From fc267b9a8ee8dae4630d4654353dccc44214fe92 Mon Sep 17 00:00:00 2001 From: Simone Balducci Date: Tue, 29 Oct 2024 10:28:35 +0100 Subject: [PATCH] Remove unneeded file --- CLUEstering/CLUEstering.hpp | 85 ------------------------------------- 1 file changed, 85 deletions(-) delete mode 100644 CLUEstering/CLUEstering.hpp diff --git a/CLUEstering/CLUEstering.hpp b/CLUEstering/CLUEstering.hpp deleted file mode 100644 index 76882c3..0000000 --- a/CLUEstering/CLUEstering.hpp +++ /dev/null @@ -1,85 +0,0 @@ - -#ifndef cluestering_hpp -#define cluestering_hpp - -#include -#include -#include -#include -#include -#include - -#include "DataFormats/Points.h" -#include "DataFormats/alpaka/PointsAlpaka.h" -#include "CLUE/CLUEAlgoAlpaka.h" -#include "CLUE/Run.h" - -using Dim = uint8_t; - -template -class Clusterer { -private: - float m_dc, m_rhoc, m_outlier; - uint32_t m_pointePerTile; - // Points SoA (Structure of Array) - Points m_points; - /* std::unique_ptr m_kernel; */ // todo when kernels reworked - std::vector> m_clusterResults; - -public: - Clusterer() = delete; - Clusterer(float dc, float rhoc, float outlier, uint32_t pointsPerTile = 128) - : m_dc{dc}, m_rhoc{rhoc}, m_outlier{outlier}, m_pointePerTile{pointsPerTile} {} - - template // todo: need to add a constraint on the template parameters - void read_data(Vec vec, Vecs... vecs) { - if constexpr (sizeof...(vecs) == 0) { - m_points.m_weight = vec; - } else { - std::for_each(vec.begin(), vec.end(), [&, this](auto& x) { - /* m_points.m_coords.push_back(VecArray{x, vecs...}); */ - }); - read_data(std::forward(vecs)...); - } - } - - void run_clue(const std::string& backend, - std::size_t block_size = 256, - std::size_t device_id = 0, - bool verbose = false) { - if (backend == "cpu serial") { - using namespace alpaka_serial_sync; - const auto device = alpaka::getDevByIdx(device_id); - Queue queue(device); - - // note: alternatively just call run - CLUEAlgoAlpaka algo(m_dc, m_rhoc, m_outlier, m_pointePerTile, queue); - PointsAlpaka d_points(queue, m_points.n); - - algo.make_clusters(m_points, d_points, ConvolutionalKernel(), queue, block_size); - } else if (backend == "cpu tbb") { - using namespace alpaka_tbb_async; - } else if (backend == "gpu cuda") { - using namespace alpaka_cuda_async; - } else if (backend == "gpu hip") { - using namespace alpaka_rocm_async; - } - } - - void to_csv(const std::string& pathToFile) { - std::fstream csvFile(pathToFile); - if (!csvFile.is_open()) { - throw std::runtime_error("Could not open file: " + pathToFile); - } - - for (size_t i{}; i < m_points.n; ++i) { - for (size_t dim{}; dim < ndim; ++dim) { - csvFile << m_points.m_coords << ','; - } - csvFile << m_points.m_clusterIndex[i] << ',' << m_points.m_isSeed[i]; - csvFile << '\n'; - } - } -}; - -#endif