-
Notifications
You must be signed in to change notification settings - Fork 2
/
bwtsw2_aux.c
650 lines (617 loc) · 19.7 KB
/
bwtsw2_aux.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_PTHREAD
#include <pthread.h>
#endif
#include "bntseq.h"
#include "bwt_lite.h"
#include "utils.h"
#include "bwtsw2.h"
#include "stdaln.h"
#include "kstring.h"
#include "kseq.h"
KSEQ_INIT(FILE*, fread)
#include "ksort.h"
#define __left_lt(a, b) ((a).end > (b).end)
KSORT_INIT(hit, bsw2hit_t, __left_lt)
extern unsigned char nst_nt4_table[256];
unsigned char nt_comp_table[256] = {
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','T','V','G', 'H','N','N','C', 'D','N','N','M', 'N','K','N','N',
'N','N','Y','S', 'A','N','B','W', 'X','R','N','N', 'N','N','N','N',
'n','t','v','g', 'h','n','n','c', 'd','n','n','m', 'n','k','n','n',
'n','n','y','s', 'a','n','b','w', 'x','r','n','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N',
'N','N','N','N', 'N','N','N','N', 'N','N','N','N', 'N','N','N','N'
};
extern int bsw2_resolve_duphits(const bwt_t *bwt, bwtsw2_t *b, int IS);
extern int bsw2_resolve_query_overlaps(bwtsw2_t *b, float mask_level);
bsw2opt_t *bsw2_init_opt()
{
bsw2opt_t *o = (bsw2opt_t*)calloc(1, sizeof(bsw2opt_t));
o->a = 1; o->b = 3; o->q = 5; o->r = 2; o->t = 30;
o->bw = 50;
o->z = 1; o->is = 3; o->t_seeds = 5; o->hard_clip = 0;
o->mask_level = 0.50f; o->yita = 5.5f; o->coef = 5.5f;
o->qr = o->q + o->r; o->n_threads = 1; o->chunk_size = 10000000;
return o;
}
void bsw2_destroy(bwtsw2_t *b)
{
int i;
if (b == 0) return;
if (b->cigar)
for (i = 0; i < b->n; ++i) free(b->cigar[i]);
free(b->cigar); free(b->n_cigar); free(b->hits);
free(b);
}
#define __gen_ap(par, opt) do { \
int i; \
for (i = 0; i < 25; ++i) (par).matrix[i] = -(opt)->b; \
for (i = 0; i < 4; ++i) (par).matrix[i*5+i] = (opt)->a; \
(par).gap_open = (opt)->q; (par).gap_ext = (opt)->r; \
(par).gap_end = (opt)->r; \
(par).row = 5; (par).band_width = opt->bw; \
} while (0)
#define __rpac(pac, l, i) (pac[(l-i-1)>>2] >> (~(l-i-1)&3)*2 & 0x3)
void bsw2_extend_left(const bsw2opt_t *opt, bwtsw2_t *b, uint8_t *_query, int lq, uint8_t *pac, uint32_t l_pac, int is_rev, uint8_t *_mem)
{
int i, matrix[25];
bwtint_t k;
uint8_t *target = 0, *query;
AlnParam par;
par.matrix = matrix;
__gen_ap(par, opt);
query = calloc(lq, 1);
// sort according to the descending order of query end
ks_introsort(hit, b->n, b->hits);
target = calloc(((lq + 1) / 2 * opt->a + opt->r) / opt->r + lq, 1);
// reverse _query
for (i = 0; i < lq; ++i) query[lq - i - 1] = _query[i];
// core loop
for (i = 0; i < b->n; ++i) {
bsw2hit_t *p = b->hits + i;
int lt = ((p->beg + 1) / 2 * opt->a + opt->r) / opt->r + lq;
int score, j;
path_t path;
p->n_seeds = 1;
if (p->l || p->k == 0) continue;
for (j = score = 0; j < i; ++j) {
bsw2hit_t *q = b->hits + j;
if (q->beg <= p->beg && q->k <= p->k && q->k + q->len >= p->k + p->len) {
if (q->n_seeds < (1<<14) - 2) ++q->n_seeds;
++score;
}
}
if (score) continue;
if (lt > p->k) lt = p->k;
if (is_rev) {
for (k = p->k - 1, j = 0; k > 0 && j < lt; --k) // FIXME: k=0 not considered!
target[j++] = __rpac(pac, l_pac, k);
} else {
for (k = p->k - 1, j = 0; k > 0 && j < lt; --k) // FIXME: k=0 not considered!
target[j++] = pac[k>>2] >> (~k&3)*2 & 0x3;
}
lt = j;
score = aln_extend_core(target, lt, query + lq - p->beg, p->beg, &par, &path, 0, p->G, _mem);
if (score > p->G) { // extensible
p->G = score;
p->len += path.i;
p->beg -= path.j;
p->k -= path.i;
}
}
free(query); free(target);
}
void bsw2_extend_rght(const bsw2opt_t *opt, bwtsw2_t *b, uint8_t *query, int lq, uint8_t *pac, uint32_t l_pac, int is_rev, uint8_t *_mem)
{
int i, matrix[25];
uint32_t k;
uint8_t *target;
AlnParam par;
par.matrix = matrix;
__gen_ap(par, opt);
target = calloc(((lq + 1) / 2 * opt->a + opt->r) / opt->r + lq, 1);
for (i = 0; i < b->n; ++i) {
bsw2hit_t *p = b->hits + i;
int lt = ((lq - p->beg + 1) / 2 * opt->a + opt->r) / opt->r + lq;
int j, score;
path_t path;
if (p->l) continue;
if (is_rev) {
for (k = p->k, j = 0; k < p->k + lt && k < l_pac; ++k)
target[j++] = __rpac(pac, l_pac, k);
} else {
for (k = p->k, j = 0; k < p->k + lt && k < l_pac; ++k)
target[j++] = pac[k>>2] >> (~k&3)*2 & 0x3;
}
lt = j;
score = aln_extend_core(target, lt, query + p->beg, lq - p->beg, &par, &path, 0, 1, _mem);
// if (score < p->G) fprintf(stderr, "[bsw2_extend_hits] %d < %d\n", score, p->G);
if (score >= p->G) {
p->G = score;
p->len = path.i;
p->end = path.j + p->beg;
}
}
free(target);
}
/* generate CIGAR array(s) in b->cigar[] */
static void gen_cigar(const bsw2opt_t *opt, int lq, uint8_t *seq[2], uint8_t *pac, bwtsw2_t *b)
{
uint8_t *target;
int i, matrix[25];
AlnParam par;
path_t *path;
par.matrix = matrix;
__gen_ap(par, opt);
i = ((lq + 1) / 2 * opt->a + opt->r) / opt->r + lq; // maximum possible target length
target = calloc(i, 1);
path = calloc(i + lq, sizeof(path_t));
// memory clean up for b
if (b->n < b->max) {
b->max = b->n;
b->hits = realloc(b->hits, b->n * sizeof(bsw2hit_t));
}
if (b->cigar) free(b->cigar);
if (b->n_cigar) free(b->n_cigar);
b->cigar = (uint32_t**)calloc(b->max, sizeof(void*));
b->n_cigar = (int*)calloc(b->max, sizeof(int));
// generate CIGAR
for (i = 0; i < b->n; ++i) {
bsw2hit_t *p = b->hits + i;
uint8_t *query;
uint32_t k;
int score, path_len, beg, end;
if (p->l) continue;
beg = (p->flag & 0x10)? lq - p->end : p->beg;
end = (p->flag & 0x10)? lq - p->beg : p->end;
query = seq[(p->flag & 0x10)? 1 : 0] + beg;
for (k = p->k; k < p->k + p->len; ++k) // in principle, no out-of-boundary here
target[k - p->k] = pac[k>>2] >> (~k&3)*2 & 0x3;
score = aln_global_core(target, p->len, query, end - beg, &par, path, &path_len);
b->cigar[i] = aln_path2cigar32(path, path_len, &b->n_cigar[i]);
if (beg != 0 || end < lq) { // write soft clipping
b->cigar[i] = realloc(b->cigar[i], 4 * (b->n_cigar[i] + 2));
if (beg != 0) {
memmove(b->cigar[i] + 1, b->cigar[i], b->n_cigar[i] * 4);
b->cigar[i][0] = beg<<4 | 4;
++b->n_cigar[i];
}
if (end < lq) {
b->cigar[i][b->n_cigar[i]] = (lq - end)<<4 | 4;
++b->n_cigar[i];
}
}
}
free(target); free(path);
}
/* this is for the debugging purpose only */
void bsw2_debug_hits(const bwtsw2_t *b)
{
int i;
printf("# raw hits: %d\n", b->n);
for (i = 0; i < b->n; ++i) {
bsw2hit_t *p = b->hits + i;
if (p->l == 0)
printf("%d, %d, %d, %u, %u\n", p->G, p->beg, p->end, p->k, p->l);
}
}
static void merge_hits(bwtsw2_t *b[2], int l, int is_reverse)
{
int i;
if (b[0]->n + b[1]->n > b[0]->max) {
b[0]->max = b[0]->n + b[1]->n;
b[0]->hits = realloc(b[0]->hits, b[0]->max * sizeof(bsw2hit_t));
}
for (i = 0; i < b[1]->n; ++i) {
bsw2hit_t *p = b[0]->hits + b[0]->n + i;
*p = b[1]->hits[i];
if (is_reverse) {
int x = p->beg;
p->beg = l - p->end;
p->end = l - x;
p->flag |= 0x10;
}
}
b[0]->n += b[1]->n;
bsw2_destroy(b[1]);
b[1] = 0;
}
/* seq[0] is the forward sequence and seq[1] is the reverse complement. */
static bwtsw2_t *bsw2_aln1_core(const bsw2opt_t *opt, const bntseq_t *bns, uint8_t *pac, const bwt_t *target,
int l, uint8_t *seq[2], int is_rev, bsw2global_t *pool)
{
extern void bsw2_chain_filter(const bsw2opt_t *opt, int len, bwtsw2_t *b[2]);
bwtsw2_t *b[2], **bb[2];
int k;
for (k = 0; k < 2; ++k) {
bwtl_t *query = bwtl_seq2bwtl(l, seq[k]);
bb[k] = bsw2_core(opt, query, target, pool);
bwtl_destroy(query);
}
b[0] = bb[0][1]; b[1] = bb[1][1]; // bb[*][1] are "narrow SA hits"
bsw2_chain_filter(opt, l, b);
for (k = 0; k < 2; ++k) {
bsw2_extend_left(opt, bb[k][1], seq[k], l, pac, bns->l_pac, is_rev, pool->aln_mem);
merge_hits(bb[k], l, 0); // bb[k][1] is merged to bb[k][0] here
bsw2_resolve_duphits(0, bb[k][0], 0);
bsw2_extend_rght(opt, bb[k][0], seq[k], l, pac, bns->l_pac, is_rev, pool->aln_mem);
b[k] = bb[k][0];
free(bb[k]);
}
merge_hits(b, l, 1); // again, b[1] is merged to b[0]
bsw2_resolve_query_overlaps(b[0], opt->mask_level);
return b[0];
}
/* set ->flag to records the origin of the hit (to forward bwt or reverse bwt) */
static void flag_fr(bwtsw2_t *b[2])
{
int i, j;
for (i = 0; i < b[0]->n; ++i) {
bsw2hit_t *p = b[0]->hits + i;
p->flag |= 0x10000;
}
for (i = 0; i < b[1]->n; ++i) {
bsw2hit_t *p = b[1]->hits + i;
p->flag |= 0x20000;
}
for (i = 0; i < b[0]->n; ++i) {
bsw2hit_t *p = b[0]->hits + i;
for (j = 0; j < b[1]->n; ++j) {
bsw2hit_t *q = b[1]->hits + j;
if (q->beg == p->beg && q->end == p->end && q->k == p->k && q->len == p->len && q->G == p->G) {
q->flag |= 0x30000; p->flag |= 0x30000;
break;
}
}
}
}
typedef struct {
int l, tid;
char *name, *seq, *qual, *sam;
} bsw2seq1_t;
typedef struct {
int n, max;
bsw2seq1_t *seq;
} bsw2seq_t;
#ifdef HAVE_PTHREAD
static pthread_mutex_t g_dbwtsw_lock = PTHREAD_MUTEX_INITIALIZER;
#endif
static int fix_cigar(const char *qname, const bntseq_t *bns, bsw2hit_t *p, int n_cigar, uint32_t *cigar)
{
// FIXME: this routine does not work if the query bridge three reference sequences
int32_t coor, refl, lq;
int x, y, i, seqid;
bns_coor_pac2real(bns, p->k, p->len, &seqid);
coor = p->k - bns->anns[seqid].offset;
refl = bns->anns[seqid].len;
x = coor; y = 0;
// test if the alignment goes beyond the boundary
for (i = 0; i < n_cigar; ++i) {
int op = cigar[i]&0xf, ln = cigar[i]>>4;
if (op == 1 || op == 4 || op == 5) y += ln;
else if (op == 2) x += ln;
else x += ln, y += ln;
}
lq = y; // length of the query sequence
if (x > refl) { // then fix it
int j, nc, mq[2], nlen[2];
uint32_t *cn, kk = 0;
nc = mq[0] = mq[1] = nlen[0] = nlen[1] = 0;
cn = calloc(n_cigar + 3, 4);
x = coor; y = 0;
for (i = j = 0; i < n_cigar; ++i) {
int op = cigar[i]&0xf, ln = cigar[i]>>4;
if (op == 4 || op == 5 || op == 1) { // ins or clipping
y += ln;
cn[j++] = cigar[i];
} else if (op == 2) { // del
if (x + ln >= refl && nc == 0) {
cn[j++] = (uint32_t)(lq - y)<<4 | 4;
nc = j;
cn[j++] = (uint32_t)y<<4 | 4;
kk = p->k + (x + ln - refl);
nlen[0] = x - coor;
nlen[1] = p->len - nlen[0] - ln;
} else cn[j++] = cigar[i];
x += ln;
} else if (op == 0) { // match
if (x + ln >= refl && nc == 0) {
// FIXME: not consider a special case where a split right between M and I
cn[j++] = (uint32_t)(refl - x)<<4 | 0; // write M
cn[j++] = (uint32_t)(lq - y - (refl - x))<<4 | 4; // write S
nc = j;
mq[0] += refl - x;
cn[j++] = (uint32_t)(y + (refl - x))<<4 | 4;
if (x + ln - refl) cn[j++] = (uint32_t)(x + ln - refl)<<4 | 0;
mq[1] += x + ln - refl;
kk = bns->anns[seqid].offset + refl;
nlen[0] = refl - coor;
nlen[1] = p->len - nlen[0];
} else {
cn[j++] = cigar[i];
mq[nc?1:0] += ln;
}
x += ln; y += ln;
}
}
if (mq[0] > mq[1]) { // then take the first alignment
n_cigar = nc;
memcpy(cigar, cn, 4 * nc);
p->len = nlen[0];
} else {
p->k = kk; p->len = nlen[1];
n_cigar = j - nc;
memcpy(cigar, cn + nc, 4 * (j - nc));
}
free(cn);
}
return n_cigar;
}
/* generate SAM lines for a sequence in ks with alignment stored in
* b. ks->name and ks->seq will be freed and set to NULL in the end. */
static void print_hits(const bntseq_t *bns, const bsw2opt_t *opt, bsw2seq1_t *ks, bwtsw2_t *b)
{
int i, k;
kstring_t str;
memset(&str, 0, sizeof(kstring_t));
if (b == 0 || b->n == 0) { // no hits
ksprintf(&str, "%s\t4\t*\t0\t0\t*\t*\t0\t0\t", ks->name);
for (i = 0; i < ks->l; ++i) kputc(ks->seq[i], &str);
if (ks->qual) {
kputc('\t', &str);
for (i = 0; i < ks->l; ++i) kputc(ks->qual[i], &str);
} else kputs("\t*", &str);
kputc('\n', &str);
}
for (i = 0; b && i < b->n; ++i) {
bsw2hit_t *p = b->hits + i;
int32_t seqid = -1, coor = -1;
int j, qual, nn = 0;
int beg, end;
if (p->l == 0) {
b->n_cigar[i] = fix_cigar(ks->name, bns, p, b->n_cigar[i], b->cigar[i]);
nn = bns_coor_pac2real(bns, p->k, p->len, &seqid);
coor = p->k - bns->anns[seqid].offset;
}
ksprintf(&str, "%s\t%d", ks->name, p->flag&0x10);
ksprintf(&str, "\t%s\t%d", seqid>=0? bns->anns[seqid].name : "*", coor + 1);
if (p->l == 0) {
{ // estimate mapping quality
float c = 1.0;
int subo = p->G2 > opt->t? p->G2 : opt->t;
if (p->flag>>16 == 1 || p->flag>>16 == 2) c *= .5;
if (p->n_seeds < 2) c *= .2;
qual = (int)(c * (p->G - subo) * (250.0 / p->G + 0.03 / opt->a) + .499);
if (qual > 250) qual = 250;
if (p->flag&1) qual = 0;
}
ksprintf(&str, "\t%d\t", qual);
for (k = 0; k < b->n_cigar[i]; ++k)
ksprintf(&str, "%d%c", b->cigar[i][k]>>4, (opt->hard_clip? "MIDNHHP" : "MIDNSHP")[b->cigar[i][k]&0xf]);
} else ksprintf(&str, "\t0\t*");
ksprintf(&str, "\t*\t0\t0\t");
beg = 0; end = ks->l;
if (opt->hard_clip) {
if ((b->cigar[i][0]&0xf) == 4) beg += b->cigar[i][0]>>4;
if ((b->cigar[i][b->n_cigar[i]-1]&0xf) == 4) end -= b->cigar[i][b->n_cigar[i]-1]>>4;
}
for (j = beg; j < end; ++j) {
if (p->flag&0x10) kputc(nt_comp_table[(int)ks->seq[ks->l - 1 - j]], &str);
else kputc(ks->seq[j], &str);
}
if (ks->qual) {
kputc('\t', &str);
for (j = beg; j < end; ++j) {
if (p->flag&0x10) kputc(ks->qual[ks->l - 1 - j], &str);
else kputc(ks->qual[j], &str);
}
} else ksprintf(&str, "\t*");
ksprintf(&str, "\tAS:i:%d\tXS:i:%d\tXF:i:%d\tXE:i:%d\tXN:i:%d", p->G, p->G2, p->flag>>16, p->n_seeds, nn);
if (p->l) ksprintf(&str, "\tXI:i:%d", p->l - p->k + 1);
kputc('\n', &str);
}
ks->sam = str.s;
free(ks->seq); ks->seq = 0;
free(ks->qual); ks->qual = 0;
free(ks->name); ks->name = 0;
}
/* Core routine to align reads in _seq. It is separated from
* process_seqs() to realize multi-threading */
static void bsw2_aln_core(int tid, bsw2seq_t *_seq, const bsw2opt_t *_opt, const bntseq_t *bns, uint8_t *pac, bwt_t * const target[2])
{
int x;
bsw2opt_t opt = *_opt;
bsw2global_t *pool = bsw2_global_init();
for (x = 0; x < _seq->n; ++x) {
bsw2seq1_t *p = _seq->seq + x;
uint8_t *seq[2], *rseq[2];
int i, l, k;
bwtsw2_t *b[2];
l = p->l;
#ifdef HAVE_PTHREAD
if (_opt->n_threads > 1) {
pthread_mutex_lock(&g_dbwtsw_lock);
if (p->tid < 0) p->tid = tid;
else if (p->tid != tid) {
pthread_mutex_unlock(&g_dbwtsw_lock);
continue;
} // in pinciple else should not happen
pthread_mutex_unlock(&g_dbwtsw_lock);
}
#endif
// set opt->t
opt.t = _opt->t;
if (opt.t < log(l) * opt.coef) opt.t = (int)(log(l) * opt.coef + .499);
if (pool->max_l < l) { // then enlarge working space for aln_extend_core()
int tmp = ((l + 1) / 2 * opt.a + opt.r) / opt.r + l;
pool->max_l = l;
pool->aln_mem = realloc(pool->aln_mem, (tmp + 2) * 24);
}
// set opt->bw
opt.bw = _opt->bw;
k = (l * opt.a - 2 * opt.q) / (2 * opt.r + opt.a);
i = (l * opt.a - opt.a - opt.t) / opt.r;
if (k > i) k = i;
if (k < 1) k = 1; // I do not know if k==0 causes troubles
opt.bw = _opt->bw < k? _opt->bw : k;
// set seq[2] and rseq[2]
seq[0] = calloc(l * 4, 1);
seq[1] = seq[0] + l;
rseq[0] = seq[1] + l; rseq[1] = rseq[0] + l;
// convert sequences to 2-bit representation
for (i = k = 0; i < l; ++i) {
int c = nst_nt4_table[(int)p->seq[i]];
if (c >= 4) { c = (int)(drand48() * 4); ++k; } // FIXME: ambiguous bases are not properly handled
seq[0][i] = c;
seq[1][l-1-i] = 3 - c;
rseq[0][l-1-i] = c;
rseq[1][i] = 3 - c;
}
if (l - k < opt.t) { // too few unambiguous bases
print_hits(bns, &opt, p, 0);
free(seq[0]); continue;
}
// alignment
b[0] = bsw2_aln1_core(&opt, bns, pac, target[0], l, seq, 0, pool);
for (k = 0; k < b[0]->n; ++k)
if (b[0]->hits[k].n_seeds < opt.t_seeds) break;
if (k < b[0]->n) {
b[1] = bsw2_aln1_core(&opt, bns, pac, target[1], l, rseq, 1, pool);
for (i = 0; i < b[1]->n; ++i) {
bsw2hit_t *p = b[1]->hits + i;
int x = p->beg;
p->beg = l - p->end;
p->end = l - x;
if (p->l == 0) p->k = bns->l_pac - (p->k + p->len);
}
flag_fr(b);
merge_hits(b, l, 0);
bsw2_resolve_duphits(0, b[0], 0);
bsw2_resolve_query_overlaps(b[0], opt.mask_level);
} else b[1] = 0;
// generate CIGAR and print SAM
gen_cigar(&opt, l, seq, pac, b[0]);
print_hits(bns, &opt, p, b[0]);
// free
free(seq[0]);
bsw2_destroy(b[0]);
}
bsw2_global_destroy(pool);
}
#ifdef HAVE_PTHREAD
typedef struct {
int tid;
bsw2seq_t *_seq;
const bsw2opt_t *_opt;
const bntseq_t *bns;
uint8_t *pac;
bwt_t *target[2];
} thread_aux_t;
/* another interface to bsw2_aln_core() to facilitate pthread_create() */
static void *worker(void *data)
{
thread_aux_t *p = (thread_aux_t*)data;
bsw2_aln_core(p->tid, p->_seq, p->_opt, p->bns, p->pac, p->target);
return 0;
}
#endif
/* process sequences stored in _seq, generate SAM lines for these
* sequences and reset _seq afterwards. */
static void process_seqs(bsw2seq_t *_seq, const bsw2opt_t *opt, const bntseq_t *bns, uint8_t *pac, bwt_t * const target[2])
{
int i;
#ifdef HAVE_PTHREAD
if (opt->n_threads <= 1) {
bsw2_aln_core(0, _seq, opt, bns, pac, target);
} else {
pthread_t *tid;
pthread_attr_t attr;
thread_aux_t *data;
int j;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
data = (thread_aux_t*)calloc(opt->n_threads, sizeof(thread_aux_t));
tid = (pthread_t*)calloc(opt->n_threads, sizeof(pthread_t));
for (j = 0; j < opt->n_threads; ++j) {
thread_aux_t *p = data + j;
p->tid = j; p->_seq = _seq; p->_opt = opt; p->bns = bns;
p->pac = pac; p->target[0] = target[0]; p->target[1] = target[1];
pthread_create(&tid[j], &attr, worker, p);
}
for (j = 0; j < opt->n_threads; ++j) pthread_join(tid[j], 0);
free(data); free(tid);
}
#else
bsw2_aln_core(0, _seq, opt, bns, pac, target);
#endif
// print and reset
for (i = 0; i < _seq->n; ++i) {
bsw2seq1_t *p = _seq->seq + i;
if (p->sam) printf("%s", p->sam);
free(p->name); free(p->seq); free(p->qual); free(p->sam);
p->tid = -1; p->l = 0;
p->name = p->seq = p->qual = p->sam = 0;
}
fflush(stdout);
_seq->n = 0;
}
void bsw2_aln(const bsw2opt_t *opt, const bntseq_t *bns, bwt_t * const target[2], const char *fn)
{
gzFile fp;
kseq_t *ks;
int l, size = 0;
uint8_t *pac;
bsw2seq_t *_seq;
pac = calloc(bns->l_pac/4+1, 1);
if (pac == 0) {
fprintf(stderr, "[bsw2_aln] insufficient memory!\n");
return;
}
for (l = 0; l < bns->n_seqs; ++l)
printf("@SQ\tSN:%s\tLN:%d\n", bns->anns[l].name, bns->anns[l].len);
fread(pac, 1, bns->l_pac/4+1, bns->fp_pac);
fp = xzopen(fn, "r");
ks = kseq_init(fp);
_seq = calloc(1, sizeof(bsw2seq_t));
while ((l = kseq_read(ks)) >= 0) {
bsw2seq1_t *p;
if (_seq->n == _seq->max) {
_seq->max = _seq->max? _seq->max<<1 : 1024;
_seq->seq = realloc(_seq->seq, _seq->max * sizeof(bsw2seq1_t));
}
p = &_seq->seq[_seq->n++];
p->tid = -1;
p->l = l;
p->name = strdup(ks->name.s);
p->seq = strdup(ks->seq.s);
p->qual = ks->qual.l? strdup(ks->qual.s) : 0;
p->sam = 0;
size += l;
if (size > opt->chunk_size) {
fprintf(stderr, "[bsw2_aln] read %d sequences (%d bp)...\n", _seq->n, size);
process_seqs(_seq, opt, bns, pac, target);
size = 0;
}
}
fprintf(stderr, "[bsw2_aln] read %d sequences (%d bp)...\n", _seq->n, size);
process_seqs(_seq, opt, bns, pac, target);
free(_seq->seq); free(_seq);
kseq_destroy(ks);
gzclose(fp);
free(pac);
}