-
Notifications
You must be signed in to change notification settings - Fork 476
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
size mismatch error #242
Comments
I have reproduced the error in the "colab-demo-for-donut-base-finetuned-docvqa.ipynb" too. /usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py in _load_pretrained_model(cls, model, state_dict, loaded_keys, resolved_archive_file, pretrained_model_name_or_path, ignore_mismatched_sizes, sharded_metadata, _fast_init, low_cpu_mem_usage, device_map, offload_folder, offload_state_dict, dtype, is_quantized, keep_in_fp32_modules) RuntimeError: Error(s) in loading state_dict for DonutModel: |
@yaoliUoA i am facing the same issue, have u resolved this? |
This might relate to #206 |
When I run the "python3 app.py" for demo, it cannot load the pretrained model naver-clova-ix/donut-base-finetuned-docvqa, there is a size miss match error
File "/home/local/Project/chart/donut/donut/model.py", line 597, in from_pretrained
model = super(DonutModel, cls).from_pretrained(pretrained_model_name_or_path, revision="official", *model_args, **kwargs)
File "/home/local/.local/lib/python3.10/site-packages/transformers/modeling_utils.py", line 3091, in from_pretrained
) = cls._load_pretrained_model(
File "/home/local/.local/lib/python3.10/site-packages/transformers/modeling_utils.py", line 3532, in _load_pretrained_model
raise RuntimeError(f"Error(s) in loading state_dict for {model.class.name}:\n\t{error_msg}")
RuntimeError: Error(s) in loading state_dict for DonutModel:
size mismatch for encoder.model.layers.1.downsample.norm.weight: copying a param with shape torch.Size([1024]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for encoder.model.layers.1.downsample.norm.bias: copying a param with shape torch.Size([1024]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for encoder.model.layers.1.downsample.reduction.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([256, 512]).
size mismatch for encoder.model.layers.2.downsample.norm.weight: copying a param with shape torch.Size([2048]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.model.layers.2.downsample.norm.bias: copying a param with shape torch.Size([2048]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.model.layers.2.downsample.reduction.weight: copying a param with shape torch.Size([1024, 2048]) from checkpoint, the shape in current model is torch.Size([512, 1024]).
You may consider adding
ignore_mismatched_sizes=True
in the modelfrom_pretrained
method.The text was updated successfully, but these errors were encountered: