diff --git a/napari_pyclesperanto_assistant/_napari_cle_functions.py b/napari_pyclesperanto_assistant/_napari_cle_functions.py index 8a5dcd6..9e7bea6 100644 --- a/napari_pyclesperanto_assistant/_napari_cle_functions.py +++ b/napari_pyclesperanto_assistant/_napari_cle_functions.py @@ -1,4 +1,4 @@ -import pyclesperanto_prototype as cle +import pyclesperanto as cle from napari_tools_menu import register_function from napari_time_slicer import time_slicer @@ -13,7 +13,7 @@ def _package_ncle(func): @_package_ncle def label(binary_image: "napari.types.LabelsData") -> "napari.types.LabelsData": """Connected component labeling using box-neighborhood (8-connected in 2D, 26-connected in 3D)""" - result = cle.connected_components_labeling_box(binary_image) + result = cle.connected_components_labeling(binary_image) return result @@ -42,14 +42,14 @@ def gauss_otsu_labeling(image:"napari.types.ImageData", outline_sigma: float = 2 @time_slicer @_package_ncle def top_hat_box(image:"napari.types.ImageData", radius_x: int = 10, radius_y: int = 10, radius_z: int = 0) -> "napari.types.ImageData": - return cle.top_hat_box(image, radius_x=radius_x, radius_y=radius_y, radius_z=radius_z) + return cle.top_hat(image, radius_x=radius_x, radius_y=radius_y, radius_z=radius_z) @register_function(menu="Filtering / noise removal > Mean (box, clesperanto)") @time_slicer @_package_ncle def mean_box(image:"napari.types.ImageData", radius_x: int = 10, radius_y: int = 10, radius_z: int = 0) -> "napari.types.ImageData": - return cle.mean_box(image, radius_x=radius_x, radius_y=radius_y, radius_z=radius_z) + return cle.mean(image, radius_x=radius_x, radius_y=radius_y, radius_z=radius_z) @register_function(menu="Filtering > Difference of Gaussian (clesperanto)") @@ -72,7 +72,7 @@ def laplacian_of_gaussian(image:"napari.types.ImageData", ) -> "napari.types.ImageData": """Applies a Laplace-box filter to a Gaussian-blurred image of the original. That might be useful for edge detection""" - return cle.laplace_box( + return cle.laplace( cle.gaussian_blur(image, sigma_x=sigma_x, sigma_y=sigma_y, sigma_z=sigma_z, ) @@ -121,14 +121,14 @@ def large_hessian_eigenvalue(image:"napari.types.ImageData") -> "napari.types.Im @time_slicer @_package_ncle def standard_deviation_box(image:"napari.types.ImageData", radius_x: int = 10, radius_y: int = 10, radius_z: int = 0) -> "napari.types.ImageData": - return cle.standard_deviation_box(image, radius_x=radius_x, radius_y=radius_y, radius_z=radius_z) + return cle.standard_deviation(image, radius_x=radius_x, radius_y=radius_y, radius_z=radius_z) @register_function(menu="Filtering / edge enhancement > Variance (box, clesperanto)") @time_slicer @_package_ncle def variance_box(image:"napari.types.ImageData", radius_x: int = 10, radius_y: int = 10, radius_z: int = 0) -> "napari.types.ImageData": - return cle.variance_box(image, radius_x=radius_x, radius_y=radius_y, radius_z=radius_z) + return cle.variance(image, radius_x=radius_x, radius_y=radius_y, radius_z=radius_z) @register_function(menu="Segmentation post-processing > Exclude large labels (clesperanto)")