const Packet packetOp(const Packet& a) const - { return internal::pdiv(pset1(m_other),a); } - Scalar m_other; -}; - -/** \internal - * \brief Template functor to compute the inverse of a scalar - * \sa class CwiseUnaryOp, Cwise::inverse() - */ -template -struct scalar_inverse_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op) - inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; } - template - inline const Packet packetOp(const Packet& a) const - { return internal::pdiv(pset1(Scalar(1)),a); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasDiv }; }; - -/** \internal - * \brief Template functor to compute the square of a scalar - * \sa class CwiseUnaryOp, Cwise::square() - */ -template -struct scalar_square_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op) - inline Scalar operator() (const Scalar& a) const { return a*a; } - template - inline const Packet packetOp(const Packet& a) const - { return internal::pmul(a,a); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; - -/** \internal - * \brief Template functor to compute the cube of a scalar - * \sa class CwiseUnaryOp, Cwise::cube() - */ -template -struct scalar_cube_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op) - inline Scalar operator() (const Scalar& a) const { return a*a*a; } - template - inline const Packet packetOp(const Packet& a) const - { return internal::pmul(a,pmul(a,a)); } -}; -template -struct functor_traits > -{ enum { Cost = 2*NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; - -// default functor traits for STL functors: - -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1 + functor_traits::Cost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1 + functor_traits::Cost, PacketAccess = false }; }; - -#ifdef EIGEN_STDEXT_SUPPORT - -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost + functor_traits::Cost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost + functor_traits::Cost + functor_traits::Cost, PacketAccess = false }; }; - -#endif // EIGEN_STDEXT_SUPPORT - -// allow to add new functors and specializations of functor_traits from outside Eigen. -// this macro is really needed because functor_traits must be specialized after it is declared but before it is used... -#ifdef EIGEN_FUNCTORS_PLUGIN -#include EIGEN_FUNCTORS_PLUGIN -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_FUNCTORS_H diff --git a/eigenlib/Eigen/src/Core/Fuzzy.h b/eigenlib/Eigen/src/Core/Fuzzy.h index fe63bd298..3e403a09d 100644 --- a/eigenlib/Eigen/src/Core/Fuzzy.h +++ b/eigenlib/Eigen/src/Core/Fuzzy.h @@ -19,18 +19,19 @@ namespace internal template::IsInteger> struct isApprox_selector { + EIGEN_DEVICE_FUNC static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec) { - using std::min; - typename internal::nested::type nested(x); - typename internal::nested::type otherNested(y); - return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum()); + typename internal::nested_eval::type nested(x); + typename internal::nested_eval::type otherNested(y); + return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * numext::mini(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum()); } }; template struct isApprox_selector { + EIGEN_DEVICE_FUNC static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&) { return x.matrix() == y.matrix(); @@ -40,6 +41,7 @@ struct isApprox_selector template::IsInteger> struct isMuchSmallerThan_object_selector { + EIGEN_DEVICE_FUNC static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec) { return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum(); @@ -49,6 +51,7 @@ struct isMuchSmallerThan_object_selector template struct isMuchSmallerThan_object_selector { + EIGEN_DEVICE_FUNC static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&) { return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix(); @@ -58,6 +61,7 @@ struct isMuchSmallerThan_object_selector template::IsInteger> struct isMuchSmallerThan_scalar_selector { + EIGEN_DEVICE_FUNC static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec) { return x.cwiseAbs2().sum() <= numext::abs2(prec * y); @@ -67,6 +71,7 @@ struct isMuchSmallerThan_scalar_selector template struct isMuchSmallerThan_scalar_selector { + EIGEN_DEVICE_FUNC static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&) { return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix(); diff --git a/eigenlib/Eigen/src/Core/GeneralProduct.h b/eigenlib/Eigen/src/Core/GeneralProduct.h index 9e805a80f..0f16cd8e3 100644 --- a/eigenlib/Eigen/src/Core/GeneralProduct.h +++ b/eigenlib/Eigen/src/Core/GeneralProduct.h @@ -11,29 +11,7 @@ #ifndef EIGEN_GENERAL_PRODUCT_H #define EIGEN_GENERAL_PRODUCT_H -namespace Eigen { - -/** \class GeneralProduct - * \ingroup Core_Module - * - * \brief Expression of the product of two general matrices or vectors - * - * \param LhsNested the type used to store the left-hand side - * \param RhsNested the type used to store the right-hand side - * \param ProductMode the type of the product - * - * This class represents an expression of the product of two general matrices. - * We call a general matrix, a dense matrix with full storage. For instance, - * This excludes triangular, selfadjoint, and sparse matrices. - * It is the return type of the operator* between general matrices. Its template - * arguments are determined automatically by ProductReturnType. Therefore, - * GeneralProduct should never be used direclty. To determine the result type of a - * function which involves a matrix product, use ProductReturnType::Type. - * - * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase&) - */ -template::value> -class GeneralProduct; +namespace Eigen { enum { Large = 2, @@ -47,7 +25,8 @@ template struct product_type_selector; template struct product_size_category { enum { is_large = MaxSize == Dynamic || - Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD, + Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD || + (Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD), value = is_large ? Large : Size == 1 ? 1 : Small @@ -59,15 +38,14 @@ template struct product_type typedef typename remove_all::type _Lhs; typedef typename remove_all::type _Rhs; enum { - MaxRows = _Lhs::MaxRowsAtCompileTime, - Rows = _Lhs::RowsAtCompileTime, - MaxCols = _Rhs::MaxColsAtCompileTime, - Cols = _Rhs::ColsAtCompileTime, - MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime, - _Rhs::MaxRowsAtCompileTime), - Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime, - _Rhs::RowsAtCompileTime), - LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD + MaxRows = traits<_Lhs>::MaxRowsAtCompileTime, + Rows = traits<_Lhs>::RowsAtCompileTime, + MaxCols = traits<_Rhs>::MaxColsAtCompileTime, + Cols = traits<_Rhs>::ColsAtCompileTime, + MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime, + traits<_Rhs>::MaxRowsAtCompileTime), + Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime, + traits<_Rhs>::RowsAtCompileTime) }; // the splitting into different lines of code here, introducing the _select enums and the typedef below, @@ -82,7 +60,8 @@ template struct product_type public: enum { - value = selector::ret + value = selector::ret, + ret = selector::ret }; #ifdef EIGEN_DEBUG_PRODUCT static void debug() @@ -98,12 +77,13 @@ template struct product_type #endif }; - /* The following allows to select the kind of product at compile time * based on the three dimensions of the product. * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */ // FIXME I'm not sure the current mapping is the ideal one. template struct product_type_selector { enum { ret = OuterProduct }; }; +template struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; +template struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; }; template struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; }; template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; }; template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; @@ -122,60 +102,12 @@ template<> struct product_type_selector { enum template<> struct product_type_selector { enum { ret = GemmProduct }; }; template<> struct product_type_selector { enum { ret = GemmProduct }; }; template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; template<> struct product_type_selector { enum { ret = GemmProduct }; }; } // end namespace internal -/** \class ProductReturnType - * \ingroup Core_Module - * - * \brief Helper class to get the correct and optimized returned type of operator* - * - * \param Lhs the type of the left-hand side - * \param Rhs the type of the right-hand side - * \param ProductMode the type of the product (determined automatically by internal::product_mode) - * - * This class defines the typename Type representing the optimized product expression - * between two matrix expressions. In practice, using ProductReturnType::Type - * is the recommended way to define the result type of a function returning an expression - * which involve a matrix product. The class Product should never be - * used directly. - * - * \sa class Product, MatrixBase::operator*(const MatrixBase&) - */ -template -struct ProductReturnType -{ - // TODO use the nested type to reduce instanciations ???? -// typedef typename internal::nested::type LhsNested; -// typedef typename internal::nested::type RhsNested; - - typedef GeneralProduct Type; -}; - -template -struct ProductReturnType -{ - typedef typename internal::nested::type >::type LhsNested; - typedef typename internal::nested::type >::type RhsNested; - typedef CoeffBasedProduct Type; -}; - -template -struct ProductReturnType -{ - typedef typename internal::nested::type >::type LhsNested; - typedef typename internal::nested::type >::type RhsNested; - typedef CoeffBasedProduct Type; -}; - -// this is a workaround for sun CC -template -struct LazyProductReturnType : public ProductReturnType -{}; - /*********************************************************************** * Implementation of Inner Vector Vector Product ***********************************************************************/ @@ -187,119 +119,10 @@ struct LazyProductReturnType : public ProductReturnType with: operator=(Scalar x); -namespace internal { - -template -struct traits > - : traits::ReturnType,1,1> > -{}; - -} - -template -class GeneralProduct - : internal::no_assignment_operator, - public Matrix::ReturnType,1,1> -{ - typedef Matrix::ReturnType,1,1> Base; - public: - GeneralProduct(const Lhs& lhs, const Rhs& rhs) - { - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); - } - - /** Convertion to scalar */ - operator const typename Base::Scalar() const { - return Base::coeff(0,0); - } -}; - /*********************************************************************** * Implementation of Outer Vector Vector Product ***********************************************************************/ -namespace internal { - -// Column major -template -EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const false_type&) -{ - typedef typename Dest::Index Index; - // FIXME make sure lhs is sequentially stored - // FIXME not very good if rhs is real and lhs complex while alpha is real too - const Index cols = dest.cols(); - for (Index j=0; j -EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const true_type&) { - typedef typename Dest::Index Index; - // FIXME make sure rhs is sequentially stored - // FIXME not very good if lhs is real and rhs complex while alpha is real too - const Index rows = dest.rows(); - for (Index i=0; i -struct traits > - : traits, Lhs, Rhs> > -{}; - -} - -template -class GeneralProduct - : public ProductBase, Lhs, Rhs> -{ - template struct IsRowMajor : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {}; - - public: - EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct) - - GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) - { - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - } - - struct set { template void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } }; - struct add { template void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } }; - struct sub { template void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } }; - struct adds { - Scalar m_scale; - adds(const Scalar& s) : m_scale(s) {} - template void operator()(const Dst& dst, const Src& src) const { - dst.const_cast_derived() += m_scale * src; - } - }; - - template - inline void evalTo(Dest& dest) const { - internal::outer_product_selector_run(*this, dest, set(), IsRowMajor()); - } - - template - inline void addTo(Dest& dest) const { - internal::outer_product_selector_run(*this, dest, add(), IsRowMajor()); - } - - template - inline void subTo(Dest& dest) const { - internal::outer_product_selector_run(*this, dest, sub(), IsRowMajor()); - } - - template void scaleAndAddTo(Dest& dest, const Scalar& alpha) const - { - internal::outer_product_selector_run(*this, dest, adds(alpha), IsRowMajor()); - } -}; - /*********************************************************************** * Implementation of General Matrix Vector Product ***********************************************************************/ @@ -313,60 +136,13 @@ class GeneralProduct */ namespace internal { -template -struct traits > - : traits, Lhs, Rhs> > -{}; - template -struct gemv_selector; +struct gemv_dense_selector; } // end namespace internal -template -class GeneralProduct - : public ProductBase, Lhs, Rhs> -{ - public: - EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct) - - typedef typename Lhs::Scalar LhsScalar; - typedef typename Rhs::Scalar RhsScalar; - - GeneralProduct(const Lhs& a_lhs, const Rhs& a_rhs) : Base(a_lhs,a_rhs) - { -// EIGEN_STATIC_ASSERT((internal::is_same::value), -// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - } - - enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight }; - typedef typename internal::conditional::type MatrixType; - - template void scaleAndAddTo(Dest& dst, const Scalar& alpha) const - { - eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols()); - internal::gemv_selector::HasUsableDirectAccess)>::run(*this, dst, alpha); - } -}; - namespace internal { -// The vector is on the left => transposition -template -struct gemv_selector -{ - template - static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha) - { - Transpose destT(dest); - enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor }; - gemv_selector - ::run(GeneralProduct,Transpose, GemvProduct> - (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha); - } -}; - template struct gemv_static_vector_if; template @@ -384,126 +160,161 @@ struct gemv_static_vector_if template struct gemv_static_vector_if { - #if EIGEN_ALIGN_STATICALLY - internal::plain_array m_data; - EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; } - #else - // Some architectures cannot align on the stack, - // => let's manually enforce alignment by allocating more data and return the address of the first aligned element. enum { ForceAlignment = internal::packet_traits::Vectorizable, PacketSize = internal::packet_traits::size }; - internal::plain_array m_data; + #if EIGEN_MAX_STATIC_ALIGN_BYTES!=0 + internal::plain_array m_data; + EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; } + #else + // Some architectures cannot align on the stack, + // => let's manually enforce alignment by allocating more data and return the address of the first aligned element. + internal::plain_array m_data; EIGEN_STRONG_INLINE Scalar* data() { return ForceAlignment - ? reinterpret_cast((reinterpret_cast(m_data.array) & ~(size_t(15))) + 16) + ? reinterpret_cast((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES) : m_data.array; } #endif }; -template<> struct gemv_selector +// The vector is on the left => transposition +template +struct gemv_dense_selector { - template - static inline void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha) + template + static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) { - typedef typename ProductType::Index Index; - typedef typename ProductType::LhsScalar LhsScalar; - typedef typename ProductType::RhsScalar RhsScalar; - typedef typename ProductType::Scalar ResScalar; - typedef typename ProductType::RealScalar RealScalar; - typedef typename ProductType::ActualLhsType ActualLhsType; - typedef typename ProductType::ActualRhsType ActualRhsType; - typedef typename ProductType::LhsBlasTraits LhsBlasTraits; - typedef typename ProductType::RhsBlasTraits RhsBlasTraits; - typedef Map, Aligned> MappedDest; - - ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs()); - ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs()); - - ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs()) - * RhsBlasTraits::extractScalarFactor(prod.rhs()); + Transpose destT(dest); + enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor }; + gemv_dense_selector + ::run(rhs.transpose(), lhs.transpose(), destT, alpha); + } +}; + +template<> struct gemv_dense_selector +{ + template + static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) + { + typedef typename Lhs::Scalar LhsScalar; + typedef typename Rhs::Scalar RhsScalar; + typedef typename Dest::Scalar ResScalar; + typedef typename Dest::RealScalar RealScalar; + + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; + + typedef Map, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits::size)> MappedDest; + + ActualLhsType actualLhs = LhsBlasTraits::extract(lhs); + ActualRhsType actualRhs = RhsBlasTraits::extract(rhs); + + ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs) + * RhsBlasTraits::extractScalarFactor(rhs); + + // make sure Dest is a compile-time vector type (bug 1166) + typedef typename conditional::type ActualDest; enum { // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 // on, the other hand it is good for the cache to pack the vector anyways... - EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1, + EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1), ComplexByReal = (NumTraits::IsComplex) && (!NumTraits::IsComplex), - MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal + MightCannotUseDest = (!EvalToDestAtCompileTime) || ComplexByReal }; - gemv_static_vector_if static_dest; - - bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0)); - bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; - + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; RhsScalar compatibleAlpha = get_factor::run(actualAlpha); - ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), - evalToDest ? dest.data() : static_dest.data()); - - if(!evalToDest) + if(!MightCannotUseDest) { - #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - int size = dest.size(); - EIGEN_DENSE_STORAGE_CTOR_PLUGIN - #endif - if(!alphaIsCompatible) + // shortcut if we are sure to be able to use dest directly, + // this ease the compiler to generate cleaner and more optimzized code for most common cases + general_matrix_vector_product + ::run( + actualLhs.rows(), actualLhs.cols(), + LhsMapper(actualLhs.data(), actualLhs.outerStride()), + RhsMapper(actualRhs.data(), actualRhs.innerStride()), + dest.data(), 1, + compatibleAlpha); + } + else + { + gemv_static_vector_if static_dest; + + const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0)); + const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; + + ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), + evalToDest ? dest.data() : static_dest.data()); + + if(!evalToDest) { - MappedDest(actualDestPtr, dest.size()).setZero(); - compatibleAlpha = RhsScalar(1); + #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN + Index size = dest.size(); + EIGEN_DENSE_STORAGE_CTOR_PLUGIN + #endif + if(!alphaIsCompatible) + { + MappedDest(actualDestPtr, dest.size()).setZero(); + compatibleAlpha = RhsScalar(1); + } + else + MappedDest(actualDestPtr, dest.size()) = dest; } - else - MappedDest(actualDestPtr, dest.size()) = dest; - } - general_matrix_vector_product - ::run( - actualLhs.rows(), actualLhs.cols(), - actualLhs.data(), actualLhs.outerStride(), - actualRhs.data(), actualRhs.innerStride(), - actualDestPtr, 1, - compatibleAlpha); + general_matrix_vector_product + ::run( + actualLhs.rows(), actualLhs.cols(), + LhsMapper(actualLhs.data(), actualLhs.outerStride()), + RhsMapper(actualRhs.data(), actualRhs.innerStride()), + actualDestPtr, 1, + compatibleAlpha); - if (!evalToDest) - { - if(!alphaIsCompatible) - dest += actualAlpha * MappedDest(actualDestPtr, dest.size()); - else - dest = MappedDest(actualDestPtr, dest.size()); + if (!evalToDest) + { + if(!alphaIsCompatible) + dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size()); + else + dest = MappedDest(actualDestPtr, dest.size()); + } } } }; -template<> struct gemv_selector +template<> struct gemv_dense_selector { - template - static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha) + template + static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) { - typedef typename ProductType::LhsScalar LhsScalar; - typedef typename ProductType::RhsScalar RhsScalar; - typedef typename ProductType::Scalar ResScalar; - typedef typename ProductType::Index Index; - typedef typename ProductType::ActualLhsType ActualLhsType; - typedef typename ProductType::ActualRhsType ActualRhsType; - typedef typename ProductType::_ActualRhsType _ActualRhsType; - typedef typename ProductType::LhsBlasTraits LhsBlasTraits; - typedef typename ProductType::RhsBlasTraits RhsBlasTraits; - - typename add_const::type actualLhs = LhsBlasTraits::extract(prod.lhs()); - typename add_const::type actualRhs = RhsBlasTraits::extract(prod.rhs()); - - ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs()) - * RhsBlasTraits::extractScalarFactor(prod.rhs()); + typedef typename Lhs::Scalar LhsScalar; + typedef typename Rhs::Scalar RhsScalar; + typedef typename Dest::Scalar ResScalar; + + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; + typedef typename internal::remove_all::type ActualRhsTypeCleaned; + + typename add_const::type actualLhs = LhsBlasTraits::extract(lhs); + typename add_const::type actualRhs = RhsBlasTraits::extract(rhs); + + ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs) + * RhsBlasTraits::extractScalarFactor(rhs); enum { // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 // on, the other hand it is good for the cache to pack the vector anyways... - DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1 + DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1 }; - gemv_static_vector_if static_rhs; + gemv_static_vector_if static_rhs; ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), DirectlyUseRhs ? const_cast(actualRhs.data()) : static_rhs.data()); @@ -511,45 +322,48 @@ template<> struct gemv_selector if(!DirectlyUseRhs) { #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - int size = actualRhs.size(); + Index size = actualRhs.size(); EIGEN_DENSE_STORAGE_CTOR_PLUGIN #endif - Map(actualRhsPtr, actualRhs.size()) = actualRhs; + Map(actualRhsPtr, actualRhs.size()) = actualRhs; } + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; general_matrix_vector_product - ::run( + ::run( actualLhs.rows(), actualLhs.cols(), - actualLhs.data(), actualLhs.outerStride(), - actualRhsPtr, 1, - dest.data(), dest.innerStride(), + LhsMapper(actualLhs.data(), actualLhs.outerStride()), + RhsMapper(actualRhsPtr, 1), + dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) actualAlpha); } }; -template<> struct gemv_selector +template<> struct gemv_dense_selector { - template - static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha) + template + static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) { - typedef typename Dest::Index Index; - // TODO makes sure dest is sequentially stored in memory, otherwise use a temp - const Index size = prod.rhs().rows(); + EIGEN_STATIC_ASSERT((!nested_eval::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); + // TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp + typename nested_eval::type actual_rhs(rhs); + const Index size = rhs.rows(); for(Index k=0; k struct gemv_selector +template<> struct gemv_dense_selector { - template - static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha) + template + static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) { - typedef typename Dest::Index Index; - // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp - const Index rows = prod.rows(); + EIGEN_STATIC_ASSERT((!nested_eval::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); + typename nested_eval::type actual_rhs(rhs); + const Index rows = dest.rows(); for(Index i=0; i struct gemv_selector * * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*() */ +#ifndef __CUDACC__ + template template -inline const typename ProductReturnType::Type +inline const Product MatrixBase::operator*(const MatrixBase &other) const { // A note regarding the function declaration: In MSVC, this function will sometimes @@ -592,9 +408,12 @@ MatrixBase::operator*(const MatrixBase &other) const #ifdef EIGEN_DEBUG_PRODUCT internal::product_type::debug(); #endif - return typename ProductReturnType::Type(derived(), other.derived()); + + return Product(derived(), other.derived()); } +#endif // __CUDACC__ + /** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation. * * The returned product will behave like any other expressions: the coefficients of the product will be @@ -608,7 +427,7 @@ MatrixBase::operator*(const MatrixBase &other) const */ template template -const typename LazyProductReturnType::Type +const Product MatrixBase::lazyProduct(const MatrixBase &other) const { enum { @@ -627,7 +446,7 @@ MatrixBase::lazyProduct(const MatrixBase &other) const INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) - return typename LazyProductReturnType::Type(derived(), other.derived()); + return Product(derived(), other.derived()); } } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/GenericPacketMath.h b/eigenlib/Eigen/src/Core/GenericPacketMath.h index 5f783ebee..27033a2dd 100644 --- a/eigenlib/Eigen/src/Core/GenericPacketMath.h +++ b/eigenlib/Eigen/src/Core/GenericPacketMath.h @@ -42,21 +42,28 @@ namespace internal { struct default_packet_traits { enum { + HasHalfPacket = 0, + HasAdd = 1, HasSub = 1, HasMul = 1, HasNegate = 1, HasAbs = 1, + HasArg = 0, HasAbs2 = 1, HasMin = 1, HasMax = 1, HasConj = 1, HasSetLinear = 1, + HasBlend = 0, HasDiv = 0, HasSqrt = 0, + HasRsqrt = 0, HasExp = 0, HasLog = 0, + HasLog1p = 0, + HasLog10 = 0, HasPow = 0, HasSin = 0, @@ -64,17 +71,37 @@ struct default_packet_traits HasTan = 0, HasASin = 0, HasACos = 0, - HasATan = 0 + HasATan = 0, + HasSinh = 0, + HasCosh = 0, + HasTanh = 0, + HasLGamma = 0, + HasDiGamma = 0, + HasZeta = 0, + HasPolygamma = 0, + HasErf = 0, + HasErfc = 0, + HasIGamma = 0, + HasIGammac = 0, + HasBetaInc = 0, + + HasRound = 0, + HasFloor = 0, + HasCeil = 0, + + HasSign = 0 }; }; template struct packet_traits : default_packet_traits { typedef T type; + typedef T half; enum { Vectorizable = 0, size = 1, - AlignedOnScalar = 0 + AlignedOnScalar = 0, + HasHalfPacket = 0 }; enum { HasAdd = 0, @@ -90,135 +117,239 @@ template struct packet_traits : default_packet_traits }; }; +template struct packet_traits : packet_traits { }; + +template struct type_casting_traits { + enum { + VectorizedCast = 0, + SrcCoeffRatio = 1, + TgtCoeffRatio = 1 + }; +}; + + +/** \internal \returns static_cast(a) (coeff-wise) */ +template +EIGEN_DEVICE_FUNC inline TgtPacket +pcast(const SrcPacket& a) { + return static_cast(a); +} +template +EIGEN_DEVICE_FUNC inline TgtPacket +pcast(const SrcPacket& a, const SrcPacket& /*b*/) { + return static_cast(a); +} + +template +EIGEN_DEVICE_FUNC inline TgtPacket +pcast(const SrcPacket& a, const SrcPacket& /*b*/, const SrcPacket& /*c*/, const SrcPacket& /*d*/) { + return static_cast(a); +} + /** \internal \returns a + b (coeff-wise) */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet padd(const Packet& a, const Packet& b) { return a+b; } /** \internal \returns a - b (coeff-wise) */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet psub(const Packet& a, const Packet& b) { return a-b; } /** \internal \returns -a (coeff-wise) */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pnegate(const Packet& a) { return -a; } /** \internal \returns conj(a) (coeff-wise) */ -template inline Packet + +template EIGEN_DEVICE_FUNC inline Packet pconj(const Packet& a) { return numext::conj(a); } /** \internal \returns a * b (coeff-wise) */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pmul(const Packet& a, const Packet& b) { return a*b; } /** \internal \returns a / b (coeff-wise) */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pdiv(const Packet& a, const Packet& b) { return a/b; } /** \internal \returns the min of \a a and \a b (coeff-wise) */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, - const Packet& b) { using std::min; return (min)(a, b); } + const Packet& b) { return numext::mini(a, b); } /** \internal \returns the max of \a a and \a b (coeff-wise) */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, - const Packet& b) { using std::max; return (max)(a, b); } + const Packet& b) { return numext::maxi(a, b); } /** \internal \returns the absolute value of \a a */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pabs(const Packet& a) { using std::abs; return abs(a); } +/** \internal \returns the phase angle of \a a */ +template EIGEN_DEVICE_FUNC inline Packet +parg(const Packet& a) { using numext::arg; return arg(a); } + /** \internal \returns the bitwise and of \a a and \a b */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pand(const Packet& a, const Packet& b) { return a & b; } /** \internal \returns the bitwise or of \a a and \a b */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet por(const Packet& a, const Packet& b) { return a | b; } /** \internal \returns the bitwise xor of \a a and \a b */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pxor(const Packet& a, const Packet& b) { return a ^ b; } /** \internal \returns the bitwise andnot of \a a and \a b */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pandnot(const Packet& a, const Packet& b) { return a & (!b); } /** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pload(const typename unpacket_traits::type* from) { return *from; } /** \internal \returns a packet version of \a *from, (un-aligned load) */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet ploadu(const typename unpacket_traits::type* from) { return *from; } +/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */ +template EIGEN_DEVICE_FUNC inline Packet +pset1(const typename unpacket_traits::type& a) { return a; } + +/** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */ +template EIGEN_DEVICE_FUNC inline Packet +pload1(const typename unpacket_traits::type *a) { return pset1(*a); } + /** \internal \returns a packet with elements of \a *from duplicated. - * For instance, for a packet of 8 elements, 4 scalar will be read from \a *from and - * duplicated to form: {from[0],from[0],from[1],from[1],,from[2],from[2],,from[3],from[3]} + * For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and + * duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]} * Currently, this function is only used for scalar * complex products. - */ -template inline Packet + */ +template EIGEN_DEVICE_FUNC inline Packet ploaddup(const typename unpacket_traits::type* from) { return *from; } -/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */ -template inline Packet -pset1(const typename unpacket_traits::type& a) { return a; } +/** \internal \returns a packet with elements of \a *from quadrupled. + * For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and + * replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]} + * Currently, this function is only used in matrix products. + * For packet-size smaller or equal to 4, this function is equivalent to pload1 + */ +template EIGEN_DEVICE_FUNC inline Packet +ploadquad(const typename unpacket_traits::type* from) +{ return pload1(from); } + +/** \internal equivalent to + * \code + * a0 = pload1(a+0); + * a1 = pload1(a+1); + * a2 = pload1(a+2); + * a3 = pload1(a+3); + * \endcode + * \sa pset1, pload1, ploaddup, pbroadcast2 + */ +template EIGEN_DEVICE_FUNC +inline void pbroadcast4(const typename unpacket_traits::type *a, + Packet& a0, Packet& a1, Packet& a2, Packet& a3) +{ + a0 = pload1(a+0); + a1 = pload1(a+1); + a2 = pload1(a+2); + a3 = pload1(a+3); +} + +/** \internal equivalent to + * \code + * a0 = pload1(a+0); + * a1 = pload1(a+1); + * \endcode + * \sa pset1, pload1, ploaddup, pbroadcast4 + */ +template EIGEN_DEVICE_FUNC +inline void pbroadcast2(const typename unpacket_traits::type *a, + Packet& a0, Packet& a1) +{ + a0 = pload1(a+0); + a1 = pload1(a+1); +} /** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */ -template inline typename packet_traits::type -plset(const Scalar& a) { return a; } +template inline Packet +plset(const typename unpacket_traits::type& a) { return a; } /** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */ -template inline void pstore(Scalar* to, const Packet& from) +template EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from) { (*to) = from; } /** \internal copy the packet \a from to \a *to, (un-aligned store) */ -template inline void pstoreu(Scalar* to, const Packet& from) -{ (*to) = from; } +template EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from) +{ (*to) = from; } + + template EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/) + { return ploadu(from); } + + template EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/) + { pstore(to, from); } /** \internal tries to do cache prefetching of \a addr */ -template inline void prefetch(const Scalar* addr) +template EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr) { -#if !defined(_MSC_VER) -__builtin_prefetch(addr); +#ifdef __CUDA_ARCH__ +#if defined(__LP64__) + // 64-bit pointer operand constraint for inlined asm + asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr)); +#else + // 32-bit pointer operand constraint for inlined asm + asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr)); +#endif +#elif (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC) + __builtin_prefetch(addr); #endif } /** \internal \returns the first element of a packet */ -template inline typename unpacket_traits::type pfirst(const Packet& a) +template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type pfirst(const Packet& a) { return a; } /** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet preduxp(const Packet* vecs) { return vecs[0]; } /** \internal \returns the sum of the elements of \a a*/ -template inline typename unpacket_traits::type predux(const Packet& a) +template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux(const Packet& a) +{ return a; } + +/** \internal \returns the sum of the elements of \a a by block of 4 elements. + * For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7} + * For packet-size smaller or equal to 4, this boils down to a noop. + */ +template EIGEN_DEVICE_FUNC inline +typename conditional<(unpacket_traits::size%8)==0,typename unpacket_traits::half,Packet>::type +predux_downto4(const Packet& a) { return a; } /** \internal \returns the product of the elements of \a a*/ -template inline typename unpacket_traits::type predux_mul(const Packet& a) +template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_mul(const Packet& a) { return a; } /** \internal \returns the min of the elements of \a a*/ -template inline typename unpacket_traits::type predux_min(const Packet& a) +template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_min(const Packet& a) { return a; } /** \internal \returns the max of the elements of \a a*/ -template inline typename unpacket_traits::type predux_max(const Packet& a) +template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_max(const Packet& a) { return a; } /** \internal \returns the reversed elements of \a a*/ -template inline Packet preverse(const Packet& a) +template EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a) { return a; } - /** \internal \returns \a a with real and imaginary part flipped (for complex type only) */ -template inline Packet pcplxflip(const Packet& a) +template EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a) { // FIXME: uncomment the following in case we drop the internal imag and real functions. // using std::imag; @@ -250,6 +381,22 @@ Packet pasin(const Packet& a) { using std::asin; return asin(a); } template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pacos(const Packet& a) { using std::acos; return acos(a); } +/** \internal \returns the arc tangent of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet patan(const Packet& a) { using std::atan; return atan(a); } + +/** \internal \returns the hyperbolic sine of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet psinh(const Packet& a) { using std::sinh; return sinh(a); } + +/** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pcosh(const Packet& a) { using std::cosh; return cosh(a); } + +/** \internal \returns the hyperbolic tan of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet ptanh(const Packet& a) { using std::tanh; return tanh(a); } + /** \internal \returns the exp of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexp(const Packet& a) { using std::exp; return exp(a); } @@ -258,10 +405,36 @@ Packet pexp(const Packet& a) { using std::exp; return exp(a); } template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog(const Packet& a) { using std::log; return log(a); } +/** \internal \returns the log1p of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog1p(const Packet& a) { return numext::log1p(a); } + +/** \internal \returns the log10 of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog10(const Packet& a) { using std::log10; return log10(a); } + /** \internal \returns the square-root of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psqrt(const Packet& a) { using std::sqrt; return sqrt(a); } +/** \internal \returns the reciprocal square-root of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet prsqrt(const Packet& a) { + return pdiv(pset1(1), psqrt(a)); +} + +/** \internal \returns the rounded value of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pround(const Packet& a) { using numext::round; return round(a); } + +/** \internal \returns the floor of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pfloor(const Packet& a) { using numext::floor; return floor(a); } + +/** \internal \returns the ceil of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pceil(const Packet& a) { using numext::ceil; return ceil(a); } + /*************************************************************************** * The following functions might not have to be overwritten for vectorized types ***************************************************************************/ @@ -275,34 +448,45 @@ inline void pstore1(typename unpacket_traits::type* to, const typename u } /** \internal \returns a * b + c (coeff-wise) */ -template inline Packet +template EIGEN_DEVICE_FUNC inline Packet pmadd(const Packet& a, const Packet& b, const Packet& c) { return padd(pmul(a, b),c); } /** \internal \returns a packet version of \a *from. - * If LoadMode equals #Aligned, \a from must be 16 bytes aligned */ -template -inline Packet ploadt(const typename unpacket_traits::type* from) + * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits::type* from) { - if(LoadMode == Aligned) + if(Alignment >= unpacket_traits::alignment) return pload(from); else return ploadu(from); } /** \internal copy the packet \a from to \a *to. - * If StoreMode equals #Aligned, \a to must be 16 bytes aligned */ -template -inline void pstoret(Scalar* to, const Packet& from) + * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from) { - if(LoadMode == Aligned) + if(Alignment >= unpacket_traits::alignment) pstore(to, from); else pstoreu(to, from); } +/** \internal \returns a packet version of \a *from. + * Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the + * hardware if available to speedup the loading of data that won't be modified + * by the current computation. + */ +template +inline Packet ploadt_ro(const typename unpacket_traits::type* from) +{ + return ploadt(from); +} + /** \internal default implementation of palign() allowing partial specialization */ template struct palign_impl @@ -336,15 +520,74 @@ inline void palign(PacketType& first, const PacketType& second) * Fast complex products (GCC generates a function call which is very slow) ***************************************************************************/ +// Eigen+CUDA does not support complexes. +#ifndef __CUDACC__ + template<> inline std::complex pmul(const std::complex& a, const std::complex& b) { return std::complex(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); } template<> inline std::complex pmul(const std::complex& a, const std::complex& b) { return std::complex(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); } +#endif + + +/*************************************************************************** + * PacketBlock, that is a collection of N packets where the number of words + * in the packet is a multiple of N. +***************************************************************************/ +template ::size> struct PacketBlock { + Packet packet[N]; +}; + +template EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& /*kernel*/) { + // Nothing to do in the scalar case, i.e. a 1x1 matrix. +} + +/*************************************************************************** + * Selector, i.e. vector of N boolean values used to select (i.e. blend) + * words from 2 packets. +***************************************************************************/ +template struct Selector { + bool select[N]; +}; + +template EIGEN_DEVICE_FUNC inline Packet +pblend(const Selector::size>& ifPacket, const Packet& thenPacket, const Packet& elsePacket) { + return ifPacket.select[0] ? thenPacket : elsePacket; +} + +/** \internal \returns \a a with the first coefficient replaced by the scalar b */ +template EIGEN_DEVICE_FUNC inline Packet +pinsertfirst(const Packet& a, typename unpacket_traits::type b) +{ + // Default implementation based on pblend. + // It must be specialized for higher performance. + Selector::size> mask; + mask.select[0] = true; + // This for loop should be optimized away by the compiler. + for(Index i=1; i::size; ++i) + mask.select[i] = false; + return pblend(mask, pset1(b), a); +} + +/** \internal \returns \a a with the last coefficient replaced by the scalar b */ +template EIGEN_DEVICE_FUNC inline Packet +pinsertlast(const Packet& a, typename unpacket_traits::type b) +{ + // Default implementation based on pblend. + // It must be specialized for higher performance. + Selector::size> mask; + // This for loop should be optimized away by the compiler. + for(Index i=0; i::size-1; ++i) + mask.select[i] = false; + mask.select[unpacket_traits::size-1] = true; + return pblend(mask, pset1(b), a); +} + } // end namespace internal } // end namespace Eigen #endif // EIGEN_GENERIC_PACKET_MATH_H - diff --git a/eigenlib/Eigen/src/Core/GlobalFunctions.h b/eigenlib/Eigen/src/Core/GlobalFunctions.h index 2acf97723..769dc255c 100644 --- a/eigenlib/Eigen/src/Core/GlobalFunctions.h +++ b/eigenlib/Eigen/src/Core/GlobalFunctions.h @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2010-2012 Gael Guennebaud +// Copyright (C) 2010-2016 Gael Guennebaud // Copyright (C) 2010 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla @@ -11,13 +11,30 @@ #ifndef EIGEN_GLOBAL_FUNCTIONS_H #define EIGEN_GLOBAL_FUNCTIONS_H -#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR) \ +#ifdef EIGEN_PARSED_BY_DOXYGEN + +#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \ + /** \returns an expression of the coefficient-wise DOC_OP of \a x + + DOC_DETAILS + + \sa Math functions, class CwiseUnaryOp + */ \ + template \ + inline const Eigen::CwiseUnaryOp, const Derived> \ + NAME(const Eigen::ArrayBase& x); + +#else + +#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \ template \ inline const Eigen::CwiseUnaryOp, const Derived> \ - NAME(const Eigen::ArrayBase& x) { \ - return x.derived(); \ + (NAME)(const Eigen::ArrayBase& x) { \ + return Eigen::CwiseUnaryOp, const Derived>(x.derived()); \ } +#endif // EIGEN_PARSED_BY_DOXYGEN + #define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \ \ template \ @@ -30,55 +47,133 @@ { \ static inline typename NAME##_retval >::type run(const Eigen::ArrayBase& x) \ { \ - return x.derived(); \ + return typename NAME##_retval >::type(x.derived()); \ } \ }; - namespace Eigen { - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sin,scalar_sin_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cos,scalar_cos_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sqrt,scalar_sqrt_op) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op,real part,\sa ArrayBase::real) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op,imaginary part,\sa ArrayBase::imag) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op,complex conjugate,\sa ArrayBase::conjugate) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(inverse,scalar_inverse_op,inverse,\sa ArrayBase::inverse) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sin,scalar_sin_op,sine,\sa ArrayBase::sin) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cos,scalar_cos_op,cosine,\sa ArrayBase::cos) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op,tangent,\sa ArrayBase::tan) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atan,scalar_atan_op,arc-tangent,\sa ArrayBase::atan) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op,arc-sine,\sa ArrayBase::asin) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op,arc-consine,\sa ArrayBase::acos) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sinh,scalar_sinh_op,hyperbolic sine,\sa ArrayBase::sinh) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cosh,scalar_cosh_op,hyperbolic cosine,\sa ArrayBase::cosh) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op,hyperbolic tangent,\sa ArrayBase::tanh) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op,natural logarithm of the gamma function,\sa ArrayBase::lgamma) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(digamma,scalar_digamma_op,derivative of lgamma,\sa ArrayBase::digamma) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erf,scalar_erf_op,error function,\sa ArrayBase::erf) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erfc,scalar_erfc_op,complement error function,\sa ArrayBase::erfc) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op,exponential,\sa ArrayBase::exp) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op,natural logarithm,\sa Eigen::log10 DOXCOMMA ArrayBase::log) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log1p,scalar_log1p_op,natural logarithm of 1 plus the value,\sa ArrayBase::log1p) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log10,scalar_log10_op,base 10 logarithm,\sa Eigen::log DOXCOMMA ArrayBase::log) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op,absolute value,\sa ArrayBase::abs DOXCOMMA MatrixBase::cwiseAbs) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs2,scalar_abs2_op,squared absolute value,\sa ArrayBase::abs2 DOXCOMMA MatrixBase::cwiseAbs2) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(arg,scalar_arg_op,complex argument,\sa ArrayBase::arg) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sqrt,scalar_sqrt_op,square root,\sa ArrayBase::sqrt DOXCOMMA MatrixBase::cwiseSqrt) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(rsqrt,scalar_rsqrt_op,reciprocal square root,\sa ArrayBase::rsqrt) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(square,scalar_square_op,square (power 2),\sa Eigen::abs2 DOXCOMMA Eigen::pow DOXCOMMA ArrayBase::square) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cube,scalar_cube_op,cube (power 3),\sa Eigen::pow DOXCOMMA ArrayBase::cube) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(round,scalar_round_op,nearest integer,\sa Eigen::floor DOXCOMMA Eigen::ceil DOXCOMMA ArrayBase::round) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(floor,scalar_floor_op,nearest integer not greater than the giben value,\sa Eigen::ceil DOXCOMMA ArrayBase::floor) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(ceil,scalar_ceil_op,nearest integer not less than the giben value,\sa Eigen::floor DOXCOMMA ArrayBase::ceil) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isnan,scalar_isnan_op,not-a-number test,\sa Eigen::isinf DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isnan) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isinf,scalar_isinf_op,infinite value test,\sa Eigen::isnan DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isinf) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isfinite,scalar_isfinite_op,finite value test,\sa Eigen::isinf DOXCOMMA Eigen::isnan DOXCOMMA ArrayBase::isfinite) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sign,scalar_sign_op,sign (or 0),\sa ArrayBase::sign) + /** \returns an expression of the coefficient-wise power of \a x to the given constant \a exponent. + * + * \tparam ScalarExponent is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression (\c Derived::Scalar). + * + * \sa ArrayBase::pow() + * + * \relates ArrayBase + */ +#ifdef EIGEN_PARSED_BY_DOXYGEN + template + inline const CwiseBinaryOp,Derived,Constant > + pow(const Eigen::ArrayBase& x, const ScalarExponent& exponent); +#else + template + inline typename internal::enable_if< !(internal::is_same::value) && EIGEN_SCALAR_BINARY_SUPPORTED(pow,typename Derived::Scalar,ScalarExponent), + const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,ScalarExponent,pow) >::type + pow(const Eigen::ArrayBase& x, const ScalarExponent& exponent) { + return x.derived().pow(exponent); + } + template - inline const Eigen::CwiseUnaryOp, const Derived> + inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,typename Derived::Scalar,pow) pow(const Eigen::ArrayBase& x, const typename Derived::Scalar& exponent) { return x.derived().pow(exponent); } +#endif - template - inline const Eigen::CwiseBinaryOp, const Derived, const Derived> - pow(const Eigen::ArrayBase& x, const Eigen::ArrayBase& exponents) + /** \returns an expression of the coefficient-wise power of \a x to the given array of \a exponents. + * + * This function computes the coefficient-wise power. + * + * Example: \include Cwise_array_power_array.cpp + * Output: \verbinclude Cwise_array_power_array.out + * + * \sa ArrayBase::pow() + * + * \relates ArrayBase + */ + template + inline const Eigen::CwiseBinaryOp, const Derived, const ExponentDerived> + pow(const Eigen::ArrayBase& x, const Eigen::ArrayBase& exponents) { - return Eigen::CwiseBinaryOp, const Derived, const Derived>( + return Eigen::CwiseBinaryOp, const Derived, const ExponentDerived>( x.derived(), exponents.derived() ); } - /** - * \brief Component-wise division of a scalar by array elements. - **/ - template - inline const Eigen::CwiseUnaryOp, const Derived> - operator/(const typename Derived::Scalar& s, const Eigen::ArrayBase& a) + /** \returns an expression of the coefficient-wise power of the scalar \a x to the given array of \a exponents. + * + * This function computes the coefficient-wise power between a scalar and an array of exponents. + * + * \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression (\c Derived::Scalar). + * + * Example: \include Cwise_scalar_power_array.cpp + * Output: \verbinclude Cwise_scalar_power_array.out + * + * \sa ArrayBase::pow() + * + * \relates ArrayBase + */ +#ifdef EIGEN_PARSED_BY_DOXYGEN + template + inline const CwiseBinaryOp,Constant,Derived> + pow(const Scalar& x,const Eigen::ArrayBase& x); +#else + template + inline typename internal::enable_if< !(internal::is_same::value) && EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar), + const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,Derived,pow) >::type + pow(const Scalar& x, const Eigen::ArrayBase& exponents) { - return Eigen::CwiseUnaryOp, const Derived>( - a.derived(), - Eigen::internal::scalar_inverse_mult_op(s) - ); + return EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,Derived,pow)( + typename internal::plain_constant_type::type(exponents.rows(), exponents.cols(), x), exponents.derived() ); } + template + inline const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename Derived::Scalar,Derived,pow) + pow(const typename Derived::Scalar& x, const Eigen::ArrayBase& exponents) + { + return EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename Derived::Scalar,Derived,pow)( + typename internal::plain_constant_type::type(exponents.rows(), exponents.cols(), x), exponents.derived() ); + } +#endif + + namespace internal { EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op) diff --git a/eigenlib/Eigen/src/Core/IO.h b/eigenlib/Eigen/src/Core/IO.h index 8d4bc59e9..644228c3f 100644 --- a/eigenlib/Eigen/src/Core/IO.h +++ b/eigenlib/Eigen/src/Core/IO.h @@ -49,7 +49,7 @@ std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& */ struct IOFormat { - /** Default contructor, see class IOFormat for the meaning of the parameters */ + /** Default constructor, see class IOFormat for the meaning of the parameters */ IOFormat(int _precision = StreamPrecision, int _flags = 0, const std::string& _coeffSeparator = " ", const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="", @@ -57,6 +57,10 @@ struct IOFormat : matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator), rowSpacer(""), coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags) { + // TODO check if rowPrefix, rowSuffix or rowSeparator contains a newline + // don't add rowSpacer if columns are not to be aligned + if((flags & DontAlignCols)) + return; int i = int(matSuffix.length())-1; while (i>=0 && matSuffix[i]!='\n') { @@ -76,7 +80,7 @@ struct IOFormat * * \brief Pseudo expression providing matrix output with given format * - * \param ExpressionType the type of the object on which IO stream operations are performed + * \tparam ExpressionType the type of the object on which IO stream operations are performed * * This class represents an expression with stream operators controlled by a given IOFormat. * It is the return type of DenseBase::format() @@ -101,7 +105,7 @@ class WithFormat } protected: - const typename ExpressionType::Nested m_matrix; + typename ExpressionType::Nested m_matrix; IOFormat m_format; }; @@ -121,32 +125,18 @@ DenseBase::format(const IOFormat& fmt) const namespace internal { -template -struct significant_decimals_default_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline int run() - { - using std::ceil; - using std::log; - return cast(ceil(-log(NumTraits::epsilon())/log(RealScalar(10)))); - } -}; - +// NOTE: This helper is kept for backward compatibility with previous code specializing +// this internal::significant_decimals_impl structure. In the future we should directly +// call digits10() which has been introduced in July 2016 in 3.3. template -struct significant_decimals_default_impl +struct significant_decimals_impl { static inline int run() { - return 0; + return NumTraits::digits10(); } }; -template -struct significant_decimals_impl - : significant_decimals_default_impl::IsInteger> -{}; - /** \internal * print the matrix \a _m to the output stream \a s using the output format \a fmt */ template @@ -160,7 +150,6 @@ std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& typename Derived::Nested m = _m; typedef typename Derived::Scalar Scalar; - typedef typename Derived::Index Index; Index width = 0; diff --git a/eigenlib/Eigen/src/Core/Inverse.h b/eigenlib/Eigen/src/Core/Inverse.h new file mode 100644 index 000000000..b76f0439d --- /dev/null +++ b/eigenlib/Eigen/src/Core/Inverse.h @@ -0,0 +1,118 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_INVERSE_H +#define EIGEN_INVERSE_H + +namespace Eigen { + +template class InverseImpl; + +namespace internal { + +template +struct traits > + : traits +{ + typedef typename XprType::PlainObject PlainObject; + typedef traits BaseTraits; + enum { + Flags = BaseTraits::Flags & RowMajorBit + }; +}; + +} // end namespace internal + +/** \class Inverse + * + * \brief Expression of the inverse of another expression + * + * \tparam XprType the type of the expression we are taking the inverse + * + * This class represents an abstract expression of A.inverse() + * and most of the time this is the only way it is used. + * + */ +template +class Inverse : public InverseImpl::StorageKind> +{ +public: + typedef typename XprType::StorageIndex StorageIndex; + typedef typename XprType::PlainObject PlainObject; + typedef typename XprType::Scalar Scalar; + typedef typename internal::ref_selector::type XprTypeNested; + typedef typename internal::remove_all::type XprTypeNestedCleaned; + typedef typename internal::ref_selector::type Nested; + typedef typename internal::remove_all::type NestedExpression; + + explicit EIGEN_DEVICE_FUNC Inverse(const XprType &xpr) + : m_xpr(xpr) + {} + + EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); } + EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); } + + EIGEN_DEVICE_FUNC const XprTypeNestedCleaned& nestedExpression() const { return m_xpr; } + +protected: + XprTypeNested m_xpr; +}; + +// Generic API dispatcher +template +class InverseImpl + : public internal::generic_xpr_base >::type +{ +public: + typedef typename internal::generic_xpr_base >::type Base; + typedef typename XprType::Scalar Scalar; +private: + + Scalar coeff(Index row, Index col) const; + Scalar coeff(Index i) const; +}; + +namespace internal { + +/** \internal + * \brief Default evaluator for Inverse expression. + * + * This default evaluator for Inverse expression simply evaluate the inverse into a temporary + * by a call to internal::call_assignment_no_alias. + * Therefore, inverse implementers only have to specialize Assignment, ...> for + * there own nested expression. + * + * \sa class Inverse + */ +template +struct unary_evaluator > + : public evaluator::PlainObject> +{ + typedef Inverse InverseType; + typedef typename InverseType::PlainObject PlainObject; + typedef evaluator Base; + + enum { Flags = Base::Flags | EvalBeforeNestingBit }; + + unary_evaluator(const InverseType& inv_xpr) + : m_result(inv_xpr.rows(), inv_xpr.cols()) + { + ::new (static_cast(this)) Base(m_result); + internal::call_assignment_no_alias(m_result, inv_xpr); + } + +protected: + PlainObject m_result; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_INVERSE_H diff --git a/eigenlib/Eigen/src/Core/Map.h b/eigenlib/Eigen/src/Core/Map.h index f804c89d6..06d196702 100644 --- a/eigenlib/Eigen/src/Core/Map.h +++ b/eigenlib/Eigen/src/Core/Map.h @@ -13,13 +13,35 @@ namespace Eigen { +namespace internal { +template +struct traits > + : public traits +{ + typedef traits TraitsBase; + enum { + InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 + ? int(PlainObjectType::InnerStrideAtCompileTime) + : int(StrideType::InnerStrideAtCompileTime), + OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 + ? int(PlainObjectType::OuterStrideAtCompileTime) + : int(StrideType::OuterStrideAtCompileTime), + Alignment = int(MapOptions)&int(AlignedMask), + Flags0 = TraitsBase::Flags & (~NestByRefBit), + Flags = is_lvalue::value ? int(Flags0) : (int(Flags0) & ~LvalueBit) + }; +private: + enum { Options }; // Expressions don't have Options +}; +} + /** \class Map * \ingroup Core_Module * * \brief A matrix or vector expression mapping an existing array of data. * * \tparam PlainObjectType the equivalent matrix type of the mapped data - * \tparam MapOptions specifies whether the pointer is \c #Aligned, or \c #Unaligned. + * \tparam MapOptions specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned. * The default is \c #Unaligned. * \tparam StrideType optionally specifies strides. By default, Map assumes the memory layout * of an ordinary, contiguous array. This can be overridden by specifying strides. @@ -63,44 +85,6 @@ namespace Eigen { * * \sa PlainObjectBase::Map(), \ref TopicStorageOrders */ - -namespace internal { -template -struct traits > - : public traits -{ - typedef traits TraitsBase; - typedef typename PlainObjectType::Index Index; - typedef typename PlainObjectType::Scalar Scalar; - enum { - InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 - ? int(PlainObjectType::InnerStrideAtCompileTime) - : int(StrideType::InnerStrideAtCompileTime), - OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 - ? int(PlainObjectType::OuterStrideAtCompileTime) - : int(StrideType::OuterStrideAtCompileTime), - HasNoInnerStride = InnerStrideAtCompileTime == 1, - HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0, - HasNoStride = HasNoInnerStride && HasNoOuterStride, - IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned), - IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic, - KeepsPacketAccess = bool(HasNoInnerStride) - && ( bool(IsDynamicSize) - || HasNoOuterStride - || ( OuterStrideAtCompileTime!=Dynamic - && ((static_cast(sizeof(Scalar))*OuterStrideAtCompileTime)%16)==0 ) ), - Flags0 = TraitsBase::Flags & (~NestByRefBit), - Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit), - Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime)) - ? int(Flags1) : int(Flags1 & ~LinearAccessBit), - Flags3 = is_lvalue::value ? int(Flags2) : (int(Flags2) & ~LvalueBit), - Flags = KeepsPacketAccess ? int(Flags3) : (int(Flags3) & ~PacketAccessBit) - }; -private: - enum { Options }; // Expressions don't have Options -}; -} - template class Map : public MapBase > { @@ -110,19 +94,17 @@ template class Ma EIGEN_DENSE_PUBLIC_INTERFACE(Map) typedef typename Base::PointerType PointerType; -#if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API - typedef const Scalar* PointerArgType; - inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast(ptr); } -#else typedef PointerType PointerArgType; + EIGEN_DEVICE_FUNC inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; } -#endif + EIGEN_DEVICE_FUNC inline Index innerStride() const { return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() @@ -134,10 +116,11 @@ template class Ma /** Constructor in the fixed-size case. * * \param dataPtr pointer to the array to map - * \param a_stride optional Stride object, passing the strides. + * \param stride optional Stride object, passing the strides. */ - inline Map(PointerArgType dataPtr, const StrideType& a_stride = StrideType()) - : Base(cast_to_pointer_type(dataPtr)), m_stride(a_stride) + EIGEN_DEVICE_FUNC + explicit inline Map(PointerArgType dataPtr, const StrideType& stride = StrideType()) + : Base(cast_to_pointer_type(dataPtr)), m_stride(stride) { PlainObjectType::Base::_check_template_params(); } @@ -145,11 +128,12 @@ template class Ma /** Constructor in the dynamic-size vector case. * * \param dataPtr pointer to the array to map - * \param a_size the size of the vector expression - * \param a_stride optional Stride object, passing the strides. + * \param size the size of the vector expression + * \param stride optional Stride object, passing the strides. */ - inline Map(PointerArgType dataPtr, Index a_size, const StrideType& a_stride = StrideType()) - : Base(cast_to_pointer_type(dataPtr), a_size), m_stride(a_stride) + EIGEN_DEVICE_FUNC + inline Map(PointerArgType dataPtr, Index size, const StrideType& stride = StrideType()) + : Base(cast_to_pointer_type(dataPtr), size), m_stride(stride) { PlainObjectType::Base::_check_template_params(); } @@ -157,12 +141,13 @@ template class Ma /** Constructor in the dynamic-size matrix case. * * \param dataPtr pointer to the array to map - * \param nbRows the number of rows of the matrix expression - * \param nbCols the number of columns of the matrix expression - * \param a_stride optional Stride object, passing the strides. + * \param rows the number of rows of the matrix expression + * \param cols the number of columns of the matrix expression + * \param stride optional Stride object, passing the strides. */ - inline Map(PointerArgType dataPtr, Index nbRows, Index nbCols, const StrideType& a_stride = StrideType()) - : Base(cast_to_pointer_type(dataPtr), nbRows, nbCols), m_stride(a_stride) + EIGEN_DEVICE_FUNC + inline Map(PointerArgType dataPtr, Index rows, Index cols, const StrideType& stride = StrideType()) + : Base(cast_to_pointer_type(dataPtr), rows, cols), m_stride(stride) { PlainObjectType::Base::_check_template_params(); } @@ -173,19 +158,6 @@ template class Ma StrideType m_stride; }; -template -inline Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> - ::Array(const Scalar *data) -{ - this->_set_noalias(Eigen::Map(data)); -} - -template -inline Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> - ::Matrix(const Scalar *data) -{ - this->_set_noalias(Eigen::Map(data)); -} } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/MapBase.h b/eigenlib/Eigen/src/Core/MapBase.h index 92e114129..020f939ad 100644 --- a/eigenlib/Eigen/src/Core/MapBase.h +++ b/eigenlib/Eigen/src/Core/MapBase.h @@ -12,15 +12,25 @@ #define EIGEN_MAPBASE_H #define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \ - EIGEN_STATIC_ASSERT((int(internal::traits::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \ + EIGEN_STATIC_ASSERT((int(internal::evaluator::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \ YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT) namespace Eigen { -/** \class MapBase - * \ingroup Core_Module +/** \ingroup Core_Module * - * \brief Base class for Map and Block expression with direct access + * \brief Base class for dense Map and Block expression with direct access + * + * This base class provides the const low-level accessors (e.g. coeff, coeffRef) of dense + * Map and Block objects with direct access. + * Typical users do not have to directly deal with this class. + * + * This class can be extended by through the macro plugin \c EIGEN_MAPBASE_PLUGIN. + * See \link TopicCustomizing_Plugins customizing Eigen \endlink for details. + * + * The \c Derived class has to provide the following two methods describing the memory layout: + * \code Index innerStride() const; \endcode + * \code Index outerStride() const; \endcode * * \sa class Map, class Block */ @@ -37,7 +47,6 @@ template class MapBase }; typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; @@ -76,8 +85,10 @@ template class MapBase typedef typename Base::CoeffReturnType CoeffReturnType; - inline Index rows() const { return m_rows.value(); } - inline Index cols() const { return m_cols.value(); } + /** \copydoc DenseBase::rows() */ + EIGEN_DEVICE_FUNC inline Index rows() const { return m_rows.value(); } + /** \copydoc DenseBase::cols() */ + EIGEN_DEVICE_FUNC inline Index cols() const { return m_cols.value(); } /** Returns a pointer to the first coefficient of the matrix or vector. * @@ -85,30 +96,39 @@ template class MapBase * * \sa innerStride(), outerStride() */ - inline const Scalar* data() const { return m_data; } + EIGEN_DEVICE_FUNC inline const Scalar* data() const { return m_data; } + /** \copydoc PlainObjectBase::coeff(Index,Index) const */ + EIGEN_DEVICE_FUNC inline const Scalar& coeff(Index rowId, Index colId) const { return m_data[colId * colStride() + rowId * rowStride()]; } + /** \copydoc PlainObjectBase::coeff(Index) const */ + EIGEN_DEVICE_FUNC inline const Scalar& coeff(Index index) const { EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) return m_data[index * innerStride()]; } + /** \copydoc PlainObjectBase::coeffRef(Index,Index) const */ + EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index rowId, Index colId) const { return this->m_data[colId * colStride() + rowId * rowStride()]; } + /** \copydoc PlainObjectBase::coeffRef(Index) const */ + EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index index) const { EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) return this->m_data[index * innerStride()]; } + /** \internal */ template inline PacketScalar packet(Index rowId, Index colId) const { @@ -116,6 +136,7 @@ template class MapBase (m_data + (colId * colStride() + rowId * rowStride())); } + /** \internal */ template inline PacketScalar packet(Index index) const { @@ -123,12 +144,16 @@ template class MapBase return internal::ploadt(m_data + index * innerStride()); } - inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime) + /** \internal Constructor for fixed size matrices or vectors */ + EIGEN_DEVICE_FUNC + explicit inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime) { EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) - checkSanity(); + checkSanity(); } + /** \internal Constructor for dynamically sized vectors */ + EIGEN_DEVICE_FUNC inline MapBase(PointerType dataPtr, Index vecSize) : m_data(dataPtr), m_rows(RowsAtCompileTime == Dynamic ? vecSize : Index(RowsAtCompileTime)), @@ -137,34 +162,56 @@ template class MapBase EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) eigen_assert(vecSize >= 0); eigen_assert(dataPtr == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == vecSize); - checkSanity(); + checkSanity(); } - inline MapBase(PointerType dataPtr, Index nbRows, Index nbCols) - : m_data(dataPtr), m_rows(nbRows), m_cols(nbCols) + /** \internal Constructor for dynamically sized matrices */ + EIGEN_DEVICE_FUNC + inline MapBase(PointerType dataPtr, Index rows, Index cols) + : m_data(dataPtr), m_rows(rows), m_cols(cols) { eigen_assert( (dataPtr == 0) - || ( nbRows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == nbRows) - && nbCols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == nbCols))); - checkSanity(); + || ( rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows) + && cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols))); + checkSanity(); } + #ifdef EIGEN_MAPBASE_PLUGIN + #include EIGEN_MAPBASE_PLUGIN + #endif + protected: - void checkSanity() const + template + EIGEN_DEVICE_FUNC + void checkSanity(typename internal::enable_if<(internal::traits::Alignment>0),void*>::type = 0) const { - EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(internal::traits::Flags&PacketAccessBit, - internal::inner_stride_at_compile_time::ret==1), - PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1); - eigen_assert(EIGEN_IMPLIES(internal::traits::Flags&AlignedBit, (size_t(m_data) % 16) == 0) - && "input pointer is not aligned on a 16 byte boundary"); +#if EIGEN_MAX_ALIGN_BYTES>0 + eigen_assert(( ((internal::UIntPtr(m_data) % internal::traits::Alignment) == 0) + || (cols() * rows() * innerStride() * sizeof(Scalar)) < internal::traits::Alignment ) && "data is not aligned"); +#endif } + template + EIGEN_DEVICE_FUNC + void checkSanity(typename internal::enable_if::Alignment==0,void*>::type = 0) const + {} + PointerType m_data; const internal::variable_if_dynamic m_rows; const internal::variable_if_dynamic m_cols; }; +/** \ingroup Core_Module + * + * \brief Base class for non-const dense Map and Block expression with direct access + * + * This base class provides the non-const low-level accessors (e.g. coeff and coeffRef) of + * dense Map and Block objects with direct access. + * It inherits MapBase which defines the const variant for reading specific entries. + * + * \sa class Map, class Block + */ template class MapBase : public MapBase { @@ -175,7 +222,7 @@ template class MapBase typedef typename Base::Scalar Scalar; typedef typename Base::PacketScalar PacketScalar; - typedef typename Base::Index Index; + typedef typename Base::StorageIndex StorageIndex; typedef typename Base::PointerType PointerType; using Base::derived; @@ -196,14 +243,18 @@ template class MapBase const Scalar >::type ScalarWithConstIfNotLvalue; + EIGEN_DEVICE_FUNC inline const Scalar* data() const { return this->m_data; } + EIGEN_DEVICE_FUNC inline ScalarWithConstIfNotLvalue* data() { return this->m_data; } // no const-cast here so non-const-correct code will give a compile error + EIGEN_DEVICE_FUNC inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col) { return this->m_data[col * colStride() + row * rowStride()]; } + EIGEN_DEVICE_FUNC inline ScalarWithConstIfNotLvalue& coeffRef(Index index) { EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) @@ -225,10 +276,11 @@ template class MapBase (this->m_data + index * innerStride(), val); } - explicit inline MapBase(PointerType dataPtr) : Base(dataPtr) {} - inline MapBase(PointerType dataPtr, Index vecSize) : Base(dataPtr, vecSize) {} - inline MapBase(PointerType dataPtr, Index nbRows, Index nbCols) : Base(dataPtr, nbRows, nbCols) {} + EIGEN_DEVICE_FUNC explicit inline MapBase(PointerType dataPtr) : Base(dataPtr) {} + EIGEN_DEVICE_FUNC inline MapBase(PointerType dataPtr, Index vecSize) : Base(dataPtr, vecSize) {} + EIGEN_DEVICE_FUNC inline MapBase(PointerType dataPtr, Index rows, Index cols) : Base(dataPtr, rows, cols) {} + EIGEN_DEVICE_FUNC Derived& operator=(const MapBase& other) { ReadOnlyMapBase::Base::operator=(other); diff --git a/eigenlib/Eigen/src/Core/MathFunctions.h b/eigenlib/Eigen/src/Core/MathFunctions.h index 2bfc5ebd9..8d47fb8a4 100644 --- a/eigenlib/Eigen/src/Core/MathFunctions.h +++ b/eigenlib/Eigen/src/Core/MathFunctions.h @@ -10,11 +10,25 @@ #ifndef EIGEN_MATHFUNCTIONS_H #define EIGEN_MATHFUNCTIONS_H +// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html +// TODO this should better be moved to NumTraits +#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L + + namespace Eigen { +// On WINCE, std::abs is defined for int only, so let's defined our own overloads: +// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too. +#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500 +long abs(long x) { return (labs(x)); } +double abs(double x) { return (fabs(x)); } +float abs(float x) { return (fabsf(x)); } +long double abs(long double x) { return (fabsl(x)); } +#endif + namespace internal { -/** \internal \struct global_math_functions_filtering_base +/** \internal \class global_math_functions_filtering_base * * What it does: * Defines a typedef 'type' as follows: @@ -62,6 +76,7 @@ template::IsComplex> struct real_default_impl { typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { return x; @@ -72,6 +87,7 @@ template struct real_default_impl { typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { using std::real; @@ -81,13 +97,25 @@ struct real_default_impl template struct real_impl : real_default_impl {}; +#ifdef __CUDA_ARCH__ +template +struct real_impl > +{ + typedef T RealScalar; + EIGEN_DEVICE_FUNC + static inline T run(const std::complex& x) + { + return x.real(); + } +}; +#endif + template struct real_retval { typedef typename NumTraits::Real type; }; - /**************************************************************************** * Implementation of imag * ****************************************************************************/ @@ -96,6 +124,7 @@ template::IsComplex> struct imag_default_impl { typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar&) { return RealScalar(0); @@ -106,6 +135,7 @@ template struct imag_default_impl { typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { using std::imag; @@ -115,6 +145,19 @@ struct imag_default_impl template struct imag_impl : imag_default_impl {}; +#ifdef __CUDA_ARCH__ +template +struct imag_impl > +{ + typedef T RealScalar; + EIGEN_DEVICE_FUNC + static inline T run(const std::complex& x) + { + return x.imag(); + } +}; +#endif + template struct imag_retval { @@ -129,10 +172,12 @@ template struct real_ref_impl { typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC static inline RealScalar& run(Scalar& x) { return reinterpret_cast(&x)[0]; } + EIGEN_DEVICE_FUNC static inline const RealScalar& run(const Scalar& x) { return reinterpret_cast(&x)[0]; @@ -153,10 +198,12 @@ template struct imag_ref_default_impl { typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC static inline RealScalar& run(Scalar& x) { return reinterpret_cast(&x)[1]; } + EIGEN_DEVICE_FUNC static inline const RealScalar& run(const Scalar& x) { return reinterpret_cast(&x)[1]; @@ -166,10 +213,12 @@ struct imag_ref_default_impl template struct imag_ref_default_impl { + EIGEN_DEVICE_FUNC static inline Scalar run(Scalar&) { return Scalar(0); } + EIGEN_DEVICE_FUNC static inline const Scalar run(const Scalar&) { return Scalar(0); @@ -192,6 +241,7 @@ struct imag_ref_retval template::IsComplex> struct conj_impl { + EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { return x; @@ -201,6 +251,7 @@ struct conj_impl template struct conj_impl { + EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { using std::conj; @@ -218,25 +269,39 @@ struct conj_retval * Implementation of abs2 * ****************************************************************************/ -template -struct abs2_impl +template +struct abs2_impl_default { typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { return x*x; } }; -template -struct abs2_impl > +template +struct abs2_impl_default // IsComplex { - static inline RealScalar run(const std::complex& x) + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) { return real(x)*real(x) + imag(x)*imag(x); } }; +template +struct abs2_impl +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return abs2_impl_default::IsComplex>::run(x); + } +}; + template struct abs2_retval { @@ -251,9 +316,10 @@ template struct norm1_default_impl { typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { - using std::abs; + EIGEN_USING_STD_MATH(abs); return abs(real(x)) + abs(imag(x)); } }; @@ -261,9 +327,10 @@ struct norm1_default_impl template struct norm1_default_impl { + EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { - using std::abs; + EIGEN_USING_STD_MATH(abs); return abs(x); } }; @@ -287,16 +354,22 @@ struct hypot_impl typedef typename NumTraits::Real RealScalar; static inline RealScalar run(const Scalar& x, const Scalar& y) { - using std::max; - using std::min; - using std::abs; - using std::sqrt; + EIGEN_USING_STD_MATH(abs); + EIGEN_USING_STD_MATH(sqrt); RealScalar _x = abs(x); RealScalar _y = abs(y); - RealScalar p = (max)(_x, _y); - if(p==RealScalar(0)) return 0; - RealScalar q = (min)(_x, _y); - RealScalar qp = q/p; + Scalar p, qp; + if(_x>_y) + { + p = _x; + qp = _y / p; + } + else + { + p = _y; + qp = _x / p; + } + if(p==RealScalar(0)) return RealScalar(0); return p * sqrt(RealScalar(1) + qp*qp); } }; @@ -314,6 +387,7 @@ struct hypot_retval template struct cast_impl { + EIGEN_DEVICE_FUNC static inline NewType run(const OldType& x) { return static_cast(x); @@ -323,48 +397,124 @@ struct cast_impl // here, for once, we're plainly returning NewType: we don't want cast to do weird things. template +EIGEN_DEVICE_FUNC inline NewType cast(const OldType& x) { return cast_impl::run(x); } /**************************************************************************** -* Implementation of atanh2 * +* Implementation of round * ****************************************************************************/ -template -struct atanh2_default_impl -{ - typedef Scalar retval; - typedef typename NumTraits::Real RealScalar; - static inline Scalar run(const Scalar& x, const Scalar& y) +#if EIGEN_HAS_CXX11_MATH + template + struct round_impl { + static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT((!NumTraits::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) + using std::round; + return round(x); + } + }; +#else + template + struct round_impl { - using std::abs; - using std::log; - using std::sqrt; - Scalar z = x / y; - if (y == Scalar(0) || abs(z) > sqrt(NumTraits::epsilon())) - return RealScalar(0.5) * log((y + x) / (y - x)); - else - return z + z*z*z / RealScalar(3); - } + static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT((!NumTraits::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) + EIGEN_USING_STD_MATH(floor); + EIGEN_USING_STD_MATH(ceil); + return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5)); + } + }; +#endif + +template +struct round_retval +{ + typedef Scalar type; }; +/**************************************************************************** +* Implementation of arg * +****************************************************************************/ + +#if EIGEN_HAS_CXX11_MATH + template + struct arg_impl { + static inline Scalar run(const Scalar& x) + { + EIGEN_USING_STD_MATH(arg); + return arg(x); + } + }; +#else + template::IsComplex> + struct arg_default_impl + { + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); } + }; + + template + struct arg_default_impl + { + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + EIGEN_USING_STD_MATH(arg); + return arg(x); + } + }; + + template struct arg_impl : arg_default_impl {}; +#endif + template -struct atanh2_default_impl +struct arg_retval { - static inline Scalar run(const Scalar&, const Scalar&) + typedef typename NumTraits::Real type; +}; + +/**************************************************************************** +* Implementation of log1p * +****************************************************************************/ + +namespace std_fallback { + // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar, + // or that there is no suitable std::log1p function available + template + EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + typedef typename NumTraits::Real RealScalar; + EIGEN_USING_STD_MATH(log); + Scalar x1p = RealScalar(1) + x; + return ( x1p == Scalar(1) ) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) ); + } +} + +template +struct log1p_impl { + static inline Scalar run(const Scalar& x) { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) - return Scalar(0); + #if EIGEN_HAS_CXX11_MATH + using std::log1p; + #endif + using std_fallback::log1p; + return log1p(x); } }; -template -struct atanh2_impl : atanh2_default_impl::IsInteger> {}; template -struct atanh2_retval +struct log1p_retval { typedef Scalar type; }; @@ -373,24 +523,26 @@ struct atanh2_retval * Implementation of pow * ****************************************************************************/ -template -struct pow_default_impl +template::IsInteger&&NumTraits::IsInteger> +struct pow_impl { - typedef Scalar retval; - static inline Scalar run(const Scalar& x, const Scalar& y) + //typedef Scalar retval; + typedef typename ScalarBinaryOpTraits >::ReturnType result_type; + static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y) { - using std::pow; + EIGEN_USING_STD_MATH(pow); return pow(x, y); } }; -template -struct pow_default_impl +template +struct pow_impl { - static inline Scalar run(Scalar x, Scalar y) + typedef ScalarX result_type; + static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y) { - Scalar res(1); - eigen_assert(!NumTraits::IsSigned || y >= 0); + ScalarX res(1); + eigen_assert(!NumTraits::IsSigned || y >= 0); if(y & 1) res *= x; y >>= 1; while(y) @@ -403,15 +555,6 @@ struct pow_default_impl } }; -template -struct pow_impl : pow_default_impl::IsInteger> {}; - -template -struct pow_retval -{ - typedef Scalar type; -}; - /**************************************************************************** * Implementation of random * ****************************************************************************/ @@ -447,48 +590,48 @@ struct random_default_impl }; enum { - floor_log2_terminate, - floor_log2_move_up, - floor_log2_move_down, - floor_log2_bogus + meta_floor_log2_terminate, + meta_floor_log2_move_up, + meta_floor_log2_move_down, + meta_floor_log2_bogus }; -template struct floor_log2_selector +template struct meta_floor_log2_selector { enum { middle = (lower + upper) / 2, - value = (upper <= lower + 1) ? int(floor_log2_terminate) - : (n < (1 << middle)) ? int(floor_log2_move_down) - : (n==0) ? int(floor_log2_bogus) - : int(floor_log2_move_up) + value = (upper <= lower + 1) ? int(meta_floor_log2_terminate) + : (n < (1 << middle)) ? int(meta_floor_log2_move_down) + : (n==0) ? int(meta_floor_log2_bogus) + : int(meta_floor_log2_move_up) }; }; template::value> -struct floor_log2 {}; + int selector = meta_floor_log2_selector::value> +struct meta_floor_log2 {}; template -struct floor_log2 +struct meta_floor_log2 { - enum { value = floor_log2::middle>::value }; + enum { value = meta_floor_log2::middle>::value }; }; template -struct floor_log2 +struct meta_floor_log2 { - enum { value = floor_log2::middle, upper>::value }; + enum { value = meta_floor_log2::middle, upper>::value }; }; template -struct floor_log2 +struct meta_floor_log2 { enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; }; template -struct floor_log2 +struct meta_floor_log2 { // no value, error at compile time }; @@ -496,11 +639,24 @@ struct floor_log2 template struct random_default_impl { - typedef typename NumTraits::NonInteger NonInteger; - static inline Scalar run(const Scalar& x, const Scalar& y) - { - return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1))); + { + typedef typename conditional::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX; + if(y=x the result converted to an unsigned long is still correct. + std::size_t range = ScalarX(y)-ScalarX(x); + std::size_t offset = 0; + // rejection sampling + std::size_t divisor = 1; + std::size_t multiplier = 1; + if(range range); + return Scalar(ScalarX(x) + offset); } static inline Scalar run() @@ -508,7 +664,7 @@ struct random_default_impl #ifdef EIGEN_MAKING_DOCS return run(Scalar(NumTraits::IsSigned ? -10 : 0), Scalar(10)); #else - enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value, + enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value, scalar_bits = sizeof(Scalar) * CHAR_BIT, shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)), offset = NumTraits::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0 @@ -545,97 +701,588 @@ inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); } +// Implementatin of is* functions + +// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang. +#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG) +#define EIGEN_USE_STD_FPCLASSIFY 1 +#else +#define EIGEN_USE_STD_FPCLASSIFY 0 +#endif + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if::value,bool>::type +isnan_impl(const T&) { return false; } + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if::value,bool>::type +isinf_impl(const T&) { return false; } + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if::value,bool>::type +isfinite_impl(const T&) { return true; } + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if<(!internal::is_integral::value)&&(!NumTraits::IsComplex),bool>::type +isfinite_impl(const T& x) +{ + #ifdef __CUDA_ARCH__ + return (::isfinite)(x); + #elif EIGEN_USE_STD_FPCLASSIFY + using std::isfinite; + return isfinite EIGEN_NOT_A_MACRO (x); + #else + return x<=NumTraits::highest() && x>=NumTraits::lowest(); + #endif +} + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if<(!internal::is_integral::value)&&(!NumTraits::IsComplex),bool>::type +isinf_impl(const T& x) +{ + #ifdef __CUDA_ARCH__ + return (::isinf)(x); + #elif EIGEN_USE_STD_FPCLASSIFY + using std::isinf; + return isinf EIGEN_NOT_A_MACRO (x); + #else + return x>NumTraits::highest() || x::lowest(); + #endif +} + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if<(!internal::is_integral::value)&&(!NumTraits::IsComplex),bool>::type +isnan_impl(const T& x) +{ + #ifdef __CUDA_ARCH__ + return (::isnan)(x); + #elif EIGEN_USE_STD_FPCLASSIFY + using std::isnan; + return isnan EIGEN_NOT_A_MACRO (x); + #else + return x != x; + #endif +} + +#if (!EIGEN_USE_STD_FPCLASSIFY) + +#if EIGEN_COMP_MSVC + +template EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x) +{ + return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF; +} + +//MSVC defines a _isnan builtin function, but for double only +EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; } +EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; } +EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; } + +EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); } +EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); } +EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); } + +#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC) + +#if EIGEN_GNUC_AT_LEAST(5,0) + #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only"))) +#else + // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol), + // while the second prevent too aggressive optimizations in fast-math mode: + #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only"))) +#endif + +template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); } + +#undef EIGEN_TMP_NOOPT_ATTRIB + +#endif + +#endif + +// The following overload are defined at the end of this file +template EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex& x); +template EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex& x); +template EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex& x); + +template T generic_fast_tanh_float(const T& a_x); + } // end namespace internal /**************************************************************************** -* Generic math function * +* Generic math functions * ****************************************************************************/ namespace numext { +#ifndef __CUDA_ARCH__ +template +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) +{ + EIGEN_USING_STD_MATH(min); + return min EIGEN_NOT_A_MACRO (x,y); +} + +template +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) +{ + EIGEN_USING_STD_MATH(max); + return max EIGEN_NOT_A_MACRO (x,y); +} +#else +template +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) +{ + return y < x ? y : x; +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y) +{ + return fminf(x, y); +} +template +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) +{ + return x < y ? y : x; +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y) +{ + return fmaxf(x, y); +} +#endif + + template +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); -} +} template +EIGEN_DEVICE_FUNC inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) { return internal::real_ref_impl::run(x); } template +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) { return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); } template +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); } template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x); +} + +template +EIGEN_DEVICE_FUNC inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) { return internal::imag_ref_impl::run(x); } template +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) { return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); } template +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); } template +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); } template +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); } template +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) { return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); } template -inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y) +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x) { - return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y); + return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x); } +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float log1p(const float &x) { return ::log1pf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double log1p(const double &x) { return ::log1p(x); } +#endif + +template +EIGEN_DEVICE_FUNC +inline typename internal::pow_impl::result_type pow(const ScalarX& x, const ScalarY& y) +{ + return internal::pow_impl::run(x, y); +} + +template EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); } +template EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); } +template EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); } + template -inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y) +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x); +} + +template +EIGEN_DEVICE_FUNC +T (floor)(const T& x) +{ + EIGEN_USING_STD_MATH(floor); + return floor(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float floor(const float &x) { return ::floorf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double floor(const double &x) { return ::floor(x); } +#endif + +template +EIGEN_DEVICE_FUNC +T (ceil)(const T& x) +{ + EIGEN_USING_STD_MATH(ceil); + return ceil(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float ceil(const float &x) { return ::ceilf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double ceil(const double &x) { return ::ceil(x); } +#endif + + +/** Log base 2 for 32 bits positive integers. + * Conveniently returns 0 for x==0. */ +inline int log2(int x) { - return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y); + eigen_assert(x>=0); + unsigned int v(x); + static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + return table[(v * 0x07C4ACDDU) >> 27]; } -// std::isfinite is non standard, so let's define our own version, -// even though it is not very efficient. -template bool (isfinite)(const T& x) +/** \returns the square root of \a x. + * + * It is essentially equivalent to \code using std::sqrt; return sqrt(x); \endcode, + * but slightly faster for float/double and some compilers (e.g., gcc), thanks to + * specializations when SSE is enabled. + * + * It's usage is justified in performance critical functions, like norm/normalize. + */ +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T sqrt(const T &x) { - return x::highest() && x>NumTraits::lowest(); + EIGEN_USING_STD_MATH(sqrt); + return sqrt(x); +} + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T log(const T &x) { + EIGEN_USING_STD_MATH(log); + return log(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float log(const float &x) { return ::logf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double log(const double &x) { return ::log(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +typename NumTraits::Real abs(const T &x) { + EIGEN_USING_STD_MATH(abs); + return abs(x); } +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float abs(const float &x) { return ::fabsf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double abs(const double &x) { return ::fabs(x); } + +template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float abs(const std::complex& x) { + return ::hypotf(x.real(), x.imag()); +} + +template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double abs(const std::complex& x) { + return ::hypot(x.real(), x.imag()); +} +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T exp(const T &x) { + EIGEN_USING_STD_MATH(exp); + return exp(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float exp(const float &x) { return ::expf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double exp(const double &x) { return ::exp(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T cos(const T &x) { + EIGEN_USING_STD_MATH(cos); + return cos(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float cos(const float &x) { return ::cosf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double cos(const double &x) { return ::cos(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T sin(const T &x) { + EIGEN_USING_STD_MATH(sin); + return sin(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float sin(const float &x) { return ::sinf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double sin(const double &x) { return ::sin(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T tan(const T &x) { + EIGEN_USING_STD_MATH(tan); + return tan(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float tan(const float &x) { return ::tanf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double tan(const double &x) { return ::tan(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T acos(const T &x) { + EIGEN_USING_STD_MATH(acos); + return acos(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float acos(const float &x) { return ::acosf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double acos(const double &x) { return ::acos(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T asin(const T &x) { + EIGEN_USING_STD_MATH(asin); + return asin(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float asin(const float &x) { return ::asinf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double asin(const double &x) { return ::asin(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T atan(const T &x) { + EIGEN_USING_STD_MATH(atan); + return atan(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float atan(const float &x) { return ::atanf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double atan(const double &x) { return ::atan(x); } +#endif + + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T cosh(const T &x) { + EIGEN_USING_STD_MATH(cosh); + return cosh(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float cosh(const float &x) { return ::coshf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double cosh(const double &x) { return ::cosh(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T sinh(const T &x) { + EIGEN_USING_STD_MATH(sinh); + return sinh(x); +} + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float sinh(const float &x) { return ::sinhf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double sinh(const double &x) { return ::sinh(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T tanh(const T &x) { + EIGEN_USING_STD_MATH(tanh); + return tanh(x); +} + +#if (!defined(__CUDACC__)) && EIGEN_FAST_MATH +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float tanh(float x) { return internal::generic_fast_tanh_float(x); } +#endif + +#ifdef __CUDACC__ +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float tanh(const float &x) { return ::tanhf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double tanh(const double &x) { return ::tanh(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T fmod(const T& a, const T& b) { + EIGEN_USING_STD_MATH(fmod); + return fmod(a, b); +} + +#ifdef __CUDACC__ +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float fmod(const float& a, const float& b) { + return ::fmodf(a, b); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double fmod(const double& a, const double& b) { + return ::fmod(a, b); +} +#endif + } // end namespace numext namespace internal { +template +EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex& x) +{ + return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x)); +} + +template +EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex& x) +{ + return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x)); +} + +template +EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex& x) +{ + return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x)); +} + /**************************************************************************** * Implementation of fuzzy comparisons * ****************************************************************************/ @@ -649,18 +1296,17 @@ template struct scalar_fuzzy_default_impl { typedef typename NumTraits::Real RealScalar; - template + template EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) { - using std::abs; - return abs(x) <= abs(y) * prec; + return numext::abs(x) <= numext::abs(y) * prec; } + EIGEN_DEVICE_FUNC static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) { - using std::min; - using std::abs; - return abs(x - y) <= (min)(abs(x), abs(y)) * prec; + return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec; } + EIGEN_DEVICE_FUNC static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) { return x <= y || isApprox(x, y, prec); @@ -671,15 +1317,17 @@ template struct scalar_fuzzy_default_impl { typedef typename NumTraits::Real RealScalar; - template + template EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) { return x == Scalar(0); } + EIGEN_DEVICE_FUNC static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) { return x == y; } + EIGEN_DEVICE_FUNC static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) { return x <= y; @@ -690,38 +1338,38 @@ template struct scalar_fuzzy_default_impl { typedef typename NumTraits::Real RealScalar; - template + template EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) { return numext::abs2(x) <= numext::abs2(y) * prec * prec; } + EIGEN_DEVICE_FUNC static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) { - using std::min; - return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec; + return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec; } }; template struct scalar_fuzzy_impl : scalar_fuzzy_default_impl::IsComplex, NumTraits::IsInteger> {}; -template +template EIGEN_DEVICE_FUNC inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, - typename NumTraits::Real precision = NumTraits::dummy_precision()) + const typename NumTraits::Real &precision = NumTraits::dummy_precision()) { return scalar_fuzzy_impl::template isMuchSmallerThan(x, y, precision); } -template +template EIGEN_DEVICE_FUNC inline bool isApprox(const Scalar& x, const Scalar& y, - typename NumTraits::Real precision = NumTraits::dummy_precision()) + const typename NumTraits::Real &precision = NumTraits::dummy_precision()) { return scalar_fuzzy_impl::isApprox(x, y, precision); } -template +template EIGEN_DEVICE_FUNC inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, - typename NumTraits::Real precision = NumTraits::dummy_precision()) + const typename NumTraits::Real &precision = NumTraits::dummy_precision()) { return scalar_fuzzy_impl::isApproxOrLessThan(x, y, precision); } @@ -742,17 +1390,19 @@ template<> struct scalar_fuzzy_impl { typedef bool RealScalar; - template + template EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) { return !x; } + EIGEN_DEVICE_FUNC static inline bool isApprox(bool x, bool y, bool) { return x == y; } + EIGEN_DEVICE_FUNC static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) { return (!x) || y; diff --git a/eigenlib/Eigen/src/Core/MathFunctionsImpl.h b/eigenlib/Eigen/src/Core/MathFunctionsImpl.h new file mode 100644 index 000000000..3c9ef22fa --- /dev/null +++ b/eigenlib/Eigen/src/Core/MathFunctionsImpl.h @@ -0,0 +1,78 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) +// Copyright (C) 2016 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATHFUNCTIONSIMPL_H +#define EIGEN_MATHFUNCTIONSIMPL_H + +namespace Eigen { + +namespace internal { + +/** \internal \returns the hyperbolic tan of \a a (coeff-wise) + Doesn't do anything fancy, just a 13/6-degree rational interpolant which + is accurate up to a couple of ulp in the range [-9, 9], outside of which + the tanh(x) = +/-1. + + This implementation works on both scalars and packets. +*/ +template +T generic_fast_tanh_float(const T& a_x) +{ + // Clamp the inputs to the range [-9, 9] since anything outside + // this range is +/-1.0f in single-precision. + const T plus_9 = pset1(9.f); + const T minus_9 = pset1(-9.f); + // NOTE GCC prior to 6.3 might improperly optimize this max/min + // step such that if a_x is nan, x will be either 9 or -9, + // and tanh will return 1 or -1 instead of nan. + // This is supposed to be fixed in gcc6.3, + // see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 + const T x = pmax(minus_9,pmin(plus_9,a_x)); + // The monomial coefficients of the numerator polynomial (odd). + const T alpha_1 = pset1(4.89352455891786e-03f); + const T alpha_3 = pset1(6.37261928875436e-04f); + const T alpha_5 = pset1(1.48572235717979e-05f); + const T alpha_7 = pset1(5.12229709037114e-08f); + const T alpha_9 = pset1(-8.60467152213735e-11f); + const T alpha_11 = pset1(2.00018790482477e-13f); + const T alpha_13 = pset1(-2.76076847742355e-16f); + + // The monomial coefficients of the denominator polynomial (even). + const T beta_0 = pset1(4.89352518554385e-03f); + const T beta_2 = pset1(2.26843463243900e-03f); + const T beta_4 = pset1(1.18534705686654e-04f); + const T beta_6 = pset1(1.19825839466702e-06f); + + // Since the polynomials are odd/even, we need x^2. + const T x2 = pmul(x, x); + + // Evaluate the numerator polynomial p. + T p = pmadd(x2, alpha_13, alpha_11); + p = pmadd(x2, p, alpha_9); + p = pmadd(x2, p, alpha_7); + p = pmadd(x2, p, alpha_5); + p = pmadd(x2, p, alpha_3); + p = pmadd(x2, p, alpha_1); + p = pmul(x, p); + + // Evaluate the denominator polynomial p. + T q = pmadd(x2, beta_6, beta_4); + q = pmadd(x2, q, beta_2); + q = pmadd(x2, q, beta_0); + + // Divide the numerator by the denominator. + return pdiv(p, q); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATHFUNCTIONSIMPL_H diff --git a/eigenlib/Eigen/src/Core/Matrix.h b/eigenlib/Eigen/src/Core/Matrix.h index d7d0b5b9a..90c336d8c 100644 --- a/eigenlib/Eigen/src/Core/Matrix.h +++ b/eigenlib/Eigen/src/Core/Matrix.h @@ -13,6 +13,45 @@ namespace Eigen { +namespace internal { +template +struct traits > +{ +private: + enum { size = internal::size_at_compile_time<_Rows,_Cols>::ret }; + typedef typename find_best_packet<_Scalar,size>::type PacketScalar; + enum { + row_major_bit = _Options&RowMajor ? RowMajorBit : 0, + is_dynamic_size_storage = _MaxRows==Dynamic || _MaxCols==Dynamic, + max_size = is_dynamic_size_storage ? Dynamic : _MaxRows*_MaxCols, + default_alignment = compute_default_alignment<_Scalar,max_size>::value, + actual_alignment = ((_Options&DontAlign)==0) ? default_alignment : 0, + required_alignment = unpacket_traits::alignment, + packet_access_bit = (packet_traits<_Scalar>::Vectorizable && (EIGEN_UNALIGNED_VECTORIZE || (actual_alignment>=required_alignment))) ? PacketAccessBit : 0 + }; + +public: + typedef _Scalar Scalar; + typedef Dense StorageKind; + typedef Eigen::Index StorageIndex; + typedef MatrixXpr XprKind; + enum { + RowsAtCompileTime = _Rows, + ColsAtCompileTime = _Cols, + MaxRowsAtCompileTime = _MaxRows, + MaxColsAtCompileTime = _MaxCols, + Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret, + Options = _Options, + InnerStrideAtCompileTime = 1, + OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime, + + // FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase + EvaluatorFlags = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit, + Alignment = actual_alignment + }; +}; +} + /** \class Matrix * \ingroup Core_Module * @@ -24,13 +63,13 @@ namespace Eigen { * The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note"). * * The first three template parameters are required: - * \tparam _Scalar \anchor matrix_tparam_scalar Numeric type, e.g. float, double, int or std::complex. - * User defined sclar types are supported as well (see \ref user_defined_scalars "here"). + * \tparam _Scalar Numeric type, e.g. float, double, int or std::complex. + * User defined scalar types are supported as well (see \ref user_defined_scalars "here"). * \tparam _Rows Number of rows, or \b Dynamic * \tparam _Cols Number of columns, or \b Dynamic * * The remaining template parameters are optional -- in most cases you don't have to worry about them. - * \tparam _Options \anchor matrix_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either + * \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of either * \b #AutoAlign or \b #DontAlign. * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required * for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size. @@ -67,7 +106,7 @@ namespace Eigen { * \endcode * * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN. + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN. * * Some notes: * @@ -97,32 +136,44 @@ namespace Eigen { * are the dimensions of the original matrix, while _Rows and _Cols are Dynamic. * * - * \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy, - * \ref TopicStorageOrders + * ABI and storage layout + * + * The table below summarizes the ABI of some possible Matrix instances which is fixed thorough the lifetime of Eigen 3. + * + * + * + * + * + * + *
Matrix typeEquivalent C structure
\code Matrix \endcode\code + * struct { + * T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0 + * Eigen::Index rows, cols; + * }; + * \endcode
\code + * Matrix + * Matrix \endcode\code + * struct { + * T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0 + * Eigen::Index size; + * }; + * \endcode
\code Matrix \endcode\code + * struct { + * T data[Rows*Cols]; // with (size_t(data)%A(Rows*Cols*sizeof(T)))==0 + * }; + * \endcode
\code Matrix \endcode\code + * struct { + * T data[MaxRows*MaxCols]; // with (size_t(data)%A(MaxRows*MaxCols*sizeof(T)))==0 + * Eigen::Index rows, cols; + * }; + * \endcode
+ * Note that in this table Rows, Cols, MaxRows and MaxCols are all positive integers. A(S) is defined to the largest possible power-of-two + * smaller to EIGEN_MAX_STATIC_ALIGN_BYTES. + * + * \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy, + * \ref TopicStorageOrders */ -namespace internal { -template -struct traits > -{ - typedef _Scalar Scalar; - typedef Dense StorageKind; - typedef DenseIndex Index; - typedef MatrixXpr XprKind; - enum { - RowsAtCompileTime = _Rows, - ColsAtCompileTime = _Cols, - MaxRowsAtCompileTime = _MaxRows, - MaxColsAtCompileTime = _MaxCols, - Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret, - CoeffReadCost = NumTraits::ReadCost, - Options = _Options, - InnerStrideAtCompileTime = 1, - OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime - }; -}; -} - template class Matrix : public PlainObjectBase > @@ -151,6 +202,7 @@ class Matrix * * \callgraph */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other) { return Base::_set(other); @@ -167,7 +219,8 @@ class Matrix * remain row-vectors and vectors remain vectors. */ template - EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase& other) + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Matrix& operator=(const DenseBase& other) { return Base::_set(other); } @@ -179,12 +232,14 @@ class Matrix * \copydetails DenseBase::operator=(const EigenBase &other) */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase &other) { return Base::operator=(other); } template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue& func) { return Base::operator=(func); @@ -200,6 +255,7 @@ class Matrix * * \sa resize(Index,Index) */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix() : Base() { Base::_check_template_params(); @@ -207,45 +263,87 @@ class Matrix } // FIXME is it still needed - Matrix(internal::constructor_without_unaligned_array_assert) + EIGEN_DEVICE_FUNC + explicit Matrix(internal::constructor_without_unaligned_array_assert) : Base(internal::constructor_without_unaligned_array_assert()) { Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED } - /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors - * - * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, - * it is redundant to pass the dimension here, so it makes more sense to use the default - * constructor Matrix() instead. - */ - EIGEN_STRONG_INLINE explicit Matrix(Index dim) - : Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim) +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + Matrix(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible::value) + : Base(std::move(other)) { Base::_check_template_params(); - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix) - eigen_assert(dim >= 0); - eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim); - EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic) + Base::_set_noalias(other); } + EIGEN_DEVICE_FUNC + Matrix& operator=(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable::value) + { + other.swap(*this); + return *this; + } +#endif #ifndef EIGEN_PARSED_BY_DOXYGEN + + // This constructor is for both 1x1 matrices and dynamic vectors + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE explicit Matrix(const T& x) + { + Base::_check_template_params(); + Base::template _init1(x); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y) { Base::_check_template_params(); Base::template _init2(x, y); } #else + /** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */ + EIGEN_DEVICE_FUNC + explicit Matrix(const Scalar *data); + + /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors + * + * This is useful for dynamic-size vectors. For fixed-size vectors, + * it is redundant to pass these parameters, so one should use the default constructor + * Matrix() instead. + * + * \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance, + * calling Matrix(1) will call the initialization constructor: Matrix(const Scalar&). + * For fixed-size \c 1x1 matrices it is therefore recommended to use the default + * constructor Matrix() instead, especially when using one of the non standard + * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives). + */ + EIGEN_STRONG_INLINE explicit Matrix(Index dim); + /** \brief Constructs an initialized 1x1 matrix with the given coefficient */ + Matrix(const Scalar& x); /** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns. * * This is useful for dynamic-size matrices. For fixed-size matrices, * it is redundant to pass these parameters, so one should use the default constructor - * Matrix() instead. */ + * Matrix() instead. + * + * \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance, + * calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y). + * For fixed-size \c 1x2 or \c 2x1 vectors it is therefore recommended to use the default + * constructor Matrix() instead, especially when using one of the non standard + * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives). + */ + EIGEN_DEVICE_FUNC Matrix(Index rows, Index cols); + /** \brief Constructs an initialized 2D vector with given coefficients */ Matrix(const Scalar& x, const Scalar& y); #endif /** \brief Constructs an initialized 3D vector with given coefficients */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z) { Base::_check_template_params(); @@ -255,6 +353,7 @@ class Matrix m_storage.data()[2] = z; } /** \brief Constructs an initialized 4D vector with given coefficients */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w) { Base::_check_template_params(); @@ -265,76 +364,33 @@ class Matrix m_storage.data()[3] = w; } - explicit Matrix(const Scalar *data); - - /** \brief Constructor copying the value of the expression \a other */ - template - EIGEN_STRONG_INLINE Matrix(const MatrixBase& other) - : Base(other.rows() * other.cols(), other.rows(), other.cols()) - { - // This test resides here, to bring the error messages closer to the user. Normally, these checks - // are performed deeply within the library, thus causing long and scary error traces. - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - Base::_check_template_params(); - Base::_set_noalias(other); - } /** \brief Copy constructor */ - EIGEN_STRONG_INLINE Matrix(const Matrix& other) - : Base(other.rows() * other.cols(), other.rows(), other.cols()) - { - Base::_check_template_params(); - Base::_set_noalias(other); - } - /** \brief Copy constructor with in-place evaluation */ - template - EIGEN_STRONG_INLINE Matrix(const ReturnByValue& other) - { - Base::_check_template_params(); - Base::resize(other.rows(), other.cols()); - other.evalTo(*this); - } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Matrix(const Matrix& other) : Base(other) + { } /** \brief Copy constructor for generic expressions. * \sa MatrixBase::operator=(const EigenBase&) */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const EigenBase &other) - : Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols()) - { - Base::_check_template_params(); - Base::_resize_to_match(other); - // FIXME/CHECK: isn't *this = other.derived() more efficient. it allows to - // go for pure _set() implementations, right? - *this = other; - } - - /** \internal - * \brief Override MatrixBase::swap() since for dynamic-sized matrices - * of same type it is enough to swap the data pointers. - */ - template - void swap(MatrixBase const & other) - { this->_swap(other.derived()); } + : Base(other.derived()) + { } - inline Index innerStride() const { return 1; } - inline Index outerStride() const { return this->innerSize(); } + EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); } /////////// Geometry module /////////// template + EIGEN_DEVICE_FUNC explicit Matrix(const RotationBase& r); template + EIGEN_DEVICE_FUNC Matrix& operator=(const RotationBase& r); - #ifdef EIGEN2_SUPPORT - template - explicit Matrix(const eigen2_RotationBase& r); - template - Matrix& operator=(const eigen2_RotationBase& r); - #endif - // allow to extend Matrix outside Eigen #ifdef EIGEN_MATRIX_PLUGIN #include EIGEN_MATRIX_PLUGIN diff --git a/eigenlib/Eigen/src/Core/MatrixBase.h b/eigenlib/Eigen/src/Core/MatrixBase.h index b67a7c119..f7cf04cde 100644 --- a/eigenlib/Eigen/src/Core/MatrixBase.h +++ b/eigenlib/Eigen/src/Core/MatrixBase.h @@ -41,9 +41,9 @@ namespace Eigen { * \endcode * * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN. + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN. * - * \sa \ref TopicClassHierarchy + * \sa \blank \ref TopicClassHierarchy */ template class MatrixBase : public DenseBase @@ -52,7 +52,7 @@ template class MatrixBase #ifndef EIGEN_PARSED_BY_DOXYGEN typedef MatrixBase StorageBaseType; typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; + typedef typename internal::traits::StorageIndex StorageIndex; typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; @@ -66,7 +66,6 @@ template class MatrixBase using Base::MaxSizeAtCompileTime; using Base::IsVectorAtCompileTime; using Base::Flags; - using Base::CoeffReadCost; using Base::derived; using Base::const_cast_derived; @@ -98,25 +97,14 @@ template class MatrixBase /** \returns the size of the main diagonal, which is min(rows(),cols()). * \sa rows(), cols(), SizeAtCompileTime. */ - inline Index diagonalSize() const { return (std::min)(rows(),cols()); } + EIGEN_DEVICE_FUNC + inline Index diagonalSize() const { return (numext::mini)(rows(),cols()); } - /** \brief The plain matrix type corresponding to this expression. - * - * This is not necessarily exactly the return type of eval(). In the case of plain matrices, - * the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed - * that the return type of eval() is either PlainObject or const PlainObject&. - */ - typedef Matrix::Scalar, - internal::traits::RowsAtCompileTime, - internal::traits::ColsAtCompileTime, - AutoAlign | (internal::traits::Flags&RowMajorBit ? RowMajor : ColMajor), - internal::traits::MaxRowsAtCompileTime, - internal::traits::MaxColsAtCompileTime - > PlainObject; + typedef typename Base::PlainObject PlainObject; #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal Represents a matrix with all coefficients equal to one another*/ - typedef CwiseNullaryOp,Derived> ConstantReturnType; + typedef CwiseNullaryOp,PlainObject> ConstantReturnType; /** \internal the return type of MatrixBase::adjoint() */ typedef typename internal::conditional::IsComplex, CwiseUnaryOp, ConstTransposeReturnType>, @@ -125,7 +113,7 @@ template class MatrixBase /** \internal Return type of eigenvalues() */ typedef Matrix, internal::traits::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType; /** \internal the return type of identity */ - typedef CwiseNullaryOp,Derived> IdentityReturnType; + typedef CwiseNullaryOp,PlainObject> IdentityReturnType; /** \internal the return type of unit vectors */ typedef Block, SquareMatrixType>, internal::traits::RowsAtCompileTime, @@ -133,6 +121,7 @@ template class MatrixBase #endif // not EIGEN_PARSED_BY_DOXYGEN #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase +#define EIGEN_DOC_UNARY_ADDONS(X,Y) # include "../plugins/CommonCwiseUnaryOps.h" # include "../plugins/CommonCwiseBinaryOps.h" # include "../plugins/MatrixCwiseUnaryOps.h" @@ -141,41 +130,53 @@ template class MatrixBase # include EIGEN_MATRIXBASE_PLUGIN # endif #undef EIGEN_CURRENT_STORAGE_BASE_CLASS +#undef EIGEN_DOC_UNARY_ADDONS /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const MatrixBase& other); // We cannot inherit here via Base::operator= since it is causing // trouble with MSVC. template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const DenseBase& other); template + EIGEN_DEVICE_FUNC Derived& operator=(const EigenBase& other); template + EIGEN_DEVICE_FUNC Derived& operator=(const ReturnByValue& other); - template - Derived& lazyAssign(const ProductBase& other); - - template - Derived& lazyAssign(const MatrixPowerProduct& other); - template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator+=(const MatrixBase& other); template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator-=(const MatrixBase& other); +#ifdef __CUDACC__ + template + EIGEN_DEVICE_FUNC + const Product + operator*(const MatrixBase &other) const + { return this->lazyProduct(other); } +#else + template - const typename ProductReturnType::Type + const Product operator*(const MatrixBase &other) const; +#endif + template - const typename LazyProductReturnType::Type + EIGEN_DEVICE_FUNC + const Product lazyProduct(const MatrixBase &other) const; template @@ -188,84 +189,93 @@ template class MatrixBase void applyOnTheRight(const EigenBase& other); template - const DiagonalProduct + EIGEN_DEVICE_FUNC + const Product operator*(const DiagonalBase &diagonal) const; template - typename internal::scalar_product_traits::Scalar,typename internal::traits::Scalar>::ReturnType + EIGEN_DEVICE_FUNC + typename ScalarBinaryOpTraits::Scalar,typename internal::traits::Scalar>::ReturnType dot(const MatrixBase& other) const; - #ifdef EIGEN2_SUPPORT - template - Scalar eigen2_dot(const MatrixBase& other) const; - #endif - - RealScalar squaredNorm() const; - RealScalar norm() const; + EIGEN_DEVICE_FUNC RealScalar squaredNorm() const; + EIGEN_DEVICE_FUNC RealScalar norm() const; RealScalar stableNorm() const; RealScalar blueNorm() const; RealScalar hypotNorm() const; - const PlainObject normalized() const; - void normalize(); + EIGEN_DEVICE_FUNC const PlainObject normalized() const; + EIGEN_DEVICE_FUNC const PlainObject stableNormalized() const; + EIGEN_DEVICE_FUNC void normalize(); + EIGEN_DEVICE_FUNC void stableNormalize(); - const AdjointReturnType adjoint() const; - void adjointInPlace(); + EIGEN_DEVICE_FUNC const AdjointReturnType adjoint() const; + EIGEN_DEVICE_FUNC void adjointInPlace(); typedef Diagonal DiagonalReturnType; + EIGEN_DEVICE_FUNC DiagonalReturnType diagonal(); + typedef typename internal::add_const >::type ConstDiagonalReturnType; + EIGEN_DEVICE_FUNC ConstDiagonalReturnType diagonal() const; template struct DiagonalIndexReturnType { typedef Diagonal Type; }; template struct ConstDiagonalIndexReturnType { typedef const Diagonal Type; }; - template typename DiagonalIndexReturnType::Type diagonal(); - template typename ConstDiagonalIndexReturnType::Type diagonal() const; - + template + EIGEN_DEVICE_FUNC + typename DiagonalIndexReturnType::Type diagonal(); + + template + EIGEN_DEVICE_FUNC + typename ConstDiagonalIndexReturnType::Type diagonal() const; + typedef Diagonal DiagonalDynamicIndexReturnType; typedef typename internal::add_const >::type ConstDiagonalDynamicIndexReturnType; + EIGEN_DEVICE_FUNC DiagonalDynamicIndexReturnType diagonal(Index index); + EIGEN_DEVICE_FUNC ConstDiagonalDynamicIndexReturnType diagonal(Index index) const; - #ifdef EIGEN2_SUPPORT - template typename internal::eigen2_part_return_type::type part(); - template const typename internal::eigen2_part_return_type::type part() const; - - // huuuge hack. make Eigen2's matrix.part() work in eigen3. Problem: Diagonal is now a class template instead - // of an integer constant. Solution: overload the part() method template wrt template parameters list. - template class U> - const DiagonalWrapper part() const - { return diagonal().asDiagonal(); } - #endif // EIGEN2_SUPPORT - template struct TriangularViewReturnType { typedef TriangularView Type; }; template struct ConstTriangularViewReturnType { typedef const TriangularView Type; }; - template typename TriangularViewReturnType::Type triangularView(); - template typename ConstTriangularViewReturnType::Type triangularView() const; + template + EIGEN_DEVICE_FUNC + typename TriangularViewReturnType::Type triangularView(); + template + EIGEN_DEVICE_FUNC + typename ConstTriangularViewReturnType::Type triangularView() const; template struct SelfAdjointViewReturnType { typedef SelfAdjointView Type; }; template struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView Type; }; - template typename SelfAdjointViewReturnType::Type selfadjointView(); - template typename ConstSelfAdjointViewReturnType::Type selfadjointView() const; + template + EIGEN_DEVICE_FUNC + typename SelfAdjointViewReturnType::Type selfadjointView(); + template + EIGEN_DEVICE_FUNC + typename ConstSelfAdjointViewReturnType::Type selfadjointView() const; const SparseView sparseView(const Scalar& m_reference = Scalar(0), const typename NumTraits::Real& m_epsilon = NumTraits::dummy_precision()) const; - static const IdentityReturnType Identity(); - static const IdentityReturnType Identity(Index rows, Index cols); - static const BasisReturnType Unit(Index size, Index i); - static const BasisReturnType Unit(Index i); - static const BasisReturnType UnitX(); - static const BasisReturnType UnitY(); - static const BasisReturnType UnitZ(); - static const BasisReturnType UnitW(); - + EIGEN_DEVICE_FUNC static const IdentityReturnType Identity(); + EIGEN_DEVICE_FUNC static const IdentityReturnType Identity(Index rows, Index cols); + EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index size, Index i); + EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index i); + EIGEN_DEVICE_FUNC static const BasisReturnType UnitX(); + EIGEN_DEVICE_FUNC static const BasisReturnType UnitY(); + EIGEN_DEVICE_FUNC static const BasisReturnType UnitZ(); + EIGEN_DEVICE_FUNC static const BasisReturnType UnitW(); + + EIGEN_DEVICE_FUNC const DiagonalWrapper asDiagonal() const; const PermutationWrapper asPermutation() const; + EIGEN_DEVICE_FUNC Derived& setIdentity(); + EIGEN_DEVICE_FUNC Derived& setIdentity(Index rows, Index cols); bool isIdentity(const RealScalar& prec = NumTraits::dummy_precision()) const; @@ -297,59 +307,45 @@ template class MatrixBase NoAlias noalias(); - inline const ForceAlignedAccess forceAlignedAccess() const; - inline ForceAlignedAccess forceAlignedAccess(); - template inline typename internal::add_const_on_value_type,Derived&>::type>::type forceAlignedAccessIf() const; - template inline typename internal::conditional,Derived&>::type forceAlignedAccessIf(); + // TODO forceAlignedAccess is temporarily disabled + // Need to find a nicer workaround. + inline const Derived& forceAlignedAccess() const { return derived(); } + inline Derived& forceAlignedAccess() { return derived(); } + template inline const Derived& forceAlignedAccessIf() const { return derived(); } + template inline Derived& forceAlignedAccessIf() { return derived(); } - Scalar trace() const; + EIGEN_DEVICE_FUNC Scalar trace() const; -/////////// Array module /////////// + template EIGEN_DEVICE_FUNC RealScalar lpNorm() const; - template RealScalar lpNorm() const; - - MatrixBase& matrix() { return *this; } - const MatrixBase& matrix() const { return *this; } + EIGEN_DEVICE_FUNC MatrixBase& matrix() { return *this; } + EIGEN_DEVICE_FUNC const MatrixBase& matrix() const { return *this; } /** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix * \sa ArrayBase::matrix() */ - ArrayWrapper array() { return derived(); } - const ArrayWrapper array() const { return derived(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper array() { return ArrayWrapper(derived()); } + /** \returns a const \link Eigen::ArrayBase Array \endlink expression of this matrix + * \sa ArrayBase::matrix() */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper array() const { return ArrayWrapper(derived()); } /////////// LU module /////////// - const FullPivLU fullPivLu() const; - const PartialPivLU partialPivLu() const; + inline const FullPivLU fullPivLu() const; + inline const PartialPivLU partialPivLu() const; - #if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS - const LU lu() const; - #endif + inline const PartialPivLU lu() const; - #ifdef EIGEN2_SUPPORT - const LU eigen2_lu() const; - #endif + inline const Inverse inverse() const; - #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS - const PartialPivLU lu() const; - #endif - - #ifdef EIGEN2_SUPPORT template - void computeInverse(MatrixBase *result) const { - *result = this->inverse(); - } - #endif - - const internal::inverse_impl inverse() const; - template - void computeInverseAndDetWithCheck( + inline void computeInverseAndDetWithCheck( ResultType& inverse, typename ResultType::Scalar& determinant, bool& invertible, const RealScalar& absDeterminantThreshold = NumTraits::dummy_precision() ) const; template - void computeInverseWithCheck( + inline void computeInverseWithCheck( ResultType& inverse, bool& invertible, const RealScalar& absDeterminantThreshold = NumTraits::dummy_precision() @@ -358,65 +354,70 @@ template class MatrixBase /////////// Cholesky module /////////// - const LLT llt() const; - const LDLT ldlt() const; + inline const LLT llt() const; + inline const LDLT ldlt() const; /////////// QR module /////////// - const HouseholderQR householderQr() const; - const ColPivHouseholderQR colPivHouseholderQr() const; - const FullPivHouseholderQR fullPivHouseholderQr() const; - - #ifdef EIGEN2_SUPPORT - const QR qr() const; - #endif + inline const HouseholderQR householderQr() const; + inline const ColPivHouseholderQR colPivHouseholderQr() const; + inline const FullPivHouseholderQR fullPivHouseholderQr() const; + inline const CompleteOrthogonalDecomposition completeOrthogonalDecomposition() const; - EigenvaluesReturnType eigenvalues() const; - RealScalar operatorNorm() const; +/////////// Eigenvalues module /////////// -/////////// SVD module /////////// + inline EigenvaluesReturnType eigenvalues() const; + inline RealScalar operatorNorm() const; - JacobiSVD jacobiSvd(unsigned int computationOptions = 0) const; +/////////// SVD module /////////// - #ifdef EIGEN2_SUPPORT - SVD svd() const; - #endif + inline JacobiSVD jacobiSvd(unsigned int computationOptions = 0) const; + inline BDCSVD bdcSvd(unsigned int computationOptions = 0) const; /////////// Geometry module /////////// #ifndef EIGEN_PARSED_BY_DOXYGEN /// \internal helper struct to form the return type of the cross product template struct cross_product_return_type { - typedef typename internal::scalar_product_traits::Scalar,typename internal::traits::Scalar>::ReturnType Scalar; + typedef typename ScalarBinaryOpTraits::Scalar,typename internal::traits::Scalar>::ReturnType Scalar; typedef Matrix type; }; #endif // EIGEN_PARSED_BY_DOXYGEN template - typename cross_product_return_type::type + EIGEN_DEVICE_FUNC +#ifndef EIGEN_PARSED_BY_DOXYGEN + inline typename cross_product_return_type::type +#else + inline PlainObject +#endif cross(const MatrixBase& other) const; + template - PlainObject cross3(const MatrixBase& other) const; - PlainObject unitOrthogonal(void) const; - Matrix eulerAngles(Index a0, Index a1, Index a2) const; - - #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS - ScalarMultipleReturnType operator*(const UniformScaling& s) const; + EIGEN_DEVICE_FUNC + inline PlainObject cross3(const MatrixBase& other) const; + + EIGEN_DEVICE_FUNC + inline PlainObject unitOrthogonal(void) const; + + EIGEN_DEVICE_FUNC + inline Matrix eulerAngles(Index a0, Index a1, Index a2) const; + // put this as separate enum value to work around possible GCC 4.3 bug (?) - enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal }; + enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1&&RowsAtCompileTime==1 ? ((internal::traits::Flags&RowMajorBit)==RowMajorBit ? Horizontal : Vertical) + : ColsAtCompileTime==1 ? Vertical : Horizontal }; typedef Homogeneous HomogeneousReturnType; - HomogeneousReturnType homogeneous() const; - #endif - + EIGEN_DEVICE_FUNC + inline HomogeneousReturnType homogeneous() const; + enum { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }; typedef Block::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne; - typedef CwiseUnaryOp::Scalar>, - const ConstStartMinusOne > HNormalizedReturnType; - - const HNormalizedReturnType hnormalized() const; + typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(ConstStartMinusOne,Scalar,quotient) HNormalizedReturnType; + EIGEN_DEVICE_FUNC + inline const HNormalizedReturnType hnormalized() const; ////////// Householder module /////////// @@ -440,6 +441,15 @@ template class MatrixBase template void applyOnTheRight(Index p, Index q, const JacobiRotation& j); +///////// SparseCore module ///////// + + template + EIGEN_STRONG_INLINE const typename SparseMatrixBase::template CwiseProductDenseReturnType::Type + cwiseProduct(const SparseMatrixBase &other) const + { + return other.cwiseProduct(derived()); + } + ///////// MatrixFunctions module ///////// typedef typename internal::stem_function::type StemFunction; @@ -452,49 +462,15 @@ template class MatrixBase const MatrixSquareRootReturnValue sqrt() const; const MatrixLogarithmReturnValue log() const; const MatrixPowerReturnValue pow(const RealScalar& p) const; - -#ifdef EIGEN2_SUPPORT - template - Derived& operator+=(const Flagged, 0, - EvalBeforeAssigningBit>& other); - - template - Derived& operator-=(const Flagged, 0, - EvalBeforeAssigningBit>& other); - - /** \deprecated because .lazy() is deprecated - * Overloaded for cache friendly product evaluation */ - template - Derived& lazyAssign(const Flagged& other) - { return lazyAssign(other._expression()); } - - template - const Flagged marked() const; - const Flagged lazy() const; - - inline const Cwise cwise() const; - inline Cwise cwise(); - - VectorBlock start(Index size); - const VectorBlock start(Index size) const; - VectorBlock end(Index size); - const VectorBlock end(Index size) const; - template VectorBlock start(); - template const VectorBlock start() const; - template VectorBlock end(); - template const VectorBlock end() const; - - Minor minor(Index row, Index col); - const Minor minor(Index row, Index col) const; -#endif + const MatrixComplexPowerReturnValue pow(const std::complex& p) const; protected: - MatrixBase() : Base() {} + EIGEN_DEVICE_FUNC MatrixBase() : Base() {} private: - explicit MatrixBase(int); - MatrixBase(int,int); - template explicit MatrixBase(const MatrixBase&); + EIGEN_DEVICE_FUNC explicit MatrixBase(int); + EIGEN_DEVICE_FUNC MatrixBase(int,int); + template EIGEN_DEVICE_FUNC explicit MatrixBase(const MatrixBase&); protected: // mixing arrays and matrices is not legal template Derived& operator+=(const ArrayBase& ) diff --git a/eigenlib/Eigen/src/Core/NestByValue.h b/eigenlib/Eigen/src/Core/NestByValue.h index a893b1761..13adf070e 100644 --- a/eigenlib/Eigen/src/Core/NestByValue.h +++ b/eigenlib/Eigen/src/Core/NestByValue.h @@ -13,25 +13,24 @@ namespace Eigen { +namespace internal { +template +struct traits > : public traits +{}; +} + /** \class NestByValue * \ingroup Core_Module * * \brief Expression which must be nested by value * - * \param ExpressionType the type of the object of which we are requiring nesting-by-value + * \tparam ExpressionType the type of the object of which we are requiring nesting-by-value * * This class is the return type of MatrixBase::nestByValue() * and most of the time this is the only way it is used. * * \sa MatrixBase::nestByValue() */ - -namespace internal { -template -struct traits > : public traits -{}; -} - template class NestByValue : public internal::dense_xpr_base< NestByValue >::type { @@ -40,29 +39,29 @@ template class NestByValue typedef typename internal::dense_xpr_base::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(NestByValue) - inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {} + EIGEN_DEVICE_FUNC explicit inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {} - inline Index rows() const { return m_expression.rows(); } - inline Index cols() const { return m_expression.cols(); } - inline Index outerStride() const { return m_expression.outerStride(); } - inline Index innerStride() const { return m_expression.innerStride(); } + EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); } + EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); } - inline const CoeffReturnType coeff(Index row, Index col) const + EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index row, Index col) const { return m_expression.coeff(row, col); } - inline Scalar& coeffRef(Index row, Index col) + EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) { return m_expression.const_cast_derived().coeffRef(row, col); } - inline const CoeffReturnType coeff(Index index) const + EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index index) const { return m_expression.coeff(index); } - inline Scalar& coeffRef(Index index) + EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index) { return m_expression.const_cast_derived().coeffRef(index); } @@ -91,7 +90,7 @@ template class NestByValue m_expression.const_cast_derived().template writePacket(index, x); } - operator const ExpressionType&() const { return m_expression; } + EIGEN_DEVICE_FUNC operator const ExpressionType&() const { return m_expression; } protected: const ExpressionType m_expression; diff --git a/eigenlib/Eigen/src/Core/NoAlias.h b/eigenlib/Eigen/src/Core/NoAlias.h index 768bfb18c..33908010b 100644 --- a/eigenlib/Eigen/src/Core/NoAlias.h +++ b/eigenlib/Eigen/src/Core/NoAlias.h @@ -17,7 +17,7 @@ namespace Eigen { * * \brief Pseudo expression providing an operator = assuming no aliasing * - * \param ExpressionType the type of the object on which to do the lazy assignment + * \tparam ExpressionType the type of the object on which to do the lazy assignment * * This class represents an expression with special assignment operators * assuming no aliasing between the target expression and the source expression. @@ -30,62 +30,36 @@ namespace Eigen { template class StorageBase> class NoAlias { - typedef typename ExpressionType::Scalar Scalar; public: - NoAlias(ExpressionType& expression) : m_expression(expression) {} - - /** Behaves like MatrixBase::lazyAssign(other) - * \sa MatrixBase::lazyAssign() */ + typedef typename ExpressionType::Scalar Scalar; + + explicit NoAlias(ExpressionType& expression) : m_expression(expression) {} + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ExpressionType& operator=(const StorageBase& other) - { return internal::assign_selector::run(m_expression,other.derived()); } - - /** \sa MatrixBase::operator+= */ + { + call_assignment_no_alias(m_expression, other.derived(), internal::assign_op()); + return m_expression; + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ExpressionType& operator+=(const StorageBase& other) { - typedef SelfCwiseBinaryOp, ExpressionType, OtherDerived> SelfAdder; - SelfAdder tmp(m_expression); - typedef typename internal::nested::type OtherDerivedNested; - typedef typename internal::remove_all::type _OtherDerivedNested; - internal::assign_selector::run(tmp,OtherDerivedNested(other.derived())); + call_assignment_no_alias(m_expression, other.derived(), internal::add_assign_op()); return m_expression; } - - /** \sa MatrixBase::operator-= */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ExpressionType& operator-=(const StorageBase& other) { - typedef SelfCwiseBinaryOp, ExpressionType, OtherDerived> SelfAdder; - SelfAdder tmp(m_expression); - typedef typename internal::nested::type OtherDerivedNested; - typedef typename internal::remove_all::type _OtherDerivedNested; - internal::assign_selector::run(tmp,OtherDerivedNested(other.derived())); + call_assignment_no_alias(m_expression, other.derived(), internal::sub_assign_op()); return m_expression; } -#ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_STRONG_INLINE ExpressionType& operator+=(const ProductBase& other) - { other.derived().addTo(m_expression); return m_expression; } - - template - EIGEN_STRONG_INLINE ExpressionType& operator-=(const ProductBase& other) - { other.derived().subTo(m_expression); return m_expression; } - - template - EIGEN_STRONG_INLINE ExpressionType& operator+=(const CoeffBasedProduct& other) - { return m_expression.derived() += CoeffBasedProduct(other.lhs(), other.rhs()); } - - template - EIGEN_STRONG_INLINE ExpressionType& operator-=(const CoeffBasedProduct& other) - { return m_expression.derived() -= CoeffBasedProduct(other.lhs(), other.rhs()); } - - template - ExpressionType& operator=(const ReturnByValue& func) - { return m_expression = func; } -#endif - + EIGEN_DEVICE_FUNC ExpressionType& expression() const { return m_expression; @@ -126,7 +100,7 @@ class NoAlias template NoAlias MatrixBase::noalias() { - return derived(); + return NoAlias(derived()); } } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/NumTraits.h b/eigenlib/Eigen/src/Core/NumTraits.h index bac9e50b8..dd61195bc 100644 --- a/eigenlib/Eigen/src/Core/NumTraits.h +++ b/eigenlib/Eigen/src/Core/NumTraits.h @@ -12,24 +12,57 @@ namespace Eigen { +namespace internal { + +// default implementation of digits10(), based on numeric_limits if specialized, +// 0 for integer types, and log10(epsilon()) otherwise. +template< typename T, + bool use_numeric_limits = std::numeric_limits::is_specialized, + bool is_integer = NumTraits::IsInteger> +struct default_digits10_impl +{ + static int run() { return std::numeric_limits::digits10; } +}; + +template +struct default_digits10_impl // Floating point +{ + static int run() { + using std::log10; + using std::ceil; + typedef typename NumTraits::Real Real; + return int(ceil(-log10(NumTraits::epsilon()))); + } +}; + +template +struct default_digits10_impl // Integer +{ + static int run() { return 0; } +}; + +} // end namespace internal + /** \class NumTraits * \ingroup Core_Module * * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. * - * \param T the numeric type at hand + * \tparam T the numeric type at hand * * This class stores enums, typedefs and static methods giving information about a numeric type. * * The provided data consists of: - * \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real, - * then \a Real is just a typedef to \a T. If \a T is \c std::complex then \a Real + * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real, + * then \c Real is just a typedef to \a T. If \a T is \c std::complex then \c Real * is a typedef to \a U. - * \li A typedef \a NonInteger, giving the type that should be used for operations producing non-integral values, + * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values, * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is * only intended as a helper for code that needs to explicitly promote types. + * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex, Literal is defined as \c U. + * Of course, this type must be fully compatible with \a T. In doubt, just use \a T here. * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what * this means, just use \a T here. * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex @@ -42,10 +75,14 @@ namespace Eigen { * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned. * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must * be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise. - * \li An epsilon() function which, unlike std::numeric_limits::epsilon(), returns a \a Real instead of a \a T. + * \li An epsilon() function which, unlike std::numeric_limits::epsilon(), + * it returns a \a Real instead of a \a T. * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default * value by the fuzzy comparison operators. * \li highest() and lowest() functions returning the highest and lowest possible values respectively. + * \li digits10() function returning the number of decimal digits that can be represented without change. This is + * the analogue of std::numeric_limits::digits10 + * which is used as the default implementation if specialized. */ template struct GenericNumTraits @@ -67,22 +104,47 @@ template struct GenericNumTraits T >::type NonInteger; typedef T Nested; + typedef T Literal; + + EIGEN_DEVICE_FUNC + static inline Real epsilon() + { + return numext::numeric_limits::epsilon(); + } - static inline Real epsilon() { return std::numeric_limits::epsilon(); } + EIGEN_DEVICE_FUNC + static inline int digits10() + { + return internal::default_digits10_impl::run(); + } + + EIGEN_DEVICE_FUNC static inline Real dummy_precision() { // make sure to override this for floating-point types return Real(0); } - static inline T highest() { return (std::numeric_limits::max)(); } - static inline T lowest() { return IsInteger ? (std::numeric_limits::min)() : (-(std::numeric_limits::max)()); } - -#ifdef EIGEN2_SUPPORT - enum { - HasFloatingPoint = !IsInteger - }; - typedef NonInteger FloatingPoint; -#endif + + + EIGEN_DEVICE_FUNC + static inline T highest() { + return (numext::numeric_limits::max)(); + } + + EIGEN_DEVICE_FUNC + static inline T lowest() { + return IsInteger ? (numext::numeric_limits::min)() : (-(numext::numeric_limits::max)()); + } + + EIGEN_DEVICE_FUNC + static inline T infinity() { + return numext::numeric_limits::infinity(); + } + + EIGEN_DEVICE_FUNC + static inline T quiet_NaN() { + return numext::numeric_limits::quiet_NaN(); + } }; template struct NumTraits : GenericNumTraits @@ -91,11 +153,13 @@ template struct NumTraits : GenericNumTraits template<> struct NumTraits : GenericNumTraits { + EIGEN_DEVICE_FUNC static inline float dummy_precision() { return 1e-5f; } }; template<> struct NumTraits : GenericNumTraits { + EIGEN_DEVICE_FUNC static inline double dummy_precision() { return 1e-12; } }; @@ -109,6 +173,7 @@ template struct NumTraits > : GenericNumTraits > { typedef _Real Real; + typedef typename NumTraits<_Real>::Literal Literal; enum { IsComplex = 1, RequireInitialization = NumTraits<_Real>::RequireInitialization, @@ -117,8 +182,12 @@ template struct NumTraits > MulCost = 4 * NumTraits::MulCost + 2 * NumTraits::AddCost }; + EIGEN_DEVICE_FUNC static inline Real epsilon() { return NumTraits::epsilon(); } + EIGEN_DEVICE_FUNC static inline Real dummy_precision() { return NumTraits::dummy_precision(); } + EIGEN_DEVICE_FUNC + static inline int digits10() { return NumTraits::digits10(); } }; template @@ -130,21 +199,48 @@ struct NumTraits > typedef typename NumTraits::NonInteger NonIntegerScalar; typedef Array NonInteger; typedef ArrayType & Nested; - + typedef typename NumTraits::Literal Literal; + enum { IsComplex = NumTraits::IsComplex, IsInteger = NumTraits::IsInteger, IsSigned = NumTraits::IsSigned, RequireInitialization = 1, - ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits::ReadCost, - AddCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits::AddCost, - MulCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits::MulCost + ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits::ReadCost, + AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits::AddCost, + MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits::MulCost }; - + + EIGEN_DEVICE_FUNC static inline RealScalar epsilon() { return NumTraits::epsilon(); } + EIGEN_DEVICE_FUNC static inline RealScalar dummy_precision() { return NumTraits::dummy_precision(); } }; +template<> struct NumTraits + : GenericNumTraits +{ + enum { + RequireInitialization = 1, + ReadCost = HugeCost, + AddCost = HugeCost, + MulCost = HugeCost + }; + + static inline int digits10() { return 0; } + +private: + static inline std::string epsilon(); + static inline std::string dummy_precision(); + static inline std::string lowest(); + static inline std::string highest(); + static inline std::string infinity(); + static inline std::string quiet_NaN(); +}; + +// Empty specialization for void to allow template specialization based on NumTraits::Real with T==void and SFINAE. +template<> struct NumTraits {}; + } // end namespace Eigen #endif // EIGEN_NUMTRAITS_H diff --git a/eigenlib/Eigen/src/Core/PermutationMatrix.h b/eigenlib/Eigen/src/Core/PermutationMatrix.h index 85ffae265..b1fb455b9 100644 --- a/eigenlib/Eigen/src/Core/PermutationMatrix.h +++ b/eigenlib/Eigen/src/Core/PermutationMatrix.h @@ -2,7 +2,7 @@ // for linear algebra. // // Copyright (C) 2009 Benoit Jacob -// Copyright (C) 2009-2011 Gael Guennebaud +// Copyright (C) 2009-2015 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -13,14 +13,18 @@ namespace Eigen { -template class PermutedImpl; +namespace internal { + +enum PermPermProduct_t {PermPermProduct}; + +} // end namespace internal /** \class PermutationBase * \ingroup Core_Module * * \brief Base class for permutations * - * \param Derived the derived class + * \tparam Derived the derived class * * This class is the base class for all expressions representing a permutation matrix, * internally stored as a vector of integers. @@ -38,17 +42,6 @@ template -struct permut_matrix_product_retval; -template -struct permut_sparsematrix_product_retval; -enum PermPermProduct_t {PermPermProduct}; - -} // end namespace internal - template class PermutationBase : public EigenBase { @@ -60,19 +53,20 @@ class PermutationBase : public EigenBase typedef typename Traits::IndicesType IndicesType; enum { Flags = Traits::Flags, - CoeffReadCost = Traits::CoeffReadCost, RowsAtCompileTime = Traits::RowsAtCompileTime, ColsAtCompileTime = Traits::ColsAtCompileTime, MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, MaxColsAtCompileTime = Traits::MaxColsAtCompileTime }; - typedef typename Traits::Scalar Scalar; - typedef typename Traits::Index Index; - typedef Matrix + typedef typename Traits::StorageIndex StorageIndex; + typedef Matrix DenseMatrixType; - typedef PermutationMatrix + typedef PermutationMatrix PlainPermutationType; + typedef PlainPermutationType PlainObject; using Base::derived; + typedef Inverse InverseReturnType; + typedef void Scalar; #endif /** Copies the other permutation into *this */ @@ -118,7 +112,7 @@ class PermutationBase : public EigenBase void evalTo(MatrixBase& other) const { other.setZero(); - for (int i=0; i /** Sets *this to be the identity permutation matrix */ void setIdentity() { - for(Index i = 0; i < size(); ++i) + StorageIndex n = StorageIndex(size()); + for(StorageIndex i = 0; i < n; ++i) indices().coeffRef(i) = i; } @@ -163,18 +158,18 @@ class PermutationBase : public EigenBase * * \returns a reference to *this. * - * \warning This is much slower than applyTranspositionOnTheRight(int,int): + * \warning This is much slower than applyTranspositionOnTheRight(Index,Index): * this has linear complexity and requires a lot of branching. * - * \sa applyTranspositionOnTheRight(int,int) + * \sa applyTranspositionOnTheRight(Index,Index) */ Derived& applyTranspositionOnTheLeft(Index i, Index j) { eigen_assert(i>=0 && j>=0 && i * * This is a fast operation, it only consists in swapping two indices. * - * \sa applyTranspositionOnTheLeft(int,int) + * \sa applyTranspositionOnTheLeft(Index,Index) */ Derived& applyTranspositionOnTheRight(Index i, Index j) { @@ -196,16 +191,16 @@ class PermutationBase : public EigenBase /** \returns the inverse permutation matrix. * - * \note \note_try_to_help_rvo + * \note \blank \note_try_to_help_rvo */ - inline Transpose inverse() const - { return derived(); } + inline InverseReturnType inverse() const + { return InverseReturnType(derived()); } /** \returns the tranpose permutation matrix. * - * \note \note_try_to_help_rvo + * \note \blank \note_try_to_help_rvo */ - inline Transpose transpose() const - { return derived(); } + inline InverseReturnType transpose() const + { return InverseReturnType(derived()); } /**** multiplication helpers to hopefully get RVO ****/ @@ -215,13 +210,13 @@ class PermutationBase : public EigenBase template void assignTranspose(const PermutationBase& other) { - for (int i=0; i void assignProduct(const Lhs& lhs, const Rhs& rhs) { eigen_assert(lhs.cols() == rhs.rows()); - for (int i=0; i /** \returns the product permutation matrix. * - * \note \note_try_to_help_rvo + * \note \blank \note_try_to_help_rvo */ template inline PlainPermutationType operator*(const PermutationBase& other) const @@ -237,18 +232,18 @@ class PermutationBase : public EigenBase /** \returns the product of a permutation with another inverse permutation. * - * \note \note_try_to_help_rvo + * \note \blank \note_try_to_help_rvo */ template - inline PlainPermutationType operator*(const Transpose >& other) const + inline PlainPermutationType operator*(const InverseImpl& other) const { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); } /** \returns the product of an inverse permutation with another permutation. * - * \note \note_try_to_help_rvo + * \note \blank \note_try_to_help_rvo */ template friend - inline PlainPermutationType operator*(const Transpose >& other, const PermutationBase& perm) + inline PlainPermutationType operator*(const InverseImpl& other, const PermutationBase& perm) { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); } /** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the permutation. @@ -284,39 +279,43 @@ class PermutationBase : public EigenBase }; +namespace internal { +template +struct traits > + : traits > +{ + typedef PermutationStorage StorageKind; + typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; + typedef _StorageIndex StorageIndex; + typedef void Scalar; +}; +} + /** \class PermutationMatrix * \ingroup Core_Module * * \brief Permutation matrix * - * \param SizeAtCompileTime the number of rows/cols, or Dynamic - * \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. - * \param IndexType the interger type of the indices + * \tparam SizeAtCompileTime the number of rows/cols, or Dynamic + * \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. + * \tparam _StorageIndex the integer type of the indices * * This class represents a permutation matrix, internally stored as a vector of integers. * * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix */ - -namespace internal { -template -struct traits > - : traits > -{ - typedef IndexType Index; - typedef Matrix IndicesType; -}; -} - -template -class PermutationMatrix : public PermutationBase > +template +class PermutationMatrix : public PermutationBase > { typedef PermutationBase Base; typedef internal::traits Traits; public: + typedef const PermutationMatrix& Nested; + #ifndef EIGEN_PARSED_BY_DOXYGEN typedef typename Traits::IndicesType IndicesType; + typedef typename Traits::StorageIndex StorageIndex; #endif inline PermutationMatrix() @@ -324,8 +323,10 @@ class PermutationMatrix : public PermutationBase::highest()); + } /** Copy constructor. */ template @@ -346,7 +347,7 @@ class PermutationMatrix : public PermutationBase - explicit inline PermutationMatrix(const MatrixBase& a_indices) : m_indices(a_indices) + explicit inline PermutationMatrix(const MatrixBase& indices) : m_indices(indices) {} /** Convert the Transpositions \a tr to a permutation matrix */ @@ -393,10 +394,13 @@ class PermutationMatrix : public PermutationBase - PermutationMatrix(const Transpose >& other) - : m_indices(other.nestedPermutation().size()) + PermutationMatrix(const InverseImpl& other) + : m_indices(other.derived().nestedExpression().size()) { - for (int i=0; i::highest()); + StorageIndex end = StorageIndex(m_indices.size()); + for (StorageIndex i=0; i PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs) @@ -413,18 +417,20 @@ class PermutationMatrix : public PermutationBase -struct traits,_PacketAccess> > - : traits > +template +struct traits,_PacketAccess> > + : traits > { - typedef IndexType Index; - typedef Map, _PacketAccess> IndicesType; + typedef PermutationStorage StorageKind; + typedef Map, _PacketAccess> IndicesType; + typedef _StorageIndex StorageIndex; + typedef void Scalar; }; } -template -class Map,_PacketAccess> - : public PermutationBase,_PacketAccess> > +template +class Map,_PacketAccess> + : public PermutationBase,_PacketAccess> > { typedef PermutationBase Base; typedef internal::traits Traits; @@ -432,14 +438,14 @@ class Map, #ifndef EIGEN_PARSED_BY_DOXYGEN typedef typename Traits::IndicesType IndicesType; - typedef typename IndicesType::Scalar Index; + typedef typename IndicesType::Scalar StorageIndex; #endif - inline Map(const Index* indicesPtr) + inline Map(const StorageIndex* indicesPtr) : m_indices(indicesPtr) {} - inline Map(const Index* indicesPtr, Index size) + inline Map(const StorageIndex* indicesPtr, Index size) : m_indices(indicesPtr,size) {} @@ -474,40 +480,36 @@ class Map, IndicesType m_indices; }; -/** \class PermutationWrapper - * \ingroup Core_Module - * - * \brief Class to view a vector of integers as a permutation matrix - * - * \param _IndicesType the type of the vector of integer (can be any compatible expression) - * - * This class allows to view any vector expression of integers as a permutation matrix. - * - * \sa class PermutationBase, class PermutationMatrix - */ - -struct PermutationStorage {}; - template class TranspositionsWrapper; namespace internal { template struct traits > { typedef PermutationStorage StorageKind; - typedef typename _IndicesType::Scalar Scalar; - typedef typename _IndicesType::Scalar Index; + typedef void Scalar; + typedef typename _IndicesType::Scalar StorageIndex; typedef _IndicesType IndicesType; enum { RowsAtCompileTime = _IndicesType::SizeAtCompileTime, ColsAtCompileTime = _IndicesType::SizeAtCompileTime, - MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime, - Flags = 0, - CoeffReadCost = _IndicesType::CoeffReadCost + MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime, + MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime, + Flags = 0 }; }; } +/** \class PermutationWrapper + * \ingroup Core_Module + * + * \brief Class to view a vector of integers as a permutation matrix + * + * \tparam _IndicesType the type of the vector of integer (can be any compatible expression) + * + * This class allows to view any vector expression of integers as a permutation matrix. + * + * \sa class PermutationBase, class PermutationMatrix + */ template class PermutationWrapper : public PermutationBase > { @@ -519,8 +521,8 @@ class PermutationWrapper : public PermutationBase -inline const internal::permut_matrix_product_retval -operator*(const MatrixBase& matrix, - const PermutationBase &permutation) +template +EIGEN_DEVICE_FUNC +const Product +operator*(const MatrixBase &matrix, + const PermutationBase& permutation) { - return internal::permut_matrix_product_retval - - (permutation.derived(), matrix.derived()); + return Product + (matrix.derived(), permutation.derived()); } /** \returns the matrix with the permutation applied to the rows. */ -template -inline const internal::permut_matrix_product_retval - +template +EIGEN_DEVICE_FUNC +const Product operator*(const PermutationBase &permutation, - const MatrixBase& matrix) + const MatrixBase& matrix) { - return internal::permut_matrix_product_retval - - (permutation.derived(), matrix.derived()); + return Product + (permutation.derived(), matrix.derived()); } -namespace internal { -template -struct traits > +template +class InverseImpl + : public EigenBase > { - typedef typename MatrixType::PlainObject ReturnType; -}; - -template -struct permut_matrix_product_retval - : public ReturnByValue > -{ - typedef typename remove_all::type MatrixTypeNestedCleaned; - typedef typename MatrixType::Index Index; - - permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix) - : m_permutation(perm), m_matrix(matrix) - {} - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - - template inline void evalTo(Dest& dst) const - { - const Index n = Side==OnTheLeft ? rows() : cols(); - // FIXME we need an is_same for expression that is not sensitive to constness. For instance - // is_same_xpr, Block >::value should be true. - if( is_same::value - && blas_traits::HasUsableDirectAccess - && blas_traits::HasUsableDirectAccess - && extract_data(dst) == extract_data(m_matrix)) - { - // apply the permutation inplace - Matrix mask(m_permutation.size()); - mask.fill(false); - Index r = 0; - while(r < m_permutation.size()) - { - // search for the next seed - while(r=m_permutation.size()) - break; - // we got one, let's follow it until we are back to the seed - Index k0 = r++; - Index kPrev = k0; - mask.coeffRef(k0) = true; - for(Index k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k)) - { - Block(dst, k) - .swap(Block - (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); - - mask.coeffRef(k) = true; - kPrev = k; - } - } - } - else - { - for(int i = 0; i < n; ++i) - { - Block - (dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i) - - = - - Block - (m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i); - } - } - } - - protected: - const PermutationType& m_permutation; - typename MatrixType::Nested m_matrix; -}; - -/* Template partial specialization for transposed/inverse permutations */ - -template -struct traits > > - : traits -{}; - -} // end namespace internal - -template -class Transpose > - : public EigenBase > > -{ - typedef Derived PermutationType; - typedef typename PermutationType::IndicesType IndicesType; typedef typename PermutationType::PlainPermutationType PlainPermutationType; + typedef internal::traits PermTraits; + protected: + InverseImpl() {} public: + typedef Inverse InverseType; + using EigenBase >::derived; #ifndef EIGEN_PARSED_BY_DOXYGEN - typedef internal::traits Traits; - typedef typename Derived::DenseMatrixType DenseMatrixType; + typedef typename PermutationType::DenseMatrixType DenseMatrixType; enum { - Flags = Traits::Flags, - CoeffReadCost = Traits::CoeffReadCost, - RowsAtCompileTime = Traits::RowsAtCompileTime, - ColsAtCompileTime = Traits::ColsAtCompileTime, - MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, - MaxColsAtCompileTime = Traits::MaxColsAtCompileTime + RowsAtCompileTime = PermTraits::RowsAtCompileTime, + ColsAtCompileTime = PermTraits::ColsAtCompileTime, + MaxRowsAtCompileTime = PermTraits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = PermTraits::MaxColsAtCompileTime }; - typedef typename Traits::Scalar Scalar; #endif - Transpose(const PermutationType& p) : m_permutation(p) {} - - inline int rows() const { return m_permutation.rows(); } - inline int cols() const { return m_permutation.cols(); } - #ifndef EIGEN_PARSED_BY_DOXYGEN template void evalTo(MatrixBase& other) const { other.setZero(); - for (int i=0; i friend - inline const internal::permut_matrix_product_retval - operator*(const MatrixBase& matrix, const Transpose& trPerm) + const Product + operator*(const MatrixBase& matrix, const InverseType& trPerm) { - return internal::permut_matrix_product_retval(trPerm.m_permutation, matrix.derived()); + return Product(matrix.derived(), trPerm.derived()); } /** \returns the matrix with the inverse permutation applied to the rows. */ template - inline const internal::permut_matrix_product_retval + const Product operator*(const MatrixBase& matrix) const { - return internal::permut_matrix_product_retval(m_permutation, matrix.derived()); + return Product(derived(), matrix.derived()); } - - const PermutationType& nestedPermutation() const { return m_permutation; } - - protected: - const PermutationType& m_permutation; }; template @@ -716,6 +622,12 @@ const PermutationWrapper MatrixBase::asPermutation() con return derived(); } +namespace internal { + +template<> struct AssignmentKind { typedef EigenBase2EigenBase Kind; }; + +} // end namespace internal + } // end namespace Eigen #endif // EIGEN_PERMUTATIONMATRIX_H diff --git a/eigenlib/Eigen/src/Core/PlainObjectBase.h b/eigenlib/Eigen/src/Core/PlainObjectBase.h index 8a3e4545a..359135628 100644 --- a/eigenlib/Eigen/src/Core/PlainObjectBase.h +++ b/eigenlib/Eigen/src/Core/PlainObjectBase.h @@ -28,6 +28,7 @@ namespace internal { template struct check_rows_cols_for_overflow { template + EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE void run(Index, Index) { } @@ -35,6 +36,7 @@ template struct check_rows_cols_for_overflow { template<> struct check_rows_cols_for_overflow { template + EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols) { // http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242 @@ -56,33 +58,41 @@ template struct m } // end namespace internal -/** \class PlainObjectBase - * \brief %Dense storage base class for matrices and arrays. - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN. - * - * \sa \ref TopicClassHierarchy - */ #ifdef EIGEN_PARSED_BY_DOXYGEN -namespace internal { +namespace doxygen { -// this is a warkaround to doxygen not being able to understand the inheritence logic +// This is a workaround to doxygen not being able to understand the inheritance logic // when it is hidden by the dense_xpr_base helper struct. -template struct dense_xpr_base_dispatcher_for_doxygen;// : public MatrixBase {}; +// Moreover, doxygen fails to include members that are not documented in the declaration body of +// MatrixBase if we inherits MatrixBase >, +// this is why we simply inherits MatrixBase, though this does not make sense. + +/** This class is just a workaround for Doxygen and it does not not actually exist. */ +template struct dense_xpr_base_dispatcher; /** This class is just a workaround for Doxygen and it does not not actually exist. */ template -struct dense_xpr_base_dispatcher_for_doxygen > - : public MatrixBase > {}; +struct dense_xpr_base_dispatcher > + : public MatrixBase {}; /** This class is just a workaround for Doxygen and it does not not actually exist. */ template -struct dense_xpr_base_dispatcher_for_doxygen > - : public ArrayBase > {}; +struct dense_xpr_base_dispatcher > + : public ArrayBase {}; -} // namespace internal +} // namespace doxygen +/** \class PlainObjectBase + * \ingroup Core_Module + * \brief %Dense storage base class for matrices and arrays. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN. + * + * \tparam Derived is the derived type, e.g., a Matrix or Array + * + * \sa \ref TopicClassHierarchy + */ template -class PlainObjectBase : public internal::dense_xpr_base_dispatcher_for_doxygen +class PlainObjectBase : public doxygen::dense_xpr_base_dispatcher #else template class PlainObjectBase : public internal::dense_xpr_base::type @@ -93,8 +103,8 @@ class PlainObjectBase : public internal::dense_xpr_base::type typedef typename internal::dense_xpr_base::type Base; typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; typedef typename internal::traits::Scalar Scalar; + typedef typename internal::packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; typedef Derived DenseType; @@ -113,28 +123,40 @@ class PlainObjectBase : public internal::dense_xpr_base::type typedef Eigen::Map MapType; friend class Eigen::Map; typedef const Eigen::Map ConstMapType; - friend class Eigen::Map; - typedef Eigen::Map AlignedMapType; - friend class Eigen::Map; - typedef const Eigen::Map ConstAlignedMapType; +#if EIGEN_MAX_ALIGN_BYTES>0 + // for EIGEN_MAX_ALIGN_BYTES==0, AlignedMax==Unaligned, and many compilers generate warnings for friend-ing a class twice. + friend class Eigen::Map; + friend class Eigen::Map; +#endif + typedef Eigen::Map AlignedMapType; + typedef const Eigen::Map ConstAlignedMapType; template struct StridedMapType { typedef Eigen::Map type; }; template struct StridedConstMapType { typedef Eigen::Map type; }; - template struct StridedAlignedMapType { typedef Eigen::Map type; }; - template struct StridedConstAlignedMapType { typedef Eigen::Map type; }; + template struct StridedAlignedMapType { typedef Eigen::Map type; }; + template struct StridedConstAlignedMapType { typedef Eigen::Map type; }; protected: DenseStorage m_storage; public: - enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits::Flags & AlignedBit) != 0 }; + enum { NeedsToAlign = (SizeAtCompileTime != Dynamic) && (internal::traits::Alignment>0) }; EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) + EIGEN_DEVICE_FUNC Base& base() { return *static_cast(this); } + EIGEN_DEVICE_FUNC const Base& base() const { return *static_cast(this); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); } + /** This is an overloaded version of DenseCoeffsBase::coeff(Index,Index) const + * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. + * + * See DenseCoeffsBase::coeff(Index) const for details. */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const { if(Flags & RowMajorBit) @@ -143,11 +165,21 @@ class PlainObjectBase : public internal::dense_xpr_base::type return m_storage.data()[rowId + colId * m_storage.rows()]; } + /** This is an overloaded version of DenseCoeffsBase::coeff(Index) const + * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. + * + * See DenseCoeffsBase::coeff(Index) const for details. */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const { return m_storage.data()[index]; } + /** This is an overloaded version of DenseCoeffsBase::coeffRef(Index,Index) const + * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. + * + * See DenseCoeffsBase::coeffRef(Index,Index) const for details. */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId) { if(Flags & RowMajorBit) @@ -156,11 +188,19 @@ class PlainObjectBase : public internal::dense_xpr_base::type return m_storage.data()[rowId + colId * m_storage.rows()]; } + /** This is an overloaded version of DenseCoeffsBase::coeffRef(Index) const + * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. + * + * See DenseCoeffsBase::coeffRef(Index) const for details. */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { return m_storage.data()[index]; } + /** This is the const version of coeffRef(Index,Index) which is thus synonym of coeff(Index,Index). + * It is provided for convenience. */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const { if(Flags & RowMajorBit) @@ -169,6 +209,9 @@ class PlainObjectBase : public internal::dense_xpr_base::type return m_storage.data()[rowId + colId * m_storage.rows()]; } + /** This is the const version of coeffRef(Index) which is thus synonym of coeff(Index). + * It is provided for convenience. */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const { return m_storage.data()[index]; @@ -209,11 +252,11 @@ class PlainObjectBase : public internal::dense_xpr_base::type } /** \returns a const pointer to the data array of this matrix */ - EIGEN_STRONG_INLINE const Scalar *data() const + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); } /** \returns a pointer to the data array of this matrix */ - EIGEN_STRONG_INLINE Scalar *data() + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); } /** Resizes \c *this to a \a rows x \a cols matrix. @@ -232,22 +275,22 @@ class PlainObjectBase : public internal::dense_xpr_base::type * * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t) */ - EIGEN_STRONG_INLINE void resize(Index nbRows, Index nbCols) - { - eigen_assert( EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,nbRows==RowsAtCompileTime) - && EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,nbCols==ColsAtCompileTime) - && EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,nbRows<=MaxRowsAtCompileTime) - && EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,nbCols<=MaxColsAtCompileTime) - && nbRows>=0 && nbCols>=0 && "Invalid sizes when resizing a matrix or array."); - internal::check_rows_cols_for_overflow::run(nbRows, nbCols); + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void resize(Index rows, Index cols) + { + eigen_assert( EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,rows==RowsAtCompileTime) + && EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,cols==ColsAtCompileTime) + && EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,rows<=MaxRowsAtCompileTime) + && EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,cols<=MaxColsAtCompileTime) + && rows>=0 && cols>=0 && "Invalid sizes when resizing a matrix or array."); + internal::check_rows_cols_for_overflow::run(rows, cols); #ifdef EIGEN_INITIALIZE_COEFFS - Index size = nbRows*nbCols; + Index size = rows*cols; bool size_changed = size != this->size(); - m_storage.resize(size, nbRows, nbCols); + m_storage.resize(size, rows, cols); if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED #else - internal::check_rows_cols_for_overflow::run(nbRows, nbCols); - m_storage.resize(nbRows*nbCols, nbRows, nbCols); + m_storage.resize(rows*cols, rows, cols); #endif } @@ -262,6 +305,7 @@ class PlainObjectBase : public internal::dense_xpr_base::type * * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t) */ + EIGEN_DEVICE_FUNC inline void resize(Index size) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase) @@ -286,9 +330,10 @@ class PlainObjectBase : public internal::dense_xpr_base::type * * \sa resize(Index,Index) */ - inline void resize(NoChange_t, Index nbCols) + EIGEN_DEVICE_FUNC + inline void resize(NoChange_t, Index cols) { - resize(rows(), nbCols); + resize(rows(), cols); } /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange @@ -299,9 +344,10 @@ class PlainObjectBase : public internal::dense_xpr_base::type * * \sa resize(Index,Index) */ - inline void resize(Index nbRows, NoChange_t) + EIGEN_DEVICE_FUNC + inline void resize(Index rows, NoChange_t) { - resize(nbRows, cols()); + resize(rows, cols()); } /** Resizes \c *this to have the same dimensions as \a other. @@ -312,6 +358,7 @@ class PlainObjectBase : public internal::dense_xpr_base::type * remain row-vectors and vectors remain vectors. */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resizeLike(const EigenBase& _other) { const OtherDerived& other = _other.derived(); @@ -339,9 +386,10 @@ class PlainObjectBase : public internal::dense_xpr_base::type * Matrices are resized relative to the top-left element. In case values need to be * appended to the matrix they will be uninitialized. */ - EIGEN_STRONG_INLINE void conservativeResize(Index nbRows, Index nbCols) + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols) { - internal::conservative_resize_like_impl::run(*this, nbRows, nbCols); + internal::conservative_resize_like_impl::run(*this, rows, cols); } /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. @@ -351,10 +399,11 @@ class PlainObjectBase : public internal::dense_xpr_base::type * * In case the matrix is growing, new rows will be uninitialized. */ - EIGEN_STRONG_INLINE void conservativeResize(Index nbRows, NoChange_t) + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t) { // Note: see the comment in conservativeResize(Index,Index) - conservativeResize(nbRows, cols()); + conservativeResize(rows, cols()); } /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. @@ -364,10 +413,11 @@ class PlainObjectBase : public internal::dense_xpr_base::type * * In case the matrix is growing, new columns will be uninitialized. */ - EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index nbCols) + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols) { // Note: see the comment in conservativeResize(Index,Index) - conservativeResize(rows(), nbCols); + conservativeResize(rows(), cols); } /** Resizes the vector to \a size while retaining old values. @@ -378,6 +428,7 @@ class PlainObjectBase : public internal::dense_xpr_base::type * * When values are appended, they will be uninitialized. */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(Index size) { internal::conservative_resize_like_impl::run(*this, size); @@ -393,6 +444,7 @@ class PlainObjectBase : public internal::dense_xpr_base::type * appended to the matrix they will copied from \c other. */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase& other) { internal::conservative_resize_like_impl::run(*this, other); @@ -401,6 +453,7 @@ class PlainObjectBase : public internal::dense_xpr_base::type /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other) { return _set(other); @@ -408,6 +461,7 @@ class PlainObjectBase : public internal::dense_xpr_base::type /** \sa MatrixBase::lazyAssign() */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase& other) { _resize_to_match(other); @@ -415,12 +469,18 @@ class PlainObjectBase : public internal::dense_xpr_base::type } template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue& func) { resize(func.rows(), func.cols()); return Base::operator=(func); } + // Prevent user from trying to instantiate PlainObjectBase objects + // by making all its constructor protected. See bug 1074. + protected: + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase() : m_storage() { // _check_template_params(); @@ -430,38 +490,86 @@ class PlainObjectBase : public internal::dense_xpr_base::type #ifndef EIGEN_PARSED_BY_DOXYGEN // FIXME is it still needed ? /** \internal */ - PlainObjectBase(internal::constructor_without_unaligned_array_assert) + EIGEN_DEVICE_FUNC + explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert) : m_storage(internal::constructor_without_unaligned_array_assert()) { // _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED } #endif - EIGEN_STRONG_INLINE PlainObjectBase(Index a_size, Index nbRows, Index nbCols) - : m_storage(a_size, nbRows, nbCols) +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + PlainObjectBase(PlainObjectBase&& other) EIGEN_NOEXCEPT + : m_storage( std::move(other.m_storage) ) + { + } + + EIGEN_DEVICE_FUNC + PlainObjectBase& operator=(PlainObjectBase&& other) EIGEN_NOEXCEPT + { + using std::swap; + swap(m_storage, other.m_storage); + return *this; + } +#endif + + /** Copy constructor */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other) + : Base(), m_storage(other.m_storage) { } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols) + : m_storage(size, rows, cols) { // _check_template_params(); // EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED } - /** \copydoc MatrixBase::operator=(const EigenBase&) - */ + /** \sa PlainObjectBase::operator=(const EigenBase&) */ template - EIGEN_STRONG_INLINE Derived& operator=(const EigenBase &other) + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase &other) + : m_storage() { - _resize_to_match(other); - Base::operator=(other.derived()); - return this->derived(); + _check_template_params(); + resizeLike(other); + _set_noalias(other); } - /** \sa MatrixBase::operator=(const EigenBase&) */ + /** \sa PlainObjectBase::operator=(const EigenBase&) */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase &other) - : m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols()) + : m_storage() + { + _check_template_params(); + resizeLike(other); + *this = other.derived(); + } + /** \brief Copy constructor with in-place evaluation */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PlainObjectBase(const ReturnByValue& other) { _check_template_params(); - internal::check_rows_cols_for_overflow::run(other.derived().rows(), other.derived().cols()); + // FIXME this does not automatically transpose vectors if necessary + resize(other.rows(), other.cols()); + other.evalTo(this->derived()); + } + + public: + + /** \brief Copies the generic expression \a other into *this. + * \copydetails DenseBase::operator=(const EigenBase &other) + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& operator=(const EigenBase &other) + { + _resize_to_match(other); Base::operator=(other.derived()); + return this->derived(); } /** \name Map @@ -538,16 +646,16 @@ class PlainObjectBase : public internal::dense_xpr_base::type //@} using Base::setConstant; - Derived& setConstant(Index size, const Scalar& value); - Derived& setConstant(Index rows, Index cols, const Scalar& value); + EIGEN_DEVICE_FUNC Derived& setConstant(Index size, const Scalar& val); + EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, Index cols, const Scalar& val); using Base::setZero; - Derived& setZero(Index size); - Derived& setZero(Index rows, Index cols); + EIGEN_DEVICE_FUNC Derived& setZero(Index size); + EIGEN_DEVICE_FUNC Derived& setZero(Index rows, Index cols); using Base::setOnes; - Derived& setOnes(Index size); - Derived& setOnes(Index rows, Index cols); + EIGEN_DEVICE_FUNC Derived& setOnes(Index size); + EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, Index cols); using Base::setRandom; Derived& setRandom(Index size); @@ -566,6 +674,7 @@ class PlainObjectBase : public internal::dense_xpr_base::type * remain row-vectors and vectors remain vectors. */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase& other) { #ifdef EIGEN_NO_AUTOMATIC_RESIZING @@ -573,8 +682,6 @@ class PlainObjectBase : public internal::dense_xpr_base::type : (rows() == other.rows() && cols() == other.cols()))) && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); EIGEN_ONLY_USED_FOR_DEBUG(other); - if(this->size()==0) - resizeLike(other); #else resizeLike(other); #endif @@ -594,25 +701,23 @@ class PlainObjectBase : public internal::dense_xpr_base::type * * \internal */ + // aliasing is dealt once in internall::call_assignment + // so at this stage we have to assume aliasing... and resising has to be done later. template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& _set(const DenseBase& other) { - _set_selector(other.derived(), typename internal::conditional(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type()); + internal::call_assignment(this->derived(), other.derived()); return this->derived(); } - template - EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); } - - template - EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); } - /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which * is the case when creating a new matrix) so one can enforce lazy evaluation. * * \sa operator=(const MatrixBase&), _set() */ template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase& other) { // I don't think we need this resize call since the lazyAssign will anyways resize @@ -620,40 +725,167 @@ class PlainObjectBase : public internal::dense_xpr_base::type //_resize_to_match(other); // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because // it wouldn't allow to copy a row-vector into a column-vector. - return internal::assign_selector::run(this->derived(), other.derived()); + internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); + return this->derived(); } template - EIGEN_STRONG_INLINE void _init2(Index nbRows, Index nbCols, typename internal::enable_if::type* = 0) + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if::type* = 0) { EIGEN_STATIC_ASSERT(bool(NumTraits::IsInteger) && bool(NumTraits::IsInteger), FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) - resize(nbRows,nbCols); + resize(rows,cols); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init2(const T0& val0, const T1& val1, typename internal::enable_if::type* = 0) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) + m_storage.data()[0] = Scalar(val0); + m_storage.data()[1] = Scalar(val1); } + template - EIGEN_STRONG_INLINE void _init2(const Scalar& val0, const Scalar& val1, typename internal::enable_if::type* = 0) + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init2(const Index& val0, const Index& val1, + typename internal::enable_if< (!internal::is_same::value) + && (internal::is_same::value) + && (internal::is_same::value) + && Base::SizeAtCompileTime==2,T1>::type* = 0) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) + m_storage.data()[0] = Scalar(val0); + m_storage.data()[1] = Scalar(val1); + } + + // The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array, + // then the argument is meant to be the size of the object. + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if< (Base::SizeAtCompileTime!=1 || !internal::is_convertible::value) + && ((!internal::is_same::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>::type* = 0) + { + // NOTE MSVC 2008 complains if we directly put bool(NumTraits::IsInteger) as the EIGEN_STATIC_ASSERT argument. + const bool is_integer = NumTraits::IsInteger; + EIGEN_UNUSED_VARIABLE(is_integer); + EIGEN_STATIC_ASSERT(is_integer, + FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) + resize(size); + } + + // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type can be implicitely converted) + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if::value,T>::type* = 0) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) m_storage.data()[0] = val0; - m_storage.data()[1] = val1; + } + + // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type match the index type) + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Index& val0, + typename internal::enable_if< (!internal::is_same::value) + && (internal::is_same::value) + && Base::SizeAtCompileTime==1 + && internal::is_convertible::value,T*>::type* = 0) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) + m_storage.data()[0] = Scalar(val0); } + // Initialize a fixed size matrix from a pointer to raw data + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Scalar* data){ + this->_set_noalias(ConstMapType(data)); + } + + // Initialize an arbitrary matrix from a dense expression + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const DenseBase& other){ + this->_set_noalias(other); + } + + // Initialize an arbitrary matrix from a generic Eigen expression + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const EigenBase& other){ + this->derived() = other; + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const ReturnByValue& other) + { + resize(other.rows(), other.cols()); + other.evalTo(this->derived()); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const RotationBase& r) + { + this->derived() = r; + } + + // For fixed -size arrays: + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Scalar& val0, + typename internal::enable_if< Base::SizeAtCompileTime!=Dynamic + && Base::SizeAtCompileTime!=1 + && internal::is_convertible::value + && internal::is_same::XprKind,ArrayXpr>::value,T>::type* = 0) + { + Base::setConstant(val0); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Index& val0, + typename internal::enable_if< (!internal::is_same::value) + && (internal::is_same::value) + && Base::SizeAtCompileTime!=Dynamic + && Base::SizeAtCompileTime!=1 + && internal::is_convertible::value + && internal::is_same::XprKind,ArrayXpr>::value,T*>::type* = 0) + { + Base::setConstant(val0); + } + template friend struct internal::matrix_swap_impl; - /** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the - * data pointers. + public: + +#ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal + * \brief Override DenseBase::swap() since for dynamic-sized matrices + * of same type it is enough to swap the data pointers. */ template - void _swap(DenseBase const & other) + EIGEN_DEVICE_FUNC + void swap(DenseBase & other) { enum { SwapPointers = internal::is_same::value && Base::SizeAtCompileTime==Dynamic }; - internal::matrix_swap_impl::run(this->derived(), other.const_cast_derived()); + internal::matrix_swap_impl::run(this->derived(), other.derived()); } - - public: -#ifndef EIGEN_PARSED_BY_DOXYGEN + + /** \internal + * \brief const version forwarded to DenseBase::swap + */ + template + EIGEN_DEVICE_FUNC + void swap(DenseBase const & other) + { Base::swap(other.derived()); } + + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void _check_template_params() { EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor) @@ -667,10 +899,9 @@ class PlainObjectBase : public internal::dense_xpr_base::type && (Options & (DontAlign|RowMajor)) == Options), INVALID_MATRIX_TEMPLATE_PARAMETERS) } -#endif -private: - enum { ThisConstantIsPrivateInPlainObjectBase }; + enum { IsPlainObjectBase = 1 }; +#endif }; namespace internal { @@ -678,7 +909,6 @@ namespace internal { template struct conservative_resize_like_impl { - typedef typename Derived::Index Index; static void run(DenseBase& _this, Index rows, Index cols) { if (_this.rows() == rows && _this.cols() == cols) return; @@ -694,8 +924,8 @@ struct conservative_resize_like_impl { // The storage order does not allow us to use reallocation. typename Derived::PlainObject tmp(rows,cols); - const Index common_rows = (std::min)(rows, _this.rows()); - const Index common_cols = (std::min)(cols, _this.cols()); + const Index common_rows = numext::mini(rows, _this.rows()); + const Index common_cols = numext::mini(cols, _this.cols()); tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); _this.derived().swap(tmp); } @@ -728,8 +958,8 @@ struct conservative_resize_like_impl { // The storage order does not allow us to use reallocation. typename Derived::PlainObject tmp(other); - const Index common_rows = (std::min)(tmp.rows(), _this.rows()); - const Index common_cols = (std::min)(tmp.cols(), _this.cols()); + const Index common_rows = numext::mini(tmp.rows(), _this.rows()); + const Index common_cols = numext::mini(tmp.cols(), _this.cols()); tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); _this.derived().swap(tmp); } @@ -744,7 +974,6 @@ struct conservative_resize_like_impl { using conservative_resize_like_impl::run; - typedef typename Derived::Index Index; static void run(DenseBase& _this, Index size) { const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size; @@ -770,6 +999,7 @@ struct conservative_resize_like_impl template struct matrix_swap_impl { + EIGEN_DEVICE_FUNC static inline void run(MatrixTypeA& a, MatrixTypeB& b) { a.base().swap(b); @@ -779,6 +1009,7 @@ struct matrix_swap_impl template struct matrix_swap_impl { + EIGEN_DEVICE_FUNC static inline void run(MatrixTypeA& a, MatrixTypeB& b) { static_cast(a).m_storage.swap(static_cast(b).m_storage); diff --git a/eigenlib/Eigen/src/Core/Product.h b/eigenlib/Eigen/src/Core/Product.h new file mode 100644 index 000000000..ae0c94b38 --- /dev/null +++ b/eigenlib/Eigen/src/Core/Product.h @@ -0,0 +1,186 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2011 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PRODUCT_H +#define EIGEN_PRODUCT_H + +namespace Eigen { + +template class ProductImpl; + +namespace internal { + +template +struct traits > +{ + typedef typename remove_all::type LhsCleaned; + typedef typename remove_all::type RhsCleaned; + typedef traits LhsTraits; + typedef traits RhsTraits; + + typedef MatrixXpr XprKind; + + typedef typename ScalarBinaryOpTraits::Scalar, typename traits::Scalar>::ReturnType Scalar; + typedef typename product_promote_storage_type::ret>::ret StorageKind; + typedef typename promote_index_type::type StorageIndex; + + enum { + RowsAtCompileTime = LhsTraits::RowsAtCompileTime, + ColsAtCompileTime = RhsTraits::ColsAtCompileTime, + MaxRowsAtCompileTime = LhsTraits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = RhsTraits::MaxColsAtCompileTime, + + // FIXME: only needed by GeneralMatrixMatrixTriangular + InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsTraits::ColsAtCompileTime, RhsTraits::RowsAtCompileTime), + + // The storage order is somewhat arbitrary here. The correct one will be determined through the evaluator. + Flags = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? RowMajorBit + : (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0 + : ( ((LhsTraits::Flags&NoPreferredStorageOrderBit) && (RhsTraits::Flags&RowMajorBit)) + || ((RhsTraits::Flags&NoPreferredStorageOrderBit) && (LhsTraits::Flags&RowMajorBit)) ) ? RowMajorBit + : NoPreferredStorageOrderBit + }; +}; + +} // end namespace internal + +/** \class Product + * \ingroup Core_Module + * + * \brief Expression of the product of two arbitrary matrices or vectors + * + * \tparam _Lhs the type of the left-hand side expression + * \tparam _Rhs the type of the right-hand side expression + * + * This class represents an expression of the product of two arbitrary matrices. + * + * The other template parameters are: + * \tparam Option can be DefaultProduct, AliasFreeProduct, or LazyProduct + * + */ +template +class Product : public ProductImpl<_Lhs,_Rhs,Option, + typename internal::product_promote_storage_type::StorageKind, + typename internal::traits<_Rhs>::StorageKind, + internal::product_type<_Lhs,_Rhs>::ret>::ret> +{ + public: + + typedef _Lhs Lhs; + typedef _Rhs Rhs; + + typedef typename ProductImpl< + Lhs, Rhs, Option, + typename internal::product_promote_storage_type::StorageKind, + typename internal::traits::StorageKind, + internal::product_type::ret>::ret>::Base Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(Product) + + typedef typename internal::ref_selector::type LhsNested; + typedef typename internal::ref_selector::type RhsNested; + typedef typename internal::remove_all::type LhsNestedCleaned; + typedef typename internal::remove_all::type RhsNestedCleaned; + + EIGEN_DEVICE_FUNC Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) + { + eigen_assert(lhs.cols() == rhs.rows() + && "invalid matrix product" + && "if you wanted a coeff-wise or a dot product use the respective explicit functions"); + } + + EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); } + + EIGEN_DEVICE_FUNC const LhsNestedCleaned& lhs() const { return m_lhs; } + EIGEN_DEVICE_FUNC const RhsNestedCleaned& rhs() const { return m_rhs; } + + protected: + + LhsNested m_lhs; + RhsNested m_rhs; +}; + +namespace internal { + +template::ret> +class dense_product_base + : public internal::dense_xpr_base >::type +{}; + +/** Convertion to scalar for inner-products */ +template +class dense_product_base + : public internal::dense_xpr_base >::type +{ + typedef Product ProductXpr; + typedef typename internal::dense_xpr_base::type Base; +public: + using Base::derived; + typedef typename Base::Scalar Scalar; + + operator const Scalar() const + { + return internal::evaluator(derived()).coeff(0,0); + } +}; + +} // namespace internal + +// Generic API dispatcher +template +class ProductImpl : public internal::generic_xpr_base, MatrixXpr, StorageKind>::type +{ + public: + typedef typename internal::generic_xpr_base, MatrixXpr, StorageKind>::type Base; +}; + +template +class ProductImpl + : public internal::dense_product_base +{ + typedef Product Derived; + + public: + + typedef typename internal::dense_product_base Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Derived) + protected: + enum { + IsOneByOne = (RowsAtCompileTime == 1 || RowsAtCompileTime == Dynamic) && + (ColsAtCompileTime == 1 || ColsAtCompileTime == Dynamic), + EnableCoeff = IsOneByOne || Option==LazyProduct + }; + + public: + + EIGEN_DEVICE_FUNC Scalar coeff(Index row, Index col) const + { + EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS); + eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) ); + + return internal::evaluator(derived()).coeff(row,col); + } + + EIGEN_DEVICE_FUNC Scalar coeff(Index i) const + { + EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS); + eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) ); + + return internal::evaluator(derived()).coeff(i); + } + + +}; + +} // end namespace Eigen + +#endif // EIGEN_PRODUCT_H diff --git a/eigenlib/Eigen/src/Core/ProductBase.h b/eigenlib/Eigen/src/Core/ProductBase.h deleted file mode 100644 index cf74470a9..000000000 --- a/eigenlib/Eigen/src/Core/ProductBase.h +++ /dev/null @@ -1,290 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PRODUCTBASE_H -#define EIGEN_PRODUCTBASE_H - -namespace Eigen { - -/** \class ProductBase - * \ingroup Core_Module - * - */ - -namespace internal { -template -struct traits > -{ - typedef MatrixXpr XprKind; - typedef typename remove_all<_Lhs>::type Lhs; - typedef typename remove_all<_Rhs>::type Rhs; - typedef typename scalar_product_traits::ReturnType Scalar; - typedef typename promote_storage_type::StorageKind, - typename traits::StorageKind>::ret StorageKind; - typedef typename promote_index_type::Index, - typename traits::Index>::type Index; - enum { - RowsAtCompileTime = traits::RowsAtCompileTime, - ColsAtCompileTime = traits::ColsAtCompileTime, - MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, - MaxColsAtCompileTime = traits::MaxColsAtCompileTime, - Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0) - | EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit, - // Note that EvalBeforeNestingBit and NestByRefBit - // are not used in practice because nested is overloaded for products - CoeffReadCost = 0 // FIXME why is it needed ? - }; -}; -} - -#define EIGEN_PRODUCT_PUBLIC_INTERFACE(Derived) \ - typedef ProductBase Base; \ - EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \ - typedef typename Base::LhsNested LhsNested; \ - typedef typename Base::_LhsNested _LhsNested; \ - typedef typename Base::LhsBlasTraits LhsBlasTraits; \ - typedef typename Base::ActualLhsType ActualLhsType; \ - typedef typename Base::_ActualLhsType _ActualLhsType; \ - typedef typename Base::RhsNested RhsNested; \ - typedef typename Base::_RhsNested _RhsNested; \ - typedef typename Base::RhsBlasTraits RhsBlasTraits; \ - typedef typename Base::ActualRhsType ActualRhsType; \ - typedef typename Base::_ActualRhsType _ActualRhsType; \ - using Base::m_lhs; \ - using Base::m_rhs; - -template -class ProductBase : public MatrixBase -{ - public: - typedef MatrixBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(ProductBase) - - typedef typename Lhs::Nested LhsNested; - typedef typename internal::remove_all::type _LhsNested; - typedef internal::blas_traits<_LhsNested> LhsBlasTraits; - typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; - typedef typename internal::remove_all::type _ActualLhsType; - typedef typename internal::traits::Scalar LhsScalar; - - typedef typename Rhs::Nested RhsNested; - typedef typename internal::remove_all::type _RhsNested; - typedef internal::blas_traits<_RhsNested> RhsBlasTraits; - typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; - typedef typename internal::remove_all::type _ActualRhsType; - typedef typename internal::traits::Scalar RhsScalar; - - // Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once - typedef CoeffBasedProduct FullyLazyCoeffBaseProductType; - - public: - -#ifndef EIGEN_NO_MALLOC - typedef typename Base::PlainObject BasePlainObject; - typedef Matrix DynPlainObject; - typedef typename internal::conditional<(BasePlainObject::SizeAtCompileTime==Dynamic) || (BasePlainObject::SizeAtCompileTime*int(sizeof(Scalar)) < int(EIGEN_STACK_ALLOCATION_LIMIT)), - BasePlainObject, DynPlainObject>::type PlainObject; -#else - typedef typename Base::PlainObject PlainObject; -#endif - - ProductBase(const Lhs& a_lhs, const Rhs& a_rhs) - : m_lhs(a_lhs), m_rhs(a_rhs) - { - eigen_assert(a_lhs.cols() == a_rhs.rows() - && "invalid matrix product" - && "if you wanted a coeff-wise or a dot product use the respective explicit functions"); - } - - inline Index rows() const { return m_lhs.rows(); } - inline Index cols() const { return m_rhs.cols(); } - - template - inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,Scalar(1)); } - - template - inline void addTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(1)); } - - template - inline void subTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(-1)); } - - template - inline void scaleAndAddTo(Dest& dst, const Scalar& alpha) const { derived().scaleAndAddTo(dst,alpha); } - - const _LhsNested& lhs() const { return m_lhs; } - const _RhsNested& rhs() const { return m_rhs; } - - // Implicit conversion to the nested type (trigger the evaluation of the product) - operator const PlainObject& () const - { - m_result.resize(m_lhs.rows(), m_rhs.cols()); - derived().evalTo(m_result); - return m_result; - } - - const Diagonal diagonal() const - { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); } - - template - const Diagonal diagonal() const - { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); } - - const Diagonal diagonal(Index index) const - { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); } - - // restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isnt a Lvalue expression - typename Base::CoeffReturnType coeff(Index row, Index col) const - { -#ifdef EIGEN2_SUPPORT - return lhs().row(row).cwiseProduct(rhs().col(col).transpose()).sum(); -#else - EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) - eigen_assert(this->rows() == 1 && this->cols() == 1); - Matrix result = *this; - return result.coeff(row,col); -#endif - } - - typename Base::CoeffReturnType coeff(Index i) const - { - EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) - eigen_assert(this->rows() == 1 && this->cols() == 1); - Matrix result = *this; - return result.coeff(i); - } - - const Scalar& coeffRef(Index row, Index col) const - { - EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) - eigen_assert(this->rows() == 1 && this->cols() == 1); - return derived().coeffRef(row,col); - } - - const Scalar& coeffRef(Index i) const - { - EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) - eigen_assert(this->rows() == 1 && this->cols() == 1); - return derived().coeffRef(i); - } - - protected: - - LhsNested m_lhs; - RhsNested m_rhs; - - mutable PlainObject m_result; -}; - -// here we need to overload the nested rule for products -// such that the nested type is a const reference to a plain matrix -namespace internal { -template -struct nested, N, PlainObject> -{ - typedef typename GeneralProduct::PlainObject const& type; -}; -template -struct nested, N, PlainObject> -{ - typedef typename GeneralProduct::PlainObject const& type; -}; -} - -template -class ScaledProduct; - -// Note that these two operator* functions are not defined as member -// functions of ProductBase, because, otherwise we would have to -// define all overloads defined in MatrixBase. Furthermore, Using -// "using Base::operator*" would not work with MSVC. -// -// Also note that here we accept any compatible scalar types -template -const ScaledProduct -operator*(const ProductBase& prod, const typename Derived::Scalar& x) -{ return ScaledProduct(prod.derived(), x); } - -template -typename internal::enable_if::value, - const ScaledProduct >::type -operator*(const ProductBase& prod, const typename Derived::RealScalar& x) -{ return ScaledProduct(prod.derived(), x); } - - -template -const ScaledProduct -operator*(const typename Derived::Scalar& x,const ProductBase& prod) -{ return ScaledProduct(prod.derived(), x); } - -template -typename internal::enable_if::value, - const ScaledProduct >::type -operator*(const typename Derived::RealScalar& x,const ProductBase& prod) -{ return ScaledProduct(prod.derived(), x); } - -namespace internal { -template -struct traits > - : traits, - typename NestedProduct::_LhsNested, - typename NestedProduct::_RhsNested> > -{ - typedef typename traits::StorageKind StorageKind; -}; -} - -template -class ScaledProduct - : public ProductBase, - typename NestedProduct::_LhsNested, - typename NestedProduct::_RhsNested> -{ - public: - typedef ProductBase, - typename NestedProduct::_LhsNested, - typename NestedProduct::_RhsNested> Base; - typedef typename Base::Scalar Scalar; - typedef typename Base::PlainObject PlainObject; -// EIGEN_PRODUCT_PUBLIC_INTERFACE(ScaledProduct) - - ScaledProduct(const NestedProduct& prod, const Scalar& x) - : Base(prod.lhs(),prod.rhs()), m_prod(prod), m_alpha(x) {} - - template - inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst, Scalar(1)); } - - template - inline void addTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(1)); } - - template - inline void subTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(-1)); } - - template - inline void scaleAndAddTo(Dest& dst, const Scalar& a_alpha) const { m_prod.derived().scaleAndAddTo(dst,a_alpha * m_alpha); } - - const Scalar& alpha() const { return m_alpha; } - - protected: - const NestedProduct& m_prod; - Scalar m_alpha; -}; - -/** \internal - * Overloaded to perform an efficient C = (A*B).lazy() */ -template -template -Derived& MatrixBase::lazyAssign(const ProductBase& other) -{ - other.derived().evalTo(derived()); - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_PRODUCTBASE_H diff --git a/eigenlib/Eigen/src/Core/ProductEvaluators.h b/eigenlib/Eigen/src/Core/ProductEvaluators.h new file mode 100644 index 000000000..583b7f59e --- /dev/null +++ b/eigenlib/Eigen/src/Core/ProductEvaluators.h @@ -0,0 +1,1099 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2011 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_PRODUCTEVALUATORS_H +#define EIGEN_PRODUCTEVALUATORS_H + +namespace Eigen { + +namespace internal { + +/** \internal + * Evaluator of a product expression. + * Since products require special treatments to handle all possible cases, + * we simply deffer the evaluation logic to a product_evaluator class + * which offers more partial specialization possibilities. + * + * \sa class product_evaluator + */ +template +struct evaluator > + : public product_evaluator > +{ + typedef Product XprType; + typedef product_evaluator Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {} +}; + +// Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B" +// TODO we should apply that rule only if that's really helpful +template +struct evaluator_assume_aliasing, + const CwiseNullaryOp, Plain1>, + const Product > > +{ + static const bool value = true; +}; +template +struct evaluator, + const CwiseNullaryOp, Plain1>, + const Product > > + : public evaluator > +{ + typedef CwiseBinaryOp, + const CwiseNullaryOp, Plain1>, + const Product > XprType; + typedef evaluator > Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) + : Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs()) + {} +}; + + +template +struct evaluator, DiagIndex> > + : public evaluator, DiagIndex> > +{ + typedef Diagonal, DiagIndex> XprType; + typedef evaluator, DiagIndex> > Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) + : Base(Diagonal, DiagIndex>( + Product(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()), + xpr.index() )) + {} +}; + + +// Helper class to perform a matrix product with the destination at hand. +// Depending on the sizes of the factors, there are different evaluation strategies +// as controlled by internal::product_type. +template< typename Lhs, typename Rhs, + typename LhsShape = typename evaluator_traits::Shape, + typename RhsShape = typename evaluator_traits::Shape, + int ProductType = internal::product_type::value> +struct generic_product_impl; + +template +struct evaluator_assume_aliasing > { + static const bool value = true; +}; + +// This is the default evaluator implementation for products: +// It creates a temporary and call generic_product_impl +template +struct product_evaluator, ProductTag, LhsShape, RhsShape> + : public evaluator::PlainObject> +{ + typedef Product XprType; + typedef typename XprType::PlainObject PlainObject; + typedef evaluator Base; + enum { + Flags = Base::Flags | EvalBeforeNestingBit + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit product_evaluator(const XprType& xpr) + : m_result(xpr.rows(), xpr.cols()) + { + ::new (static_cast(this)) Base(m_result); + +// FIXME shall we handle nested_eval here?, +// if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.) +// typedef typename internal::nested_eval::type LhsNested; +// typedef typename internal::nested_eval::type RhsNested; +// typedef typename internal::remove_all::type LhsNestedCleaned; +// typedef typename internal::remove_all::type RhsNestedCleaned; +// +// const LhsNested lhs(xpr.lhs()); +// const RhsNested rhs(xpr.rhs()); +// +// generic_product_impl::evalTo(m_result, lhs, rhs); + + generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); + } + +protected: + PlainObject m_result; +}; + +// The following three shortcuts are enabled only if the scalar types match excatly. +// TODO: we could enable them for different scalar types when the product is not vectorized. + +// Dense = Product +template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> +struct Assignment, internal::assign_op, Dense2Dense, + typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> +{ + typedef Product SrcXprType; + static EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + // FIXME shall we handle nested_eval here? + generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); + } +}; + +// Dense += Product +template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> +struct Assignment, internal::add_assign_op, Dense2Dense, + typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> +{ + typedef Product SrcXprType; + static EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &) + { + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); + // FIXME shall we handle nested_eval here? + generic_product_impl::addTo(dst, src.lhs(), src.rhs()); + } +}; + +// Dense -= Product +template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> +struct Assignment, internal::sub_assign_op, Dense2Dense, + typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> +{ + typedef Product SrcXprType; + static EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &) + { + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); + // FIXME shall we handle nested_eval here? + generic_product_impl::subTo(dst, src.lhs(), src.rhs()); + } +}; + + +// Dense ?= scalar * Product +// TODO we should apply that rule if that's really helpful +// for instance, this is not good for inner products +template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain> +struct Assignment, const CwiseNullaryOp,Plain>, + const Product >, AssignFunc, Dense2Dense> +{ + typedef CwiseBinaryOp, + const CwiseNullaryOp,Plain>, + const Product > SrcXprType; + static EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func) + { + call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func); + } +}; + +//---------------------------------------- +// Catch "Dense ?= xpr + Product<>" expression to save one temporary +// FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct + +template +struct evaluator_assume_aliasing::Scalar>, const OtherXpr, + const Product >, DenseShape > { + static const bool value = true; +}; + +template +struct assignment_from_xpr_op_product +{ + template + static EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/) + { + call_assignment_no_alias(dst, src.lhs(), Func1()); + call_assignment_no_alias(dst, src.rhs(), Func2()); + } +}; + +#define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \ + template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \ + struct Assignment, const OtherXpr, \ + const Product >, internal::ASSIGN_OP, Dense2Dense> \ + : assignment_from_xpr_op_product, internal::ASSIGN_OP, internal::ASSIGN_OP2 > \ + {} + +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_sum_op,add_assign_op); +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op); +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op); + +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_difference_op,sub_assign_op); +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op); +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op); + +//---------------------------------------- + +template +struct generic_product_impl +{ + template + static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); + } + + template + static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum(); + } + + template + static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); } +}; + + +/*********************************************************************** +* Implementation of outer dense * dense vector product +***********************************************************************/ + +// Column major result +template +void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&) +{ + evaluator rhsEval(rhs); + typename nested_eval::type actual_lhs(lhs); + // FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored + // FIXME not very good if rhs is real and lhs complex while alpha is real too + const Index cols = dst.cols(); + for (Index j=0; j +void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&) +{ + evaluator lhsEval(lhs); + typename nested_eval::type actual_rhs(rhs); + // FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored + // FIXME not very good if lhs is real and rhs complex while alpha is real too + const Index rows = dst.rows(); + for (Index i=0; i +struct generic_product_impl +{ + template struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {}; + typedef typename Product::Scalar Scalar; + + // TODO it would be nice to be able to exploit our *_assign_op functors for that purpose + struct set { template void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } }; + struct add { template void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } }; + struct sub { template void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } }; + struct adds { + Scalar m_scale; + explicit adds(const Scalar& s) : m_scale(s) {} + template void operator()(const Dst& dst, const Src& src) const { + dst.const_cast_derived() += m_scale * src; + } + }; + + template + static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major()); + } + + template + static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major()); + } + + template + static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major()); + } + + template + static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major()); + } + +}; + + +// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo +template +struct generic_product_impl_base +{ + typedef typename Product::Scalar Scalar; + + template + static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } + + template + static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { scaleAndAddTo(dst,lhs, rhs, Scalar(1)); } + + template + static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); } + + template + static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } + +}; + +template +struct generic_product_impl + : generic_product_impl_base > +{ + typedef typename nested_eval::type LhsNested; + typedef typename nested_eval::type RhsNested; + typedef typename Product::Scalar Scalar; + enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight }; + typedef typename internal::remove_all::type>::type MatrixType; + + template + static EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + LhsNested actual_lhs(lhs); + RhsNested actual_rhs(rhs); + internal::gemv_dense_selector::HasUsableDirectAccess) + >::run(actual_lhs, actual_rhs, dst, alpha); + } +}; + +template +struct generic_product_impl +{ + typedef typename Product::Scalar Scalar; + + template + static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + // Same as: dst.noalias() = lhs.lazyProduct(rhs); + // but easier on the compiler side + call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op()); + } + + template + static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + // dst.noalias() += lhs.lazyProduct(rhs); + call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op()); + } + + template + static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + // dst.noalias() -= lhs.lazyProduct(rhs); + call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op()); + } + +// template +// static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) +// { dst.noalias() += alpha * lhs.lazyProduct(rhs); } +}; + +// This specialization enforces the use of a coefficient-based evaluation strategy +template +struct generic_product_impl + : generic_product_impl {}; + +// Case 2: Evaluate coeff by coeff +// +// This is mostly taken from CoeffBasedProduct.h +// The main difference is that we add an extra argument to the etor_product_*_impl::run() function +// for the inner dimension of the product, because evaluator object do not know their size. + +template +struct etor_product_coeff_impl; + +template +struct etor_product_packet_impl; + +template +struct product_evaluator, ProductTag, DenseShape, DenseShape> + : evaluator_base > +{ + typedef Product XprType; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit product_evaluator(const XprType& xpr) + : m_lhs(xpr.lhs()), + m_rhs(xpr.rhs()), + m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that! + m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed, + // or perhaps declare them on the fly on the packet method... We have experiment to check what's best. + m_innerDim(xpr.lhs().cols()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits::MulCost); + EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits::AddCost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); +#if 0 + std::cerr << "LhsOuterStrideBytes= " << LhsOuterStrideBytes << "\n"; + std::cerr << "RhsOuterStrideBytes= " << RhsOuterStrideBytes << "\n"; + std::cerr << "LhsAlignment= " << LhsAlignment << "\n"; + std::cerr << "RhsAlignment= " << RhsAlignment << "\n"; + std::cerr << "CanVectorizeLhs= " << CanVectorizeLhs << "\n"; + std::cerr << "CanVectorizeRhs= " << CanVectorizeRhs << "\n"; + std::cerr << "CanVectorizeInner= " << CanVectorizeInner << "\n"; + std::cerr << "EvalToRowMajor= " << EvalToRowMajor << "\n"; + std::cerr << "Alignment= " << Alignment << "\n"; + std::cerr << "Flags= " << Flags << "\n"; +#endif + } + + // Everything below here is taken from CoeffBasedProduct.h + + typedef typename internal::nested_eval::type LhsNested; + typedef typename internal::nested_eval::type RhsNested; + + typedef typename internal::remove_all::type LhsNestedCleaned; + typedef typename internal::remove_all::type RhsNestedCleaned; + + typedef evaluator LhsEtorType; + typedef evaluator RhsEtorType; + + enum { + RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime, + ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime, + InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime), + MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime, + MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime + }; + + typedef typename find_best_packet::type LhsVecPacketType; + typedef typename find_best_packet::type RhsVecPacketType; + + enum { + + LhsCoeffReadCost = LhsEtorType::CoeffReadCost, + RhsCoeffReadCost = RhsEtorType::CoeffReadCost, + CoeffReadCost = InnerSize==0 ? NumTraits::ReadCost + : InnerSize == Dynamic ? HugeCost + : InnerSize * (NumTraits::MulCost + LhsCoeffReadCost + RhsCoeffReadCost) + + (InnerSize - 1) * NumTraits::AddCost, + + Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT, + + LhsFlags = LhsEtorType::Flags, + RhsFlags = RhsEtorType::Flags, + + LhsRowMajor = LhsFlags & RowMajorBit, + RhsRowMajor = RhsFlags & RowMajorBit, + + LhsVecPacketSize = unpacket_traits::size, + RhsVecPacketSize = unpacket_traits::size, + + // Here, we don't care about alignment larger than the usable packet size. + LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))), + RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))), + + SameType = is_same::value, + + CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1), + CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1), + + EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1 + : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0 + : (bool(RhsRowMajor) && !CanVectorizeLhs), + + Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit) + | (EvalToRowMajor ? RowMajorBit : 0) + // TODO enable vectorization for mixed types + | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0) + | (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0), + + LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)), + RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)), + + Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment) + : bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment) + : 0, + + /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside + * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner + * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect + * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI. + */ + CanVectorizeInner = SameType + && LhsRowMajor + && (!RhsRowMajor) + && (LhsFlags & RhsFlags & ActualPacketAccessBit) + && (InnerSize % packet_traits::size == 0) + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const + { + return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); + } + + /* Allow index-based non-packet access. It is impossible though to allow index-based packed access, + * which is why we don't set the LinearAccessBit. + * TODO: this seems possible when the result is a vector + */ + EIGEN_DEVICE_FUNC const CoeffReturnType coeff(Index index) const + { + const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index; + const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0; + return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); + } + + template + const PacketType packet(Index row, Index col) const + { + PacketType res; + typedef etor_product_packet_impl PacketImpl; + PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res); + return res; + } + + template + const PacketType packet(Index index) const + { + const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index; + const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0; + return packet(row,col); + } + +protected: + typename internal::add_const_on_value_type::type m_lhs; + typename internal::add_const_on_value_type::type m_rhs; + + LhsEtorType m_lhsImpl; + RhsEtorType m_rhsImpl; + + // TODO: Get rid of m_innerDim if known at compile time + Index m_innerDim; +}; + +template +struct product_evaluator, LazyCoeffBasedProductMode, DenseShape, DenseShape> + : product_evaluator, CoeffBasedProductMode, DenseShape, DenseShape> +{ + typedef Product XprType; + typedef Product BaseProduct; + typedef product_evaluator Base; + enum { + Flags = Base::Flags | EvalBeforeNestingBit + }; + EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) + : Base(BaseProduct(xpr.lhs(),xpr.rhs())) + {} +}; + +/**************************************** +*** Coeff based product, Packet path *** +****************************************/ + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res) + { + etor_product_packet_impl::run(row, col, lhs, rhs, innerDim, res); + res = pmadd(pset1(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet(Index(UnrollingIndex-1), col), res); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res) + { + etor_product_packet_impl::run(row, col, lhs, rhs, innerDim, res); + res = pmadd(lhs.template packet(row, Index(UnrollingIndex-1)), pset1(rhs.coeff(Index(UnrollingIndex-1), col)), res); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res) + { + res = pmul(pset1(lhs.coeff(row, Index(0))),rhs.template packet(Index(0), col)); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res) + { + res = pmul(lhs.template packet(row, Index(0)), pset1(rhs.coeff(Index(0), col))); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res) + { + res = pset1(typename unpacket_traits::type(0)); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res) + { + res = pset1(typename unpacket_traits::type(0)); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res) + { + res = pset1(typename unpacket_traits::type(0)); + for(Index i = 0; i < innerDim; ++i) + res = pmadd(pset1(lhs.coeff(row, i)), rhs.template packet(i, col), res); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res) + { + res = pset1(typename unpacket_traits::type(0)); + for(Index i = 0; i < innerDim; ++i) + res = pmadd(lhs.template packet(row, i), pset1(rhs.coeff(i, col)), res); + } +}; + + +/*************************************************************************** +* Triangular products +***************************************************************************/ +template +struct triangular_product_impl; + +template +struct generic_product_impl + : generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + + template + static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + triangular_product_impl + ::run(dst, lhs.nestedExpression(), rhs, alpha); + } +}; + +template +struct generic_product_impl +: generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + + template + static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + triangular_product_impl::run(dst, lhs, rhs.nestedExpression(), alpha); + } +}; + + +/*************************************************************************** +* SelfAdjoint products +***************************************************************************/ +template +struct selfadjoint_product_impl; + +template +struct generic_product_impl + : generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + + template + static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + selfadjoint_product_impl::run(dst, lhs.nestedExpression(), rhs, alpha); + } +}; + +template +struct generic_product_impl +: generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + + template + static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + selfadjoint_product_impl::run(dst, lhs, rhs.nestedExpression(), alpha); + } +}; + + +/*************************************************************************** +* Diagonal products +***************************************************************************/ + +template +struct diagonal_product_evaluator_base + : evaluator_base +{ + typedef typename ScalarBinaryOpTraits::ReturnType Scalar; +public: + enum { + CoeffReadCost = NumTraits::MulCost + evaluator::CoeffReadCost + evaluator::CoeffReadCost, + + MatrixFlags = evaluator::Flags, + DiagFlags = evaluator::Flags, + _StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor, + _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft) + ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)), + _SameTypes = is_same::value, + // FIXME currently we need same types, but in the future the next rule should be the one + //_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))), + _Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))), + _LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0, + Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0), + Alignment = evaluator::Alignment + }; + + diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag) + : m_diagImpl(diag), m_matImpl(mat) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits::MulCost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const + { + return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx); + } + +protected: + template + EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const + { + return internal::pmul(m_matImpl.template packet(row, col), + internal::pset1(m_diagImpl.coeff(id))); + } + + template + EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const + { + enum { + InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime, + DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator::Alignment)) // FIXME hardcoded 16!! + }; + return internal::pmul(m_matImpl.template packet(row, col), + m_diagImpl.template packet(id)); + } + + evaluator m_diagImpl; + evaluator m_matImpl; +}; + +// diagonal * dense +template +struct product_evaluator, ProductTag, DiagonalShape, DenseShape> + : diagonal_product_evaluator_base, OnTheLeft> +{ + typedef diagonal_product_evaluator_base, OnTheLeft> Base; + using Base::m_diagImpl; + using Base::m_matImpl; + using Base::coeff; + typedef typename Base::Scalar Scalar; + + typedef Product XprType; + typedef typename XprType::PlainObject PlainObject; + + enum { + StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor + }; + + EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) + : Base(xpr.rhs(), xpr.lhs().diagonal()) + { + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const + { + return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col); + } + +#ifndef __CUDACC__ + template + EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const + { + // FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case. + // See also similar calls below. + return this->template packet_impl(row,col, row, + typename internal::conditional::type()); + } + + template + EIGEN_STRONG_INLINE PacketType packet(Index idx) const + { + return packet(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); + } +#endif +}; + +// dense * diagonal +template +struct product_evaluator, ProductTag, DenseShape, DiagonalShape> + : diagonal_product_evaluator_base, OnTheRight> +{ + typedef diagonal_product_evaluator_base, OnTheRight> Base; + using Base::m_diagImpl; + using Base::m_matImpl; + using Base::coeff; + typedef typename Base::Scalar Scalar; + + typedef Product XprType; + typedef typename XprType::PlainObject PlainObject; + + enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor }; + + EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) + : Base(xpr.lhs(), xpr.rhs().diagonal()) + { + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const + { + return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col); + } + +#ifndef __CUDACC__ + template + EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const + { + return this->template packet_impl(row,col, col, + typename internal::conditional::type()); + } + + template + EIGEN_STRONG_INLINE PacketType packet(Index idx) const + { + return packet(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); + } +#endif +}; + +/*************************************************************************** +* Products with permutation matrices +***************************************************************************/ + +/** \internal + * \class permutation_matrix_product + * Internal helper class implementing the product between a permutation matrix and a matrix. + * This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h + */ +template +struct permutation_matrix_product; + +template +struct permutation_matrix_product +{ + typedef typename nested_eval::type MatrixType; + typedef typename remove_all::type MatrixTypeCleaned; + + template + static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) + { + MatrixType mat(xpr); + const Index n = Side==OnTheLeft ? mat.rows() : mat.cols(); + // FIXME we need an is_same for expression that is not sensitive to constness. For instance + // is_same_xpr, Block >::value should be true. + //if(is_same::value && extract_data(dst) == extract_data(mat)) + if(is_same_dense(dst, mat)) + { + // apply the permutation inplace + Matrix mask(perm.size()); + mask.fill(false); + Index r = 0; + while(r < perm.size()) + { + // search for the next seed + while(r=perm.size()) + break; + // we got one, let's follow it until we are back to the seed + Index k0 = r++; + Index kPrev = k0; + mask.coeffRef(k0) = true; + for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k)) + { + Block(dst, k) + .swap(Block + (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); + + mask.coeffRef(k) = true; + kPrev = k; + } + } + } + else + { + for(Index i = 0; i < n; ++i) + { + Block + (dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i) + + = + + Block + (mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i); + } + } + } +}; + +template +struct generic_product_impl +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) + { + permutation_matrix_product::run(dst, lhs, rhs); + } +}; + +template +struct generic_product_impl +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) + { + permutation_matrix_product::run(dst, rhs, lhs); + } +}; + +template +struct generic_product_impl, Rhs, PermutationShape, MatrixShape, ProductTag> +{ + template + static void evalTo(Dest& dst, const Inverse& lhs, const Rhs& rhs) + { + permutation_matrix_product::run(dst, lhs.nestedExpression(), rhs); + } +}; + +template +struct generic_product_impl, MatrixShape, PermutationShape, ProductTag> +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Inverse& rhs) + { + permutation_matrix_product::run(dst, rhs.nestedExpression(), lhs); + } +}; + + +/*************************************************************************** +* Products with transpositions matrices +***************************************************************************/ + +// FIXME could we unify Transpositions and Permutation into a single "shape"?? + +/** \internal + * \class transposition_matrix_product + * Internal helper class implementing the product between a permutation matrix and a matrix. + */ +template +struct transposition_matrix_product +{ + typedef typename nested_eval::type MatrixType; + typedef typename remove_all::type MatrixTypeCleaned; + + template + static inline void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr) + { + MatrixType mat(xpr); + typedef typename TranspositionType::StorageIndex StorageIndex; + const Index size = tr.size(); + StorageIndex j = 0; + + if(!is_same_dense(dst,mat)) + dst = mat; + + for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k +struct generic_product_impl +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) + { + transposition_matrix_product::run(dst, lhs, rhs); + } +}; + +template +struct generic_product_impl +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) + { + transposition_matrix_product::run(dst, rhs, lhs); + } +}; + + +template +struct generic_product_impl, Rhs, TranspositionsShape, MatrixShape, ProductTag> +{ + template + static void evalTo(Dest& dst, const Transpose& lhs, const Rhs& rhs) + { + transposition_matrix_product::run(dst, lhs.nestedExpression(), rhs); + } +}; + +template +struct generic_product_impl, MatrixShape, TranspositionsShape, ProductTag> +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Transpose& rhs) + { + transposition_matrix_product::run(dst, rhs.nestedExpression(), lhs); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PRODUCT_EVALUATORS_H diff --git a/eigenlib/Eigen/src/Core/Random.h b/eigenlib/Eigen/src/Core/Random.h index 480fea408..6faf789c7 100644 --- a/eigenlib/Eigen/src/Core/Random.h +++ b/eigenlib/Eigen/src/Core/Random.h @@ -16,8 +16,7 @@ namespace internal { template struct scalar_random_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_random_op) - template - inline const Scalar operator() (Index, Index = 0) const { return random(); } + inline const Scalar operator() () const { return random(); } }; template @@ -28,12 +27,18 @@ struct functor_traits > /** \returns a random matrix expression * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * * The parameters \a rows and \a cols are the number of rows and of columns of * the returned matrix. Must be compatible with this MatrixBase type. * + * \not_reentrant + * * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, * it is redundant to pass \a rows and \a cols as arguments, so Random() should be used * instead. + * * * Example: \include MatrixBase_random_int_int.cpp * Output: \verbinclude MatrixBase_random_int_int.out @@ -41,22 +46,28 @@ struct functor_traits > * This expression has the "evaluate before nesting" flag so that it will be evaluated into * a temporary matrix whenever it is nested in a larger expression. This prevents unexpected * behavior with expressions involving random matrices. + * + * See DenseBase::NullaryExpr(Index, const CustomNullaryOp&) for an example using C++11 random generators. * - * \sa MatrixBase::setRandom(), MatrixBase::Random(Index), MatrixBase::Random() + * \sa DenseBase::setRandom(), DenseBase::Random(Index), DenseBase::Random() */ template -inline const CwiseNullaryOp::Scalar>, Derived> +inline const typename DenseBase::RandomReturnType DenseBase::Random(Index rows, Index cols) { return NullaryExpr(rows, cols, internal::scalar_random_op()); } /** \returns a random vector expression + * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. * * The parameter \a size is the size of the returned vector. * Must be compatible with this MatrixBase type. * * \only_for_vectors + * \not_reentrant * * This variant is meant to be used for dynamic-size vector types. For fixed-size types, * it is redundant to pass \a size as argument, so Random() should be used @@ -69,10 +80,10 @@ DenseBase::Random(Index rows, Index cols) * a temporary vector whenever it is nested in a larger expression. This prevents unexpected * behavior with expressions involving random matrices. * - * \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random() + * \sa DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random() */ template -inline const CwiseNullaryOp::Scalar>, Derived> +inline const typename DenseBase::RandomReturnType DenseBase::Random(Index size) { return NullaryExpr(size, internal::scalar_random_op()); @@ -80,6 +91,9 @@ DenseBase::Random(Index size) /** \returns a fixed-size random matrix or vector expression * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you * need to use the variants taking size arguments. * @@ -89,11 +103,13 @@ DenseBase::Random(Index size) * This expression has the "evaluate before nesting" flag so that it will be evaluated into * a temporary matrix whenever it is nested in a larger expression. This prevents unexpected * behavior with expressions involving random matrices. + * + * \not_reentrant * - * \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random(Index) + * \sa DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random(Index) */ template -inline const CwiseNullaryOp::Scalar>, Derived> +inline const typename DenseBase::RandomReturnType DenseBase::Random() { return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_random_op()); @@ -101,6 +117,11 @@ DenseBase::Random() /** Sets all coefficients in this expression to random values. * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * + * \not_reentrant + * * Example: \include MatrixBase_setRandom.cpp * Output: \verbinclude MatrixBase_setRandom.out * @@ -114,12 +135,16 @@ inline Derived& DenseBase::setRandom() /** Resizes to the given \a newSize, and sets all coefficients in this expression to random values. * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * * \only_for_vectors + * \not_reentrant * * Example: \include Matrix_setRandom_int.cpp * Output: \verbinclude Matrix_setRandom_int.out * - * \sa MatrixBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, MatrixBase::Random() + * \sa DenseBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, DenseBase::Random() */ template EIGEN_STRONG_INLINE Derived& @@ -131,19 +156,24 @@ PlainObjectBase::setRandom(Index newSize) /** Resizes to the given size, and sets all coefficients in this expression to random values. * - * \param nbRows the new number of rows - * \param nbCols the new number of columns + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * + * \not_reentrant + * + * \param rows the new number of rows + * \param cols the new number of columns * * Example: \include Matrix_setRandom_int_int.cpp * Output: \verbinclude Matrix_setRandom_int_int.out * - * \sa MatrixBase::setRandom(), setRandom(Index), class CwiseNullaryOp, MatrixBase::Random() + * \sa DenseBase::setRandom(), setRandom(Index), class CwiseNullaryOp, DenseBase::Random() */ template EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setRandom(Index nbRows, Index nbCols) +PlainObjectBase::setRandom(Index rows, Index cols) { - resize(nbRows, nbCols); + resize(rows, cols); return setRandom(); } diff --git a/eigenlib/Eigen/src/Core/Redux.h b/eigenlib/Eigen/src/Core/Redux.h index 50548fa9a..b6e8f8887 100644 --- a/eigenlib/Eigen/src/Core/Redux.h +++ b/eigenlib/Eigen/src/Core/Redux.h @@ -27,8 +27,9 @@ template struct redux_traits { public: + typedef typename find_best_packet::type PacketType; enum { - PacketSize = packet_traits::size, + PacketSize = unpacket_traits::size, InnerMaxSize = int(Derived::IsRowMajor) ? Derived::MaxColsAtCompileTime : Derived::MaxRowsAtCompileTime @@ -37,8 +38,8 @@ struct redux_traits enum { MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit) && (functor_traits::PacketAccess), - MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit), - MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize + MayLinearVectorize = bool(MightVectorize) && (int(Derived::Flags)&LinearAccessBit), + MaySliceVectorize = bool(MightVectorize) && int(InnerMaxSize)>=3*PacketSize }; public: @@ -50,21 +51,34 @@ struct redux_traits public: enum { - Cost = ( Derived::SizeAtCompileTime == Dynamic - || Derived::CoeffReadCost == Dynamic - || (Derived::SizeAtCompileTime!=1 && functor_traits::Cost == Dynamic) - ) ? Dynamic - : Derived::SizeAtCompileTime * Derived::CoeffReadCost - + (Derived::SizeAtCompileTime-1) * functor_traits::Cost, + Cost = Derived::SizeAtCompileTime == Dynamic ? HugeCost + : Derived::SizeAtCompileTime * Derived::CoeffReadCost + (Derived::SizeAtCompileTime-1) * functor_traits::Cost, UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) }; public: enum { - Unrolling = Cost != Dynamic && Cost <= UnrollingLimit - ? CompleteUnrolling - : NoUnrolling + Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling }; + +#ifdef EIGEN_DEBUG_ASSIGN + static void debug() + { + std::cerr << "Xpr: " << typeid(typename Derived::XprType).name() << std::endl; + std::cerr.setf(std::ios::hex, std::ios::basefield); + EIGEN_DEBUG_VAR(Derived::Flags) + std::cerr.unsetf(std::ios::hex); + EIGEN_DEBUG_VAR(InnerMaxSize) + EIGEN_DEBUG_VAR(PacketSize) + EIGEN_DEBUG_VAR(MightVectorize) + EIGEN_DEBUG_VAR(MayLinearVectorize) + EIGEN_DEBUG_VAR(MaySliceVectorize) + EIGEN_DEBUG_VAR(Traversal) + EIGEN_DEBUG_VAR(UnrollingLimit) + EIGEN_DEBUG_VAR(Unrolling) + std::cerr << std::endl; + } +#endif }; /*************************************************************************** @@ -82,6 +96,7 @@ struct redux_novec_unroller typedef typename Derived::Scalar Scalar; + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) { return func(redux_novec_unroller::run(mat,func), @@ -99,6 +114,7 @@ struct redux_novec_unroller typedef typename Derived::Scalar Scalar; + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&) { return mat.coeffByOuterInner(outer, inner); @@ -112,6 +128,7 @@ template struct redux_novec_unroller { typedef typename Derived::Scalar Scalar; + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); } }; @@ -121,12 +138,12 @@ template struct redux_vec_unroller { enum { - PacketSize = packet_traits::size, + PacketSize = redux_traits::PacketSize, HalfLength = Length/2 }; typedef typename Derived::Scalar Scalar; - typedef typename packet_traits::type PacketScalar; + typedef typename redux_traits::PacketType PacketScalar; static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func) { @@ -140,18 +157,18 @@ template struct redux_vec_unroller { enum { - index = Start * packet_traits::size, + index = Start * redux_traits::PacketSize, outer = index / int(Derived::InnerSizeAtCompileTime), inner = index % int(Derived::InnerSizeAtCompileTime), - alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned + alignment = Derived::Alignment }; typedef typename Derived::Scalar Scalar; - typedef typename packet_traits::type PacketScalar; + typedef typename redux_traits::PacketType PacketScalar; static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&) { - return mat.template packetByOuterInner(outer, inner); + return mat.template packetByOuterInner(outer, inner); } }; @@ -169,8 +186,8 @@ template struct redux_impl { typedef typename Derived::Scalar Scalar; - typedef typename Derived::Index Index; - static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func) + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) { eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); Scalar res; @@ -193,19 +210,19 @@ template struct redux_impl { typedef typename Derived::Scalar Scalar; - typedef typename packet_traits::type PacketScalar; - typedef typename Derived::Index Index; + typedef typename redux_traits::PacketType PacketScalar; - static Scalar run(const Derived& mat, const Func& func) + static Scalar run(const Derived &mat, const Func& func) { const Index size = mat.size(); - eigen_assert(size && "you are using an empty matrix"); - const Index packetSize = packet_traits::size; - const Index alignedStart = internal::first_aligned(mat); + + const Index packetSize = redux_traits::PacketSize; + const int packetAlignment = unpacket_traits::alignment; enum { - alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit) - ? Aligned : Unaligned + alignment0 = (bool(Derived::Flags & DirectAccessBit) && bool(packet_traits::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned), + alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Derived::Alignment) }; + const Index alignedStart = internal::first_default_aligned(mat.nestedExpression()); const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize); const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize); const Index alignedEnd2 = alignedStart + alignedSize2; @@ -213,19 +230,19 @@ struct redux_impl Scalar res; if(alignedSize) { - PacketScalar packet_res0 = mat.template packet(alignedStart); + PacketScalar packet_res0 = mat.template packet(alignedStart); if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop { - PacketScalar packet_res1 = mat.template packet(alignedStart+packetSize); + PacketScalar packet_res1 = mat.template packet(alignedStart+packetSize); for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize) { - packet_res0 = func.packetOp(packet_res0, mat.template packet(index)); - packet_res1 = func.packetOp(packet_res1, mat.template packet(index+packetSize)); + packet_res0 = func.packetOp(packet_res0, mat.template packet(index)); + packet_res1 = func.packetOp(packet_res1, mat.template packet(index+packetSize)); } packet_res0 = func.packetOp(packet_res0,packet_res1); if(alignedEnd>alignedEnd2) - packet_res0 = func.packetOp(packet_res0, mat.template packet(alignedEnd2)); + packet_res0 = func.packetOp(packet_res0, mat.template packet(alignedEnd2)); } res = func.predux(packet_res0); @@ -247,29 +264,29 @@ struct redux_impl } }; -template -struct redux_impl +// NOTE: for SliceVectorizedTraversal we simply bypass unrolling +template +struct redux_impl { typedef typename Derived::Scalar Scalar; - typedef typename packet_traits::type PacketScalar; - typedef typename Derived::Index Index; + typedef typename redux_traits::PacketType PacketType; - static Scalar run(const Derived& mat, const Func& func) + EIGEN_DEVICE_FUNC static Scalar run(const Derived &mat, const Func& func) { eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); const Index innerSize = mat.innerSize(); const Index outerSize = mat.outerSize(); enum { - packetSize = packet_traits::size + packetSize = redux_traits::PacketSize }; const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; Scalar res; if(packetedInnerSize) { - PacketScalar packet_res = mat.template packet(0,0); + PacketType packet_res = mat.template packet(0,0); for(Index j=0; j(j,i)); + packet_res = func.packetOp(packet_res, mat.template packetByOuterInner(j,i)); res = func.predux(packet_res); for(Index j=0; j struct redux_impl { typedef typename Derived::Scalar Scalar; - typedef typename packet_traits::type PacketScalar; + + typedef typename redux_traits::PacketType PacketScalar; enum { - PacketSize = packet_traits::size, + PacketSize = redux_traits::PacketSize, Size = Derived::SizeAtCompileTime, VectorizedSize = (Size / PacketSize) * PacketSize }; - static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func) + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) { eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); - Scalar res = func.predux(redux_vec_unroller::run(mat,func)); - if (VectorizedSize != Size) - res = func(res,redux_novec_unroller::run(mat,func)); - return res; + if (VectorizedSize > 0) { + Scalar res = func.predux(redux_vec_unroller::run(mat,func)); + if (VectorizedSize != Size) + res = func(res,redux_novec_unroller::run(mat,func)); + return res; + } + else { + return redux_novec_unroller::run(mat,func); + } } }; +// evaluator adaptor +template +class redux_evaluator +{ +public: + typedef _XprType XprType; + EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {} + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename XprType::PacketScalar PacketScalar; + typedef typename XprType::PacketReturnType PacketReturnType; + + enum { + MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = XprType::MaxColsAtCompileTime, + // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator + Flags = evaluator::Flags & ~DirectAccessBit, + IsRowMajor = XprType::IsRowMajor, + SizeAtCompileTime = XprType::SizeAtCompileTime, + InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime, + CoeffReadCost = evaluator::CoeffReadCost, + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); } + EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); } + EIGEN_DEVICE_FUNC Index size() const { return m_xpr.size(); } + EIGEN_DEVICE_FUNC Index innerSize() const { return m_xpr.innerSize(); } + EIGEN_DEVICE_FUNC Index outerSize() const { return m_xpr.outerSize(); } + + EIGEN_DEVICE_FUNC + CoeffReturnType coeff(Index row, Index col) const + { return m_evaluator.coeff(row, col); } + + EIGEN_DEVICE_FUNC + CoeffReturnType coeff(Index index) const + { return m_evaluator.coeff(index); } + + template + PacketType packet(Index row, Index col) const + { return m_evaluator.template packet(row, col); } + + template + PacketType packet(Index index) const + { return m_evaluator.template packet(index); } + + EIGEN_DEVICE_FUNC + CoeffReturnType coeffByOuterInner(Index outer, Index inner) const + { return m_evaluator.coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } + + template + PacketType packetByOuterInner(Index outer, Index inner) const + { return m_evaluator.template packet(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } + + const XprType & nestedExpression() const { return m_xpr; } + +protected: + internal::evaluator m_evaluator; + const XprType &m_xpr; +}; + } // end namespace internal /*************************************************************************** @@ -316,18 +401,21 @@ struct redux_impl /** \returns the result of a full redux operation on the whole matrix or vector using \a func * * The template parameter \a BinaryOp is the type of the functor \a func which must be - * an associative operator. Both current STL and TR1 functor styles are handled. + * an associative operator. Both current C++98 and C++11 functor styles are handled. * * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() */ template template -EIGEN_STRONG_INLINE typename internal::result_of::Scalar)>::type +typename internal::traits::Scalar DenseBase::redux(const Func& func) const { - typedef typename internal::remove_all::type ThisNested; - return internal::redux_impl - ::run(derived(), func); + eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); + + typedef typename internal::redux_evaluator ThisEvaluator; + ThisEvaluator thisEval(derived()); + + return internal::redux_impl::run(thisEval, func); } /** \returns the minimum of all coefficients of \c *this. @@ -337,7 +425,7 @@ template EIGEN_STRONG_INLINE typename internal::traits::Scalar DenseBase::minCoeff() const { - return this->redux(Eigen::internal::scalar_min_op()); + return derived().redux(Eigen::internal::scalar_min_op()); } /** \returns the maximum of all coefficients of \c *this. @@ -347,10 +435,12 @@ template EIGEN_STRONG_INLINE typename internal::traits::Scalar DenseBase::maxCoeff() const { - return this->redux(Eigen::internal::scalar_max_op()); + return derived().redux(Eigen::internal::scalar_max_op()); } -/** \returns the sum of all coefficients of *this +/** \returns the sum of all coefficients of \c *this + * + * If \c *this is empty, then the value 0 is returned. * * \sa trace(), prod(), mean() */ @@ -360,7 +450,7 @@ DenseBase::sum() const { if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) return Scalar(0); - return this->redux(Eigen::internal::scalar_sum_op()); + return derived().redux(Eigen::internal::scalar_sum_op()); } /** \returns the mean of all coefficients of *this @@ -371,7 +461,14 @@ template EIGEN_STRONG_INLINE typename internal::traits::Scalar DenseBase::mean() const { - return Scalar(this->redux(Eigen::internal::scalar_sum_op())) / Scalar(this->size()); +#ifdef __INTEL_COMPILER + #pragma warning push + #pragma warning ( disable : 2259 ) +#endif + return Scalar(derived().redux(Eigen::internal::scalar_sum_op())) / Scalar(this->size()); +#ifdef __INTEL_COMPILER + #pragma warning pop +#endif } /** \returns the product of all coefficients of *this @@ -387,7 +484,7 @@ DenseBase::prod() const { if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) return Scalar(1); - return this->redux(Eigen::internal::scalar_product_op()); + return derived().redux(Eigen::internal::scalar_product_op()); } /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. diff --git a/eigenlib/Eigen/src/Core/Ref.h b/eigenlib/Eigen/src/Core/Ref.h index f53674cff..bdf24f52a 100644 --- a/eigenlib/Eigen/src/Core/Ref.h +++ b/eigenlib/Eigen/src/Core/Ref.h @@ -12,79 +12,6 @@ namespace Eigen { -template class RefBase; -template,OuterStride<> >::type > class Ref; - -/** \class Ref - * \ingroup Core_Module - * - * \brief A matrix or vector expression mapping an existing expressions - * - * \tparam PlainObjectType the equivalent matrix type of the mapped data - * \tparam Options specifies whether the pointer is \c #Aligned, or \c #Unaligned. - * The default is \c #Unaligned. - * \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1), - * but accept a variable outer stride (leading dimension). - * This can be overridden by specifying strides. - * The type passed here must be a specialization of the Stride template, see examples below. - * - * This class permits to write non template functions taking Eigen's object as parameters while limiting the number of copies. - * A Ref<> object can represent either a const expression or a l-value: - * \code - * // in-out argument: - * void foo1(Ref x); - * - * // read-only const argument: - * void foo2(const Ref& x); - * \endcode - * - * In the in-out case, the input argument must satisfies the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered. - * By default, a Ref can reference any dense vector expression of float having a contiguous memory layout. - * Likewise, a Ref can reference any column major dense matrix expression of float whose column's elements are contiguously stored with - * the possibility to have a constant space inbetween each column, i.e.: the inner stride mmust be equal to 1, but the outer-stride (or leading dimension), - * can be greater than the number of rows. - * - * In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function. - * Here are some examples: - * \code - * MatrixXf A; - * VectorXf a; - * foo1(a.head()); // OK - * foo1(A.col()); // OK - * foo1(A.row()); // compilation error because here innerstride!=1 - * foo2(A.row()); // The row is copied into a contiguous temporary - * foo2(2*a); // The expression is evaluated into a temporary - * foo2(A.col().segment(2,4)); // No temporary - * \endcode - * - * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameter. - * Here is an example accepting an innerstride!=1: - * \code - * // in-out argument: - * void foo3(Ref > x); - * foo3(A.row()); // OK - * \endcode - * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involved more - * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overloads internally calling a - * template function, e.g.: - * \code - * // in the .h: - * void foo(const Ref& A); - * void foo(const Ref >& A); - * - * // in the .cpp: - * template void foo_impl(const TypeOfA& A) { - * ... // crazy code goes here - * } - * void foo(const Ref& A) { foo_impl(A); } - * void foo(const Ref >& A) { foo_impl(A); } - * \endcode - * - * - * \sa PlainObjectBase::Map(), \ref TopicStorageOrders - */ - namespace internal { template @@ -95,7 +22,8 @@ struct traits > typedef _StrideType StrideType; enum { Options = _Options, - Flags = traits >::Flags | NestByRefBit + Flags = traits >::Flags | NestByRefBit, + Alignment = traits >::Alignment }; template struct match { @@ -107,7 +35,13 @@ struct traits > || (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1), OuterStrideMatch = Derived::IsVectorAtCompileTime || int(StrideType::OuterStrideAtCompileTime)==int(Dynamic) || int(StrideType::OuterStrideAtCompileTime)==int(Derived::OuterStrideAtCompileTime), - AlignmentMatch = (_Options!=Aligned) || ((PlainObjectType::Flags&AlignedBit)==0) || ((traits::Flags&AlignedBit)==AlignedBit), + // NOTE, this indirection of evaluator::Alignment is needed + // to workaround a very strange bug in MSVC related to the instantiation + // of has_*ary_operator in evaluator. + // This line is surprisingly very sensitive. For instance, simply adding parenthesis + // as "DerivedAlignment = (int(evaluator::Alignment))," will make MSVC fail... + DerivedAlignment = int(evaluator::Alignment), + AlignmentMatch = (int(traits::Alignment)==int(Unaligned)) || (DerivedAlignment >= int(Alignment)), // FIXME the first condition is not very clear, it should be replaced by the required alignment ScalarTypeMatch = internal::is_same::value, MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch && ScalarTypeMatch }; @@ -132,12 +66,12 @@ template class RefBase typedef MapBase Base; EIGEN_DENSE_PUBLIC_INTERFACE(RefBase) - inline Index innerStride() const + EIGEN_DEVICE_FUNC inline Index innerStride() const { return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; } - inline Index outerStride() const + EIGEN_DEVICE_FUNC inline Index outerStride() const { return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() : IsVectorAtCompileTime ? this->size() @@ -145,7 +79,7 @@ template class RefBase : this->rows(); } - RefBase() + EIGEN_DEVICE_FUNC RefBase() : Base(0,RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime), // Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values: m_stride(StrideType::OuterStrideAtCompileTime==Dynamic?0:StrideType::OuterStrideAtCompileTime, @@ -159,7 +93,7 @@ template class RefBase typedef Stride StrideBase; template - void construct(Expression& expr) + EIGEN_DEVICE_FUNC void construct(Expression& expr) { if(PlainObjectType::RowsAtCompileTime==1) { @@ -184,15 +118,83 @@ template class RefBase StrideBase m_stride; }; - +/** \class Ref + * \ingroup Core_Module + * + * \brief A matrix or vector expression mapping an existing expression + * + * \tparam PlainObjectType the equivalent matrix type of the mapped data + * \tparam Options specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned. + * The default is \c #Unaligned. + * \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1), + * but accepts a variable outer stride (leading dimension). + * This can be overridden by specifying strides. + * The type passed here must be a specialization of the Stride template, see examples below. + * + * This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the number of copies. + * A Ref<> object can represent either a const expression or a l-value: + * \code + * // in-out argument: + * void foo1(Ref x); + * + * // read-only const argument: + * void foo2(const Ref& x); + * \endcode + * + * In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered. + * By default, a Ref can reference any dense vector expression of float having a contiguous memory layout. + * Likewise, a Ref can reference any column-major dense matrix expression of float whose column's elements are contiguously stored with + * the possibility to have a constant space in-between each column, i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension) + * can be greater than the number of rows. + * + * In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function. + * Here are some examples: + * \code + * MatrixXf A; + * VectorXf a; + * foo1(a.head()); // OK + * foo1(A.col()); // OK + * foo1(A.row()); // Compilation error because here innerstride!=1 + * foo2(A.row()); // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object + * foo2(A.row().transpose()); // The row is copied into a contiguous temporary + * foo2(2*a); // The expression is evaluated into a temporary + * foo2(A.col().segment(2,4)); // No temporary + * \endcode + * + * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters. + * Here is an example accepting an innerstride!=1: + * \code + * // in-out argument: + * void foo3(Ref > x); + * foo3(A.row()); // OK + * \endcode + * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involve more + * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overload internally calling a + * template function, e.g.: + * \code + * // in the .h: + * void foo(const Ref& A); + * void foo(const Ref >& A); + * + * // in the .cpp: + * template void foo_impl(const TypeOfA& A) { + * ... // crazy code goes here + * } + * void foo(const Ref& A) { foo_impl(A); } + * void foo(const Ref >& A) { foo_impl(A); } + * \endcode + * + * + * \sa PlainObjectBase::Map(), \ref TopicStorageOrders + */ template class Ref : public RefBase > { private: typedef internal::traits Traits; template - inline Ref(const PlainObjectBase& expr, - typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0); + EIGEN_DEVICE_FUNC inline Ref(const PlainObjectBase& expr, + typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0); public: typedef RefBase Base; @@ -201,23 +203,24 @@ template class Ref #ifndef EIGEN_PARSED_BY_DOXYGEN template - inline Ref(PlainObjectBase& expr, - typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0) + EIGEN_DEVICE_FUNC inline Ref(PlainObjectBase& expr, + typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0) { - EIGEN_STATIC_ASSERT(static_cast(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); + EIGEN_STATIC_ASSERT(bool(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); Base::construct(expr.derived()); } template - inline Ref(const DenseBase& expr, - typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0) + EIGEN_DEVICE_FUNC inline Ref(const DenseBase& expr, + typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0) #else + /** Implicit constructor from any dense expression */ template inline Ref(DenseBase& expr) #endif { - EIGEN_STATIC_ASSERT(static_cast(internal::is_lvalue::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); - EIGEN_STATIC_ASSERT(static_cast(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); - enum { THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY = Derived::ThisConstantIsPrivateInPlainObjectBase}; + EIGEN_STATIC_ASSERT(bool(internal::is_lvalue::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); + EIGEN_STATIC_ASSERT(bool(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); + EIGEN_STATIC_ASSERT(!Derived::IsPlainObjectBase,THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); Base::construct(expr.const_cast_derived()); } @@ -236,8 +239,8 @@ template class Ref< EIGEN_DENSE_PUBLIC_INTERFACE(Ref) template - inline Ref(const DenseBase& expr, - typename internal::enable_if::ScalarTypeMatch),Derived>::type* = 0) + EIGEN_DEVICE_FUNC inline Ref(const DenseBase& expr, + typename internal::enable_if::ScalarTypeMatch),Derived>::type* = 0) { // std::cout << match_helper::HasDirectAccess << "," << match_helper::OuterStrideMatch << "," << match_helper::InnerStrideMatch << "\n"; // std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n"; @@ -245,18 +248,27 @@ template class Ref< construct(expr.derived(), typename Traits::template match::type()); } + EIGEN_DEVICE_FUNC inline Ref(const Ref& other) : Base(other) { + // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy + } + + template + EIGEN_DEVICE_FUNC inline Ref(const RefBase& other) { + construct(other.derived(), typename Traits::template match::type()); + } + protected: template - void construct(const Expression& expr,internal::true_type) + EIGEN_DEVICE_FUNC void construct(const Expression& expr,internal::true_type) { Base::construct(expr); } template - void construct(const Expression& expr, internal::false_type) + EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::false_type) { - m_object.lazyAssign(expr); + internal::call_assignment_no_alias(m_object,expr,internal::assign_op()); Base::construct(m_object); } diff --git a/eigenlib/Eigen/src/Core/Replicate.h b/eigenlib/Eigen/src/Core/Replicate.h index ac4537c14..9960ef884 100644 --- a/eigenlib/Eigen/src/Core/Replicate.h +++ b/eigenlib/Eigen/src/Core/Replicate.h @@ -12,21 +12,6 @@ namespace Eigen { -/** - * \class Replicate - * \ingroup Core_Module - * - * \brief Expression of the multiple replication of a matrix or vector - * - * \param MatrixType the type of the object we are replicating - * - * This class represents an expression of the multiple replication of a matrix or vector. - * It is the return type of DenseBase::replicate() and most of the time - * this is the only way it is used. - * - * \sa DenseBase::replicate() - */ - namespace internal { template struct traits > @@ -35,10 +20,7 @@ struct traits > typedef typename MatrixType::Scalar Scalar; typedef typename traits::StorageKind StorageKind; typedef typename traits::XprKind XprKind; - enum { - Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor - }; - typedef typename nested::type MatrixTypeNested; + typedef typename ref_selector::type MatrixTypeNested; typedef typename remove_reference::type _MatrixTypeNested; enum { RowsAtCompileTime = RowFactor==Dynamic || int(MatrixType::RowsAtCompileTime)==Dynamic @@ -53,12 +35,29 @@ struct traits > IsRowMajor = MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1 ? 1 : MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1 ? 0 : (MatrixType::Flags & RowMajorBit) ? 1 : 0, - Flags = (_MatrixTypeNested::Flags & HereditaryBits & ~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0), - CoeffReadCost = _MatrixTypeNested::CoeffReadCost + + // FIXME enable DirectAccess with negative strides? + Flags = IsRowMajor ? RowMajorBit : 0 }; }; } +/** + * \class Replicate + * \ingroup Core_Module + * + * \brief Expression of the multiple replication of a matrix or vector + * + * \tparam MatrixType the type of the object we are replicating + * \tparam RowFactor number of repetitions at compile time along the vertical direction, can be Dynamic. + * \tparam ColFactor number of repetitions at compile time along the horizontal direction, can be Dynamic. + * + * This class represents an expression of the multiple replication of a matrix or vector. + * It is the return type of DenseBase::replicate() and most of the time + * this is the only way it is used. + * + * \sa DenseBase::replicate() + */ template class Replicate : public internal::dense_xpr_base< Replicate >::type { @@ -68,10 +67,12 @@ template class Replicate typedef typename internal::dense_xpr_base::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(Replicate) + typedef typename internal::remove_all::type NestedExpression; template - inline explicit Replicate(const OriginalMatrixType& a_matrix) - : m_matrix(a_matrix), m_rowFactor(RowFactor), m_colFactor(ColFactor) + EIGEN_DEVICE_FUNC + inline explicit Replicate(const OriginalMatrixType& matrix) + : m_matrix(matrix), m_rowFactor(RowFactor), m_colFactor(ColFactor) { EIGEN_STATIC_ASSERT((internal::is_same::type,OriginalMatrixType>::value), THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE) @@ -79,41 +80,20 @@ template class Replicate } template - inline Replicate(const OriginalMatrixType& a_matrix, Index rowFactor, Index colFactor) - : m_matrix(a_matrix), m_rowFactor(rowFactor), m_colFactor(colFactor) + EIGEN_DEVICE_FUNC + inline Replicate(const OriginalMatrixType& matrix, Index rowFactor, Index colFactor) + : m_matrix(matrix), m_rowFactor(rowFactor), m_colFactor(colFactor) { EIGEN_STATIC_ASSERT((internal::is_same::type,OriginalMatrixType>::value), THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE) } + EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows() * m_rowFactor.value(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols() * m_colFactor.value(); } - inline Scalar coeff(Index rowId, Index colId) const - { - // try to avoid using modulo; this is a pure optimization strategy - const Index actual_row = internal::traits::RowsAtCompileTime==1 ? 0 - : RowFactor==1 ? rowId - : rowId%m_matrix.rows(); - const Index actual_col = internal::traits::ColsAtCompileTime==1 ? 0 - : ColFactor==1 ? colId - : colId%m_matrix.cols(); - - return m_matrix.coeff(actual_row, actual_col); - } - template - inline PacketScalar packet(Index rowId, Index colId) const - { - const Index actual_row = internal::traits::RowsAtCompileTime==1 ? 0 - : RowFactor==1 ? rowId - : rowId%m_matrix.rows(); - const Index actual_col = internal::traits::ColsAtCompileTime==1 ? 0 - : ColFactor==1 ? colId - : colId%m_matrix.cols(); - - return m_matrix.template packet(actual_row, actual_col); - } - + EIGEN_DEVICE_FUNC const _MatrixTypeNested& nestedExpression() const { return m_matrix; @@ -141,21 +121,6 @@ DenseBase::replicate() const return Replicate(derived()); } -/** - * \return an expression of the replication of \c *this - * - * Example: \include MatrixBase_replicate_int_int.cpp - * Output: \verbinclude MatrixBase_replicate_int_int.out - * - * \sa VectorwiseOp::replicate(), DenseBase::replicate(), class Replicate - */ -template -const typename DenseBase::ReplicateReturnType -DenseBase::replicate(Index rowFactor,Index colFactor) const -{ - return Replicate(derived(),rowFactor,colFactor); -} - /** * \return an expression of the replication of each column (or row) of \c *this * diff --git a/eigenlib/Eigen/src/Core/ReturnByValue.h b/eigenlib/Eigen/src/Core/ReturnByValue.h index f635598dc..c44b7673b 100644 --- a/eigenlib/Eigen/src/Core/ReturnByValue.h +++ b/eigenlib/Eigen/src/Core/ReturnByValue.h @@ -13,11 +13,6 @@ namespace Eigen { -/** \class ReturnByValue - * \ingroup Core_Module - * - */ - namespace internal { template @@ -38,17 +33,22 @@ struct traits > * So internal::nested always gives the plain return matrix type. * * FIXME: I don't understand why we need this specialization: isn't this taken care of by the EvalBeforeNestingBit ?? + * Answer: EvalBeforeNestingBit should be deprecated since we have the evaluators */ template -struct nested, n, PlainObject> +struct nested_eval, n, PlainObject> { typedef typename traits::ReturnType type; }; } // end namespace internal +/** \class ReturnByValue + * \ingroup Core_Module + * + */ template class ReturnByValue - : internal::no_assignment_operator, public internal::dense_xpr_base< ReturnByValue >::type + : public internal::dense_xpr_base< ReturnByValue >::type, internal::no_assignment_operator { public: typedef typename internal::traits::ReturnType ReturnType; @@ -57,10 +57,11 @@ template class ReturnByValue EIGEN_DENSE_PUBLIC_INTERFACE(ReturnByValue) template + EIGEN_DEVICE_FUNC inline void evalTo(Dest& dst) const { static_cast(this)->evalTo(dst); } - inline Index rows() const { return static_cast(this)->rows(); } - inline Index cols() const { return static_cast(this)->cols(); } + EIGEN_DEVICE_FUNC inline Index rows() const { return static_cast(this)->rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return static_cast(this)->cols(); } #ifndef EIGEN_PARSED_BY_DOXYGEN #define Unusable YOU_ARE_TRYING_TO_ACCESS_A_SINGLE_COEFFICIENT_IN_A_SPECIAL_EXPRESSION_WHERE_THAT_IS_NOT_ALLOWED_BECAUSE_THAT_WOULD_BE_INEFFICIENT @@ -72,8 +73,7 @@ template class ReturnByValue const Unusable& coeff(Index,Index) const { return *reinterpret_cast(this); } Unusable& coeffRef(Index) { return *reinterpret_cast(this); } Unusable& coeffRef(Index,Index) { return *reinterpret_cast(this); } - template Unusable& packet(Index) const; - template Unusable& packet(Index, Index) const; +#undef Unusable #endif }; @@ -85,14 +85,32 @@ Derived& DenseBase::operator=(const ReturnByValue& other) return derived(); } +namespace internal { + +// Expression is evaluated in a temporary; default implementation of Assignment is bypassed so that +// when a ReturnByValue expression is assigned, the evaluator is not constructed. +// TODO: Finalize port to new regime; ReturnByValue should not exist in the expression world + template -template -Derived& DenseBase::lazyAssign(const ReturnByValue& other) +struct evaluator > + : public evaluator::ReturnType> { - other.evalTo(derived()); - return derived(); -} + typedef ReturnByValue XprType; + typedef typename internal::traits::ReturnType PlainObject; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) + : m_result(xpr.rows(), xpr.cols()) + { + ::new (static_cast(this)) Base(m_result); + xpr.evalTo(m_result); + } + +protected: + PlainObject m_result; +}; +} // end namespace internal } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/Reverse.h b/eigenlib/Eigen/src/Core/Reverse.h index e30ae3d28..0640cda2a 100644 --- a/eigenlib/Eigen/src/Core/Reverse.h +++ b/eigenlib/Eigen/src/Core/Reverse.h @@ -14,20 +14,6 @@ namespace Eigen { -/** \class Reverse - * \ingroup Core_Module - * - * \brief Expression of the reverse of a vector or matrix - * - * \param MatrixType the type of the object of which we are taking the reverse - * - * This class represents an expression of the reverse of a vector. - * It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse() - * and most of the time this is the only way it is used. - * - * \sa MatrixBase::reverse(), VectorwiseOp::reverse() - */ - namespace internal { template @@ -37,36 +23,43 @@ struct traits > typedef typename MatrixType::Scalar Scalar; typedef typename traits::StorageKind StorageKind; typedef typename traits::XprKind XprKind; - typedef typename nested::type MatrixTypeNested; + typedef typename ref_selector::type MatrixTypeNested; typedef typename remove_reference::type _MatrixTypeNested; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - - // let's enable LinearAccess only with vectorization because of the product overhead - LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) ) - ? LinearAccessBit : 0, - - Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess), - - CoeffReadCost = _MatrixTypeNested::CoeffReadCost + Flags = _MatrixTypeNested::Flags & (RowMajorBit | LvalueBit) }; }; -template struct reverse_packet_cond +template struct reverse_packet_cond { - static inline PacketScalar run(const PacketScalar& x) { return preverse(x); } + static inline PacketType run(const PacketType& x) { return preverse(x); } }; -template struct reverse_packet_cond +template struct reverse_packet_cond { - static inline PacketScalar run(const PacketScalar& x) { return x; } + static inline PacketType run(const PacketType& x) { return x; } }; } // end namespace internal +/** \class Reverse + * \ingroup Core_Module + * + * \brief Expression of the reverse of a vector or matrix + * + * \tparam MatrixType the type of the object of which we are taking the reverse + * \tparam Direction defines the direction of the reverse operation, can be Vertical, Horizontal, or BothDirections + * + * This class represents an expression of the reverse of a vector. + * It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse() + * and most of the time this is the only way it is used. + * + * \sa MatrixBase::reverse(), VectorwiseOp::reverse() + */ template class Reverse : public internal::dense_xpr_base< Reverse >::type { @@ -74,12 +67,9 @@ template class Reverse typedef typename internal::dense_xpr_base::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(Reverse) + typedef typename internal::remove_all::type NestedExpression; using Base::IsRowMajor; - // next line is necessary because otherwise const version of operator() - // is hidden by non-const version defined in this file - using Base::operator(); - protected: enum { PacketSize = internal::packet_traits::size, @@ -95,82 +85,19 @@ template class Reverse typedef internal::reverse_packet_cond reverse_packet; public: - inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { } + EIGEN_DEVICE_FUNC explicit inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { } EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse) - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } + EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols(); } - inline Index innerStride() const + EIGEN_DEVICE_FUNC inline Index innerStride() const { return -m_matrix.innerStride(); } - inline Scalar& operator()(Index row, Index col) - { - eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); - return coeffRef(row, col); - } - - inline Scalar& coeffRef(Index row, Index col) - { - return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row, - ReverseCol ? m_matrix.cols() - col - 1 : col); - } - - inline CoeffReturnType coeff(Index row, Index col) const - { - return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row, - ReverseCol ? m_matrix.cols() - col - 1 : col); - } - - inline CoeffReturnType coeff(Index index) const - { - return m_matrix.coeff(m_matrix.size() - index - 1); - } - - inline Scalar& coeffRef(Index index) - { - return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1); - } - - inline Scalar& operator()(Index index) - { - eigen_assert(index >= 0 && index < m_matrix.size()); - return coeffRef(index); - } - - template - inline const PacketScalar packet(Index row, Index col) const - { - return reverse_packet::run(m_matrix.template packet( - ReverseRow ? m_matrix.rows() - row - OffsetRow : row, - ReverseCol ? m_matrix.cols() - col - OffsetCol : col)); - } - - template - inline void writePacket(Index row, Index col, const PacketScalar& x) - { - m_matrix.const_cast_derived().template writePacket( - ReverseRow ? m_matrix.rows() - row - OffsetRow : row, - ReverseCol ? m_matrix.cols() - col - OffsetCol : col, - reverse_packet::run(x)); - } - - template - inline const PacketScalar packet(Index index) const - { - return internal::preverse(m_matrix.template packet( m_matrix.size() - index - PacketSize )); - } - - template - inline void writePacket(Index index, const PacketScalar& x) - { - m_matrix.const_cast_derived().template writePacket(m_matrix.size() - index - PacketSize, internal::preverse(x)); - } - - const typename internal::remove_all::type& + EIGEN_DEVICE_FUNC const typename internal::remove_all::type& nestedExpression() const { return m_matrix; @@ -190,33 +117,93 @@ template inline typename DenseBase::ReverseReturnType DenseBase::reverse() { - return derived(); + return ReverseReturnType(derived()); } -/** This is the const version of reverse(). */ -template -inline const typename DenseBase::ConstReverseReturnType -DenseBase::reverse() const -{ - return derived(); -} + +//reverse const overload moved DenseBase.h due to a CUDA compiler bug /** This is the "in place" version of reverse: it reverses \c *this. * * In most cases it is probably better to simply use the reversed expression * of a matrix. However, when reversing the matrix data itself is really needed, * then this "in-place" version is probably the right choice because it provides - * the following additional features: + * the following additional benefits: * - less error prone: doing the same operation with .reverse() requires special care: * \code m = m.reverse().eval(); \endcode - * - this API allows to avoid creating a temporary (the current implementation creates a temporary, but that could be avoided using swap) + * - this API enables reverse operations without the need for a temporary * - it allows future optimizations (cache friendliness, etc.) * - * \sa reverse() */ + * \sa VectorwiseOp::reverseInPlace(), reverse() */ template inline void DenseBase::reverseInPlace() { - derived() = derived().reverse().eval(); + if(cols()>rows()) + { + Index half = cols()/2; + leftCols(half).swap(rightCols(half).reverse()); + if((cols()%2)==1) + { + Index half2 = rows()/2; + col(half).head(half2).swap(col(half).tail(half2).reverse()); + } + } + else + { + Index half = rows()/2; + topRows(half).swap(bottomRows(half).reverse()); + if((rows()%2)==1) + { + Index half2 = cols()/2; + row(half).head(half2).swap(row(half).tail(half2).reverse()); + } + } +} + +namespace internal { + +template +struct vectorwise_reverse_inplace_impl; + +template<> +struct vectorwise_reverse_inplace_impl +{ + template + static void run(ExpressionType &xpr) + { + Index half = xpr.rows()/2; + xpr.topRows(half).swap(xpr.bottomRows(half).colwise().reverse()); + } +}; + +template<> +struct vectorwise_reverse_inplace_impl +{ + template + static void run(ExpressionType &xpr) + { + Index half = xpr.cols()/2; + xpr.leftCols(half).swap(xpr.rightCols(half).rowwise().reverse()); + } +}; + +} // end namespace internal + +/** This is the "in place" version of VectorwiseOp::reverse: it reverses each column or row of \c *this. + * + * In most cases it is probably better to simply use the reversed expression + * of a matrix. However, when reversing the matrix data itself is really needed, + * then this "in-place" version is probably the right choice because it provides + * the following additional benefits: + * - less error prone: doing the same operation with .reverse() requires special care: + * \code m = m.reverse().eval(); \endcode + * - this API enables reverse operations without the need for a temporary + * + * \sa DenseBase::reverseInPlace(), reverse() */ +template +void VectorwiseOp::reverseInPlace() +{ + internal::vectorwise_reverse_inplace_impl::run(_expression().const_cast_derived()); } } // end namespace Eigen diff --git a/eigenlib/Eigen/src/Core/Select.h b/eigenlib/Eigen/src/Core/Select.h index 87993bbb5..79eec1b5b 100644 --- a/eigenlib/Eigen/src/Core/Select.h +++ b/eigenlib/Eigen/src/Core/Select.h @@ -43,23 +43,21 @@ struct traits > ColsAtCompileTime = ConditionMatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = ConditionMatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = ConditionMatrixType::MaxColsAtCompileTime, - Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & HereditaryBits, - CoeffReadCost = traits::type>::CoeffReadCost - + EIGEN_SIZE_MAX(traits::type>::CoeffReadCost, - traits::type>::CoeffReadCost) + Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & RowMajorBit }; }; } template -class Select : internal::no_assignment_operator, - public internal::dense_xpr_base< Select >::type +class Select : public internal::dense_xpr_base< Select >::type, + internal::no_assignment_operator { public: typedef typename internal::dense_xpr_base