DEPARTAMENTO
+ + +CIUDAD
+ + +{{name}}
+diff --git a/.bowerrc b/.bowerrc index daf4462c..284deaf4 100644 --- a/.bowerrc +++ b/.bowerrc @@ -1,5 +1,6 @@ { "directory": "bower_components", "analytics": false, + "strict-ssl": false, "registry": "https://registry.bower.io" } diff --git a/.env.colombia b/.env.colombia index 1e22c824..c5007918 100644 --- a/.env.colombia +++ b/.env.colombia @@ -1,6 +1,7 @@ GA=Winter_is_coming OTHER_LOCALE=en-col DEFAULT_LOCALE=es-col -API_URL=http://atlas-colombia-harvard.cid-labs.com/api +API_URL=https://prudatlascolombia.bancoldex.com:9006 DOWNLOAD_URL=https://s3.amazonaws.com/datlas-colombia-downloads MAP_URL=http://download.geofabrik.de/south-america/colombia.html +AGRO_URL=https://prudatlascolombia.bancoldex.com:9007 diff --git a/.env.deploy b/.env.deploy index 1e22c824..353924f6 100644 --- a/.env.deploy +++ b/.env.deploy @@ -1,6 +1,7 @@ GA=Winter_is_coming OTHER_LOCALE=en-col DEFAULT_LOCALE=es-col -API_URL=http://atlas-colombia-harvard.cid-labs.com/api +API_URL=https://atlas-colombia-harvard.cid-labs.com/api DOWNLOAD_URL=https://s3.amazonaws.com/datlas-colombia-downloads MAP_URL=http://download.geofabrik.de/south-america/colombia.html +AGRO_URL=http://52.44.92.68:8080 diff --git a/.env.example b/.env.example index 6ce4b0b3..55712b54 100644 --- a/.env.example +++ b/.env.example @@ -5,4 +5,5 @@ API_URL=something-something DOWNLOAD_URL=another-url-for-download ROOT_URL= / DOWNLOAD_URL=something-something +AGRO_URL=http://52.44.92.68:8080 diff --git a/.env.mexico b/.env.mexico index 80b12a87..e9fd3e35 100644 --- a/.env.mexico +++ b/.env.mexico @@ -5,3 +5,4 @@ API_URL=http://cide.cid-labs.com/api/ ROOT_URL= / DOWNLOAD_URL=https://s3-us-west-2.amazonaws.com/datlas-mexico-downloads-prod MAP_URL=http://mapserver.inegi.org.mx/MGN/mge2010v5_0.zip +AGRO_URL=http://52.44.92.68:8080 diff --git a/.env.peru b/.env.peru index 054025eb..31986ba0 100644 --- a/.env.peru +++ b/.env.peru @@ -4,3 +4,4 @@ DEFAULT_LOCALE=es-peru API_URL=http://atlas-peru-preview.cid-labs.com/api DOWNLOAD_URL=https://s3.amazonaws.com/datlas-peru-downloads MAP_URL=http://www.geoidep.gob.pe/index.php/catalogo-nacional-de-servicios-web/servicios-de-publicacion-de-objetos-wfs +AGRO_URL=http://52.44.92.68:8080 diff --git a/.github/workflows/aws.yml b/.github/workflows/aws.yml new file mode 100644 index 00000000..be8f1ec8 --- /dev/null +++ b/.github/workflows/aws.yml @@ -0,0 +1,86 @@ +# This workflow will build and push a new container image to Amazon ECR, +# and then will deploy a new task definition to Amazon ECS, when a release is created +# +# To use this workflow, you will need to complete the following set-up steps: +# +# 1. Create an ECR repository to store your images. +# For example: `aws ecr create-repository --repository-name my-ecr-repo --region us-east-2`. +# Replace the value of `ECR_REPOSITORY` in the workflow below with your repository's name. +# Replace the value of `aws-region` in the workflow below with your repository's region. +# +# 2. Create an ECS task definition, an ECS cluster, and an ECS service. +# For example, follow the Getting Started guide on the ECS console: +# https://us-east-2.console.aws.amazon.com/ecs/home?region=us-east-2#/firstRun +# Replace the values for `service` and `cluster` in the workflow below with your service and cluster names. +# +# 3. Store your ECS task definition as a JSON file in your repository. +# The format should follow the output of `aws ecs register-task-definition --generate-cli-skeleton`. +# Replace the value of `task-definition` in the workflow below with your JSON file's name. +# Replace the value of `container-name` in the workflow below with the name of the container +# in the `containerDefinitions` section of the task definition. +# +# 4. Store an IAM user access key in GitHub Actions secrets named `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY`. +# See the documentation for each action used below for the recommended IAM policies for this IAM user, +# and best practices on handling the access key credentials. +on: + push: + branches: [ master ] + pull_request: + branches: [ master ] + +name: Deploy to Amazon ECS + +jobs: + deploy: + name: Deploy + runs-on: ubuntu-latest + environment: deploy_prod + + steps: + - name: Checkout + uses: actions/checkout@v2 + + - name: Configure AWS credentials + uses: aws-actions/configure-aws-credentials@v1 + with: + aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }} + aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }} + aws-region: ${{ secrets.AWS_REGION_NAME }} + + - name: Login to Amazon ECR + id: login-ecr + uses: aws-actions/amazon-ecr-login@v1 + + - name: Build, tag, and push image to Amazon ECR + id: build-image + env: + ECR_REGISTRY: ${{ steps.login-ecr.outputs.registry }} + ECR_REPOSITORY: ${{ secrets.ECR_REPOSITORY }} + IMAGE_TAG: ${{ github.sha }} + run: | + # Build a docker container and + # push it to ECR so that it can + # be deployed to ECS. + docker build -t $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG -f ./docker/Dockerfile . + docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG + echo "::set-output name=image::$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG" + + - name: Download task definition + run: | + aws ecs describe-task-definition --task-definition ${{ secrets.ECS_TASK_DEFINITION }} --query taskDefinition > task-definition.json + + - name: Fill in the new image ID in the Amazon ECS task definition + id: task-def + uses: aws-actions/amazon-ecs-render-task-definition@v1 + with: + task-definition: task-definition.json + container-name: ${{ secrets.CONTAINER_NAME }} + image: ${{ steps.build-image.outputs.image }} + + - name: Deploy Amazon ECS task definition + uses: aws-actions/amazon-ecs-deploy-task-definition@v1 + with: + task-definition: ${{ steps.task-def.outputs.task-definition }} + service: ${{ secrets.ECS_SERVICE_NAME }} + cluster: ${{ secrets.ECS_CLUSTER }} + wait-for-service-stability: true diff --git a/.github/workflows/aws_develop.yml b/.github/workflows/aws_develop.yml new file mode 100644 index 00000000..a2a60a50 --- /dev/null +++ b/.github/workflows/aws_develop.yml @@ -0,0 +1,84 @@ +# This workflow will build and push a new container image to Amazon ECR, +# and then will deploy a new task definition to Amazon ECS, when a release is created +# +# To use this workflow, you will need to complete the following set-up steps: +# +# 1. Create an ECR repository to store your images. +# For example: `aws ecr create-repository --repository-name my-ecr-repo --region us-east-2`. +# Replace the value of `ECR_REPOSITORY` in the workflow below with your repository's name. +# Replace the value of `aws-region` in the workflow below with your repository's region. +# +# 2. Create an ECS task definition, an ECS cluster, and an ECS service. +# For example, follow the Getting Started guide on the ECS console: +# https://us-east-2.console.aws.amazon.com/ecs/home?region=us-east-2#/firstRun +# Replace the values for `service` and `cluster` in the workflow below with your service and cluster names. +# +# 3. Store your ECS task definition as a JSON file in your repository. +# The format should follow the output of `aws ecs register-task-definition --generate-cli-skeleton`. +# Replace the value of `task-definition` in the workflow below with your JSON file's name. +# Replace the value of `container-name` in the workflow below with the name of the container +# in the `containerDefinitions` section of the task definition. +# +# 4. Store an IAM user access key in GitHub Actions secrets named `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY`. +# See the documentation for each action used below for the recommended IAM policies for this IAM user, +# and best practices on handling the access key credentials. +on: + push: + branches: [ fix/ports-deploy-jag ] + pull_request: + branches: [ fix/ports-deploy-jag ] + +name: Deploy to Amazon ECS + +jobs: + deploy: + name: Deploy + runs-on: ubuntu-latest + environment: deploy + + steps: + - name: Checkout + uses: actions/checkout@v2 + + - name: Configure AWS credentials + uses: aws-actions/configure-aws-credentials@v1 + with: + aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }} + aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }} + aws-region: ${{ secrets.AWS_REGION_NAME }} + + - name: Login to Amazon ECR + id: login-ecr + uses: aws-actions/amazon-ecr-login@v1 + + - name: Build, tag, and push image to Amazon ECR + id: build-image + env: + ECR_REGISTRY: ${{ steps.login-ecr.outputs.registry }} + ECR_REPOSITORY: ${{ secrets.ECR_REPOSITORY }} + IMAGE_TAG: ${{ github.sha }} + run: | + # Build a docker container and + # push it to ECR so that it can + # be deployed to ECS. + docker build -t $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG -f ./docker/Dockerfile . + docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG + echo "::set-output name=image::$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG" + - name: Download task definition + run: | + aws ecs describe-task-definition --task-definition ${{ secrets.ECS_TASK_DEFINITION }} --query taskDefinition > task-definition.json + - name: Fill in the new image ID in the Amazon ECS task definition + id: task-def + uses: aws-actions/amazon-ecs-render-task-definition@v1 + with: + task-definition: task-definition.json + container-name: ${{ secrets.CONTAINER_NAME }} + image: ${{ steps.build-image.outputs.image }} + + - name: Deploy Amazon ECS task definition + uses: aws-actions/amazon-ecs-deploy-task-definition@v1 + with: + task-definition: ${{ steps.task-def.outputs.task-definition }} + service: ${{ secrets.ECS_SERVICE_NAME }} + cluster: ${{ secrets.ECS_CLUSTER }} + wait-for-service-stability: true diff --git a/.gitignore b/.gitignore index 2d333cdd..53eafe8c 100644 --- a/.gitignore +++ b/.gitignore @@ -3,6 +3,8 @@ # compiled output /dist /tmp +.idea/ +package-lock.json # dependencies /node_modules diff --git a/Brocfile.js b/Brocfile.js index c92c963b..689d4b6f 100644 --- a/Brocfile.js +++ b/Brocfile.js @@ -42,7 +42,7 @@ var app = new EmberApp({ }); // FileSaver -app.import('bower_components/FileSaver.js/FileSaver.min.js'); +app.import('bower_components/FileSaver.js/dist/FileSaver.min.js'); // PapaParse app.import('bower_components/papaparse/papaparse.min.js'); @@ -72,6 +72,9 @@ app.import('vendor/networks/col-industry_space.json', { destDir: 'assets/network app.import('vendor/networks/mex-industry_space.json', { destDir: 'assets/networks' }); app.import('vendor/color_mappings/product_section_colors.json', { destDir: 'assets/color_mappings' }); +app.import('vendor/color_mappings/partners_section_colors.json', { destDir: 'assets/color_mappings' }); +app.import('vendor/color_mappings/farmtypes_section_colors.json', { destDir: 'assets/color_mappings' }); +app.import('vendor/color_mappings/agproducts_section_colors.json', { destDir: 'assets/color_mappings' }); app.import('vendor/color_mappings/col-industry_section_colors.json', { destDir: 'assets/color_mappings' }); app.import('vendor/color_mappings/mex-industry_section_colors.json', { destDir: 'assets/color_mappings' }); @@ -79,6 +82,7 @@ app.import('vendor/color_mappings/mex-industry_section_colors.json', { destDir: //Import leaflet-omnivore app.import('vendor/leaflet-omnivore.min.js'); + // Font Awesome // The npm package readme mentions refactoring this as a Broccoli tree, so consider that a TODO app.import('bower_components/font-awesome/fonts/fontawesome-webfont.eot', { destDir: 'fonts' }); diff --git a/app/components/autocomplete-chained-input-datlas.js b/app/components/autocomplete-chained-input-datlas.js new file mode 100644 index 00000000..ae6ab5ac --- /dev/null +++ b/app/components/autocomplete-chained-input-datlas.js @@ -0,0 +1,232 @@ +import Ember from 'ember'; +const {computed, get, observer} = Ember; + +export default Ember.Component.extend({ + i18n: Ember.inject.service(), + buildermodSearchService: Ember.inject.service(), + treemapService: Ember.inject.service(), + search: null, + searchSelect1: 1, + searchSelect2: null, + placeHolder: null, + transitionProduct: 'transitionProduct', + transitionLocation: 'transitionLocation', + transitionLocationRoute: 'transitionLocationRoute', + transitionIndustry: 'transitionIndustry', + transitionLocationProducts: 'transitionLocationProducts', + transitionAgproduct: 'transitionAgproduct', + transitionLivestock: 'transitionLivestock', + transitionNonag: 'transitionNonag', + transitionLanduse: 'transitionLanduse', + runSelectChained: computed('idSelect', 'data_search', 'placeHolder', 'search', 'i18n', function(){ + + this.set('searchSelect1', null); + + let id_select = this.get('idSelect'); + + var $eventSelect = $(`#${id_select}`); + + let type = this.get('type'); + let source = this.get('source'); + let self = this; + var data = this.get('data_search') + var placeholder = this.get("placeHolder") + + if(placeholder === null){ + placeholder = this.get('i18n').t(`pageheader.search_placeholder.first.${type}.${source}`).string + } + + if(data === undefined){ + data = []; + } + + data.unshift({ id: "", text: ""}) + + $eventSelect.select2({ + placeholder: placeholder, + allowClear: true, + theme: 'bootstrap4', + language: this.get('i18n').display, + width: 'auto', + dropdownAutoWidth : true, + data: data, + containerCssClass: "flex-fill", + templateSelection: function (data, container) { + $(data.element).attr('data-key', data.key); + return data.text; + } + }); + + $eventSelect.on("select2:select", function (e) { + + let id = $eventSelect.val(); + self.set('searchSelect1', id); + + let text= $(`#${id_select} option:selected`).text(); + self.set('search', text); + self.set("buildermodSearchService.search", text); + + }); + }), + runSelectChained2: observer('searchSelect1', function(){ + + let id_select2 = this.get('idSelect2'); + let searchSelect1 = this.get('searchSelect1'); + + var $eventSelect2 = $(`#${id_select2}`); + + $eventSelect2.empty(); + + let type = this.get('type'); + let source = this.get('source'); + let self = this; + var data = [] + var placeholder = this.get("placeHolder") + + var data_search = this.get('data_search'); + + + if(data_search === undefined){ + data_search = [] + } + + data_search.filter(item => { + return item.id == searchSelect1 + }).map(item => { + item.chained.map(item => data.push(item)) + }); + + if(placeholder === null){ + placeholder = this.get('i18n').t(`pageheader.search_placeholder.second.${type}.${source}`).string + } + + if(data === undefined){ + data = []; + } + + data.unshift({ id: "", text: ""}) + + $eventSelect2.select2({ + placeholder: placeholder, + allowClear: true, + theme: 'bootstrap4', + language: this.get('i18n').display, + width: 'auto', + dropdownAutoWidth : true, + data: data, + containerCssClass: "flex-fill", + templateSelection: function (data, container) { + $(data.element).attr('data-key', data.key); + return data.text; + } + }); + + $eventSelect2.on("select2:select", function (e) { + let text= $(`#${id_select2} option:selected`).text(); + self.set('search', text); + self.set("buildermodSearchService.search", text); + }); + }), + didInsertElement: function() { + Ember.run.scheduleOnce('afterRender', this , function() { + + this.get("runSelectChained"); + this.get("buildermodSearchService.search"); + + }); + }, + update: observer('i18n.display', 'data_search', 'buildermodSearchService.search', function() { + + let type = this.get('type'); + + if(type === "chained"){ + } + else{ + let id_select = this.get('idSelect'); + var buildermodSearchService = this.get("buildermodSearchService.search"); + var $eventSelect = $(`#${id_select}`); + var placeholder = this.get("placeHolder"); + let type = this.get('type'); + var data = this.get('data_search'); + var self = this; + + if(placeholder === null){ + placeholder = this.get('i18n').t(`pageheader.search_placeholder.${type}`).string + } + + $eventSelect.select2({ + placeholder: placeholder, + allowClear: true, + theme: 'bootstrap4', + language: this.get('i18n').display, + width: 'auto', + dropdownAutoWidth : true, + data: data, + containerCssClass: "flex-fill", + templateSelection: function (data, container) { + $(data.element).attr('data-key', data.key); + return data.text; + } + }); + + let val = $eventSelect.find("option:contains('"+buildermodSearchService+"')").val(); + + if(val !== undefined){ + $eventSelect.val(val).trigger('change.select2'); + let text= $(`#${id_select} option:selected`).text(); + if (type === 'search') { + this.set('search', text); + } + } + + $eventSelect.on("select2:select", function (e) { + + let id = $eventSelect.val(); + let text= $(`#${id_select} option:selected`).text(); + + if(id !== ""){ + if(type === 'location') { + self.sendAction('transitionLocation', id); + } else if (type === 'product') { + self.sendAction('transitionProduct', id); + } else if (type === 'locations_route') { + self.sendAction('transitionLocationRoute', id); + } else if (type === 'industry') { + self.sendAction('transitionIndustry', id); + } else if (type === 'location-product') { + self.sendAction('transitionLocationProducts', id); + } else if (type === 'rural') { + + var key = $(`#${id_select}`).find(':selected').data("key").replace('-', '') + var action = `transition${key.charAt(0).toUpperCase() + key.slice(1)}` + + self.sendAction(action, id); + + } else if (type === 'search') { + self.set('search', text); + self.set("buildermodSearchService.search", text); + } + } + + }); + } + + }), + actions: { + reset: function() { + this.set('search', null); + this.set("buildermodSearchService.search", null); + + let id_select = this.get('idSelect'); + var $eventSelect = $(`#${id_select}`); + let id_select2 = this.get('idSelect2'); + var $eventSelect2 = $(`#${id_select2}`); + + $eventSelect.val(''); + $eventSelect.trigger('change'); + this.set("searchSelect1", null); + $eventSelect2.val(''); + $eventSelect2.trigger('change'); + } + } +}); diff --git a/app/components/autocomplete-input-datlas.js b/app/components/autocomplete-input-datlas.js new file mode 100644 index 00000000..a4005849 --- /dev/null +++ b/app/components/autocomplete-input-datlas.js @@ -0,0 +1,199 @@ +import Ember from 'ember'; +const {computed, get, observer} = Ember; + +export default Ember.Component.extend({ + i18n: Ember.inject.service(), + buildermodSearchService: Ember.inject.service(), + treemapService: Ember.inject.service(), + search: null, + placeHolder: null, + transitionProduct: 'transitionProduct', + transitionLocation: 'transitionLocation', + transitionLocationRoute: 'transitionLocationRoute', + transitionIndustry: 'transitionIndustry', + transitionLocationProducts: 'transitionLocationProducts', + transitionProductsRoute: 'transitionProductsRoute', + transitionAgproduct: 'transitionAgproduct', + transitionLivestock: 'transitionLivestock', + transitionNonag: 'transitionNonag', + transitionLanduse: 'transitionLanduse', + runSelect: computed('idSelect', 'data_search', 'placeHolder', 'search', 'i18n', function(){ + + let id_select = this.get('idSelect'); + var $eventSelect = $(`#${id_select}`); + let type = this.get('type'); + let self = this; + var data = this.get('data_search') + var placeholder = this.get("placeHolder") + + + $eventSelect.find('option').remove().end(); + $eventSelect.append($('
The origin of an export is established in two stages. First, the department of origin is defined as the last place of processing, assembly or packaging, according with DIAN. Then, export values are distributed among municipalities according with the composition of employment of the exporting firm based on PILA (for firms without this information the value is assigned to the capital of department). In the case of petroleum oil (2709) and gas (2711), total export values were distributed by origin according to production by municipality (sources: Hydrocarbons National Agency and Colombian Petroleum Association), and in the case of oil refined products (2710), according to value added by municipality (industries 2231, 2322 and 2320 SIIC revision 3, Annual Manufacturing Survey, DANE).
\u00a0Export totals by product may not correspond to official data because the following are excluded: (a) exports lacking information on the industry of the exporter and/or the department or municipality of origin, and (b) exports for which DIAN reports free zones as the place of destination; while the following are included: (c) exports from free zones, which DIAN does not include in those export totals.
In a similar fashion, import totals by product may not correspond to official data because the following are excluded: (a) imports lacking information on the department or municipality of destination, and (b) imports for which DIAN reports free zones as the place of origin; while the following are included: (c) imports done by free zones, which DIAN does not include in those import totals.
A file that describes the correspondence between the HS version used by DIAN and HS 1992 can be found here.
Included here is a file with the list of products in the Harmonized System that are not represented in the product space (for reasons explained in \"Calculation Methods\").", + "downloads.trade_copy": "The source of all data on exports and imports by department and municipality is DIAN\u2019s Customs Data (DIAN is the National Tax and Customs Authority). Colombian Customs uses the product classification NANDINA, which matches the Harmonized System (HS) classification at the 6-digit level. We then standardize that to HS 1992 in order to fix any version inconsistencies across the years in order to be able to view the data over time. The list of products can be found in the downloadable databases for exports and imports.The origin of an export is established in two stages. First, the department of origin is defined as the last place of processing, assembly or packaging, according with DIAN. Then, export values are distributed among municipalities according with the composition of employment of the exporting firm based on PILA (for firms without this information the value is assigned to the capital of department). In the case of petroleum oil (2709) and gas (2711), total export values were distributed by origin according to production by municipality (sources: Hydrocarbons National Agency and Colombian Petroleum Association), and in the case of oil refined products (2710), according to value added by municipality (industries 2231, 2322 and 2320 SIIC revision 3, Annual Manufacturing Survey, DANE).
\u00a0Export totals by product may not correspond to official data because the following are excluded: (a) exports lacking information on the industry of the exporter and/or the department or municipality of origin, and (b) exports for which DIAN reports free zones as the place of destination; while the following are included: (c) exports from free zones, which DIAN does not include in those export totals.
In a similar fashion, import totals by product may not correspond to official data because the following are excluded: (a) imports lacking information on the department or municipality of destination, and (b) imports for which DIAN reports free zones as the place of origin; while the following are included: (c) imports done by free zones, which DIAN does not include in those import totals.
A file that describes the correspondence between the HS version used by DIAN and HS 1992 can be found here.
Included here is a file with the list of products in the Harmonized System that are not represented in the product space (for reasons explained in \"Calculation Methods\").", "downloads.trade_head": "Trade data (DIAN)", "downloads.trade_row_1": "Exports, imports and export complexity indicators ({{yearRange}})", "downloads.trade_row_2": "Exports and imports with country of destination and origin ({{yearRange}})", @@ -167,8 +167,8 @@ export default { "graph_builder.builder_mod_header.location.products.import_value": "Total imports", "graph_builder.builder_mod_header.location.products.scatter": "Complexity, distance and opportunity gain of potential export products", "graph_builder.builder_mod_header.location.products.similarity": "Export products with revealed comparative advantage >1 (colored) and <1 (grey)", - "graph_builder.builder_mod_header.nonag.departments.num_farms": "Number of UPNAs", - "graph_builder.builder_mod_header.nonag.municipalities.num_farms": "Number of UPNAs", + "graph_builder.builder_mod_header.nonag.departments.num_farms": "Number of production units", + "graph_builder.builder_mod_header.nonag.municipalities.num_farms": "Number of production units", "graph_builder.builder_mod_header.product.cities.export_value": "Total Exports", "graph_builder.builder_mod_header.product.cities.import_value": "Total Imports", "graph_builder.builder_mod_header.product.departments.export_value": "Total Exports", @@ -183,17 +183,17 @@ export default { "graph_builder.builder_questions.export": "Questions: Exports", "graph_builder.builder_questions.import": "Questions: Imports", "graph_builder.builder_questions.industry": "Questions: Industries", - "graph_builder.builder_questions.landUse": "Questions: Land Use ", - "graph_builder.builder_questions.land_harvested": "Questions: Land Harvested", - "graph_builder.builder_questions.land_sown": "Questions: Land Sown", - "graph_builder.builder_questions.livestock_num_farms": "Questions: Number of UPAs", - "graph_builder.builder_questions.livestock_num_livestock": "Questions: Number of livestock", + "graph_builder.builder_questions.landUse": "Land Use ", + "graph_builder.builder_questions.land_harvested": "Land Harvested", + "graph_builder.builder_questions.land_sown": "Land Sown", + "graph_builder.builder_questions.livestock_num_farms": "Number of UPAs", + "graph_builder.builder_questions.livestock_num_livestock": "Number of livestock", "graph_builder.builder_questions.location": "Questions: Locations", - "graph_builder.builder_questions.nonag": "Questions: Non-agricultural Activities", + "graph_builder.builder_questions.nonag": "Non-agricultural Activities", "graph_builder.builder_questions.occupation": "Questions: Occupations", "graph_builder.builder_questions.partner": "Questions: Partners", "graph_builder.builder_questions.product": "Questions: Products", - "graph_builder.builder_questions.production_tons": "Questions: Production", + "graph_builder.builder_questions.production_tons": "Production", "graph_builder.builder_questions.rural": "Questions: Rural activities", "graph_builder.builder_questions.wage": "Questions: Total Wages", "graph_builder.change_graph.geo_description": "Map the data", @@ -217,6 +217,7 @@ export default { "graph_builder.download.employment_growth": "Employment growth rate ({{yearRange}})", "graph_builder.download.export": "Export", "graph_builder.download.export_num_plants": "Firm number", + "graph_builder.download.import_num_plants": "Firm number", "graph_builder.download.export_rca": "Revealed comparative advantage", "graph_builder.download.export_value": "Exports, USD", "graph_builder.download.farmtype": "Type of UPA", @@ -257,7 +258,7 @@ export default { "graph_builder.explanation.agproduct.municipalities.land_sown": "Shows the composition of locations that sow this agricultural product, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", "graph_builder.explanation.agproduct.municipalities.production_tons": "Shows the composition of locations that produce this agricultural product, by tons produced. Source: Agronet (2017), Ministerio de Agricultura. Link", "graph_builder.explanation.hide": "Hide", - "graph_builder.explanation.industry.cities.employment": "Shows the composition by department of formal employment in the industry. Source: PILA.", + "graph_builder.explanation.industry.cities.employment": "Shows the composition by city of formal employment in the industry. Source: PILA.", "graph_builder.explanation.industry.cities.wages": "Shows the composition by department of total wages paid by the industry. Source: PILA.", "graph_builder.explanation.industry.departments.employment": "Shows the composition by department of formal employment in the industry. Source: PILA.", "graph_builder.explanation.industry.departments.wages": "Shows the composition by department of total wages paid by the industry. Source: PILA.", @@ -297,6 +298,7 @@ export default { "graph_builder.explanation.product.partners.import_value": "Shows where Colombia imports this product from, nested by world regions. Source: DIAN.", "graph_builder.explanation.show": "Show", "graph_builder.multiples.show_all": "Show All", + "graph_builder.types": "Available graphics", "graph_builder.page_title.agproduct.departments.land_harvested": "What departments harvest this agricultural product?", "graph_builder.page_title.agproduct.departments.land_sown": "What departments sow this agricultural product?", "graph_builder.page_title.agproduct.departments.production_tons": "What departments produce this agricultural product?", @@ -419,7 +421,7 @@ export default { "graph_builder.settings.rca.greater": "> 1", "graph_builder.settings.rca.less": "< 1", "graph_builder.settings.to": "to", - "graph_builder.settings.year": "Years", + "graph_builder.settings.year": "Years selector", "graph_builder.settings.year.next": "Next", "graph_builder.settings.year.previous": "Previous", "graph_builder.table.agproduct": "Agricultural Product", @@ -528,6 +530,8 @@ export default { "index.complexity_head": "The complexity advantage", "index.complexity_subhead": "Countries that export complex products, which require a lot of knowledge, grow faster than those that export raw materials. Using the methods of measuring and visualizing economic complexity developed by Harvard University, Datlas helps to explore the production and export possibilities of every city and department in Colombia.", "index.country_profile": "Read the profile for Colombia", + "index.country_profile_p1": "Read the profile", + "index.country_profile_p2": "Of colombia", "index.dropdown.industries": "461,488", "index.dropdown.locations": "41,87,34,40", "index.dropdown.products": "1143,87", @@ -536,8 +540,13 @@ export default { "index.future_subhead": "Scatterplots and network diagrams help find the untapped markets best suited to a city or a department.", "index.graphbuilder.id": "87", "index.header_h1": "The Colombian Atlas of Economic Complexity", + "index.header_h1_add": "You want to know", + "index.header_h1_p1": "The colombian atlas of", + "index.header_h1_p2": "Economic complexity", "index.header_head": "You haven\u2019t seen Colombia like this before", "index.header_subhead": "Visualize the possibilities for industries, exports and locations across Colombia.", + "index.header_subhead_add": "Which sectors employ more people in Bogota?", + "index.button_more_information": "More information", "index.industry_head": "Learn about an industry", "index.industry_q1": "Where in Colombia does the chemical industry employ the most people?", "index.industry_q1.id": "461", @@ -562,9 +571,12 @@ export default { "index.profiles_cta": "Read the profile for Antioquia", "index.profiles_head": "Start with our profiles", "index.profiles_subhead": "Just the essentials, presented as a one-page summary", - "index.questions_head": "We\u2019re not a crystal ball, but we can answer a lot of questions", + "index.questions_head": "New 2016 update!See page \"About the data\" for further information about sources, computational methods of the complexity variables and downloadable databases.
A city is a metropolitan area or a municipality with more than 50,000 inhabitants, 75% of whom reside in the main urban location (cabecera). There are 62 cities (19 metropolitan areas comprising 115 municipalities, plus 43 other cities of just one municipality). The concept of city is relevant because Datlas presents complexity indicators by department and city, but not by municipality.
Complexity is the amount and sophistication of knowhow required to produce something. The concept of complexity is central to Datlas because productivity and growth everywhere depend on firms to successfully produce and export goods and services that require skills and knowledge that are diverse and unique. Complexity can be measured by location, by industry or by export product.
Measures the potential of a location to reach higher complexity levels. The measure accounts for the level of complexity of the industries (or exports) along with the distance of how close the productive capabilities that these industries require are to its current industries (or exports). More specifically, it measures the likelihood of different industries (or exports) appearing and the value of their added complexity. Higher outlook values indicate \u201ccloser distance\u201d to more, and more complex, industries (or exports).
Industry complexity outlook values are computed for departments and cities, not for the rest of municipalities. Export complexity outlook values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
DANE is the National Statistical Office. It is the source of all data on GDP and population used by Datlas.
DIAN is the National Tax and Customs Authority. It is the source of all data on exports and imports by department and municipality in Datlas.
A measure of a location\u2019s ability to enter a specific industry or export, as determined by its current productive capabilities. Also known as a capability distance, the measure accounts for the similarity between the capabilities required by an industry or export and the capabilities already present in a location\u2019s industries or exports. Where a new industry or export requires many of the same capabilities already present in a location\u2019s industries or exports, the product is considered \u201ccloser\u201d or of a shorter \u201cdistance\u201d to acquire the missing capabilities to produce it. New industries or exports of a further distance require larger sets of productive capabilities that do not exist in the location and are therefore riskier ventures or less likely to be sustained. Thus, distance reflects the proportion of the productive knowledge necessary for an industry or export that a location does not have. This is measured by the proximity between industries or exports, or the probability that two industries or exports will both be present in a location, as embodied by the industry space and product space, respectively.
Industry distance values are computed for departments and cities, but not for the rest of municipalities. Export distance values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
A measure of how many different types of products a place is able to produce. The production of a good requires a specific set of know-how; therefore, a country\u2019s total diversity is another way of expressing the amount of collective know-how that a place has.
A measure of the sophistication of the productive capabilities of a location based on the diversity and ubiquity of its industries or exports. A location with high complexity produces or exports goods and services that few other locations produce. Highly complex locations tend to be more productive and generate higher wages and incomes. Countries with export baskets more sophisticated than what is expected for their income level (such as China) tend to grow faster than those where the opposite is true (such as Greece).
Industry ECI values are computed for departments and cities, but not for the rest of municipalities. Export ECI values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
Formal employment is defined as employment covered by the health social security system and/or the pension system. The self-employed are not included. Formal wages are those reported by firms to that aim. Formal employment reported is the number of formal employees in an average month. Formality rate is defined as formal employment divided by population older than 15. Employment and wage data are taken from PILA. Population data comes from DANE.
A measure of the amount of productive capabilities that an industry requires to operate. The ICI and the Product Complexity Index (PCI) are closely related, but are measured through independent datasets and classification systems as the PCI is computed only for internationally tradable goods, while the ICI is calculated for all industries that generate formal employment, including the public sector. Industries are complex when they require a sophisticated level of productive knowledge, such as many financial services and pharmaceutical industries, with many individuals with distinct specialized knowledge interacting in a large organization. Complexity of the industry is measured by calculating the average diversity of locations that hold the industry and the average ubiquity of the industries that those locations hold. The formal employment data required for these calculations comes from the PILA dataset held by the Ministry of Health.
Colombia\u2019s industry classification system is a modified version of the International Standard Industrial Classification of All Economic Activities (ISIC). Datlas shows industry information at two- and four-digit level. All industry data come from PILA. Following national accounting conventions, workers hired by temporary employment firms are classified in the labor recruitment industry (7491), not in the industry of the firm where they physically work.
A visualization that depicts how similar/dissimilar the productive knowledge requirements are between industries. Each dot represents an industry and each link between a pair of industries indicates that they require similar productive capabilities to operate. Colored dots are industries with revealed comparative advantage larger than one. When an industry is selected, the map shows the industries that require similar productive capabilities. An industry with more links offers greater potential for diversification across shared capabilities. Thus the number of links that existing industries share to untapped, complex industries determines the complexity outlook of the location. The Colombian industry similarity space is based on formal employment data by industry and municipality from the PILA dataset of the Ministry of Health.
A metropolitan area is a combination of two or more municipalities that are connected through relatively large commuting flows (irrespective of their size or contiguity). A municipality must send at least 10% of its workers as daily commuters to the rest of the metropolitan area municipalities to be included.
Based on this definition there are 19 metropolitan areas in Colombia, which comprise 115 municipalities. The resulting metro areas, which are distinct from official measures, are computed with the methodology of G. Duranton (2013): \u201cDelineating metropolitan areas: Measuring spatial labour market networks through commuting patterns.\u201d Wharton School, University of Pennsylvania.
Occupations are classified according to the Occupational Information Network Numerical Index (ONET). All data on occupations (wages offered by occupation, occupational structure by industry, and education level required by occupation) come from job vacancy announcements placed by firms in public and private Internet job sites during 2014. The data were processed by Jeisson Arley C\u00e1rdenas Rubio (Universidad del Rosario, Bogot\u00e1) and Jaime Mauricio Monta\u00f1a Doncel (Paris School of Economics).
Measures how much a location could benefit by developing a particular industry (or export). Also known also as \u201cstrategic value,\u201d the measure accounts for the distances to all other industries (or exports) that a location does not currently produce with revealed comparative advantage larger than one and their respective complexities. Opportunity gain quantifies how a new industry (or export) can open up links to more, and more complex, products. Thus, the measure calculates the value of an industry (or export) based on the paths it opens to industrial expansion into more complex sectors.
Industry opportunity gain values are computed for departments and cities, but not for the rest of municipalities. Export opportunity gain values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
PILA is the Integrated Report of Social Security Contributions, managed by the Ministry of Health. It is the main source of industry data. It contains information on formal employment, wages and number of firms by municipality and industry.
Measures the amount of productive capabilities required to manufacture a product. Complex exports, which include many chemical and machinery products, require a sophisticated level, and diverse base, of productive knowledge, with many individuals with distinct specialized knowledge interacting in a large organization. This contrasts with low complexity exports, like coffee, which require much less basic productive knowledge that can be found in a family-run business. UN Comtrade data are used to compute the complexity of export products.
A visualization that depicts how similar/dissimilar the productive knowledge requirements are between export products. Each dot represents a product and each link between a pair of products indicates that the two products require similar capabilities in their production. Colored dots are exports with revealed comparative advantage larger than one. When a product is selected, the map shows the products that require similar productive capabilities. A product with more links offers greater potential for diversification across shared capabilities. Thus the number of links that existing products share to complex products that a location does not currently produce determines the complexity outlook of its exports.
The shape of the space is based on international trade data for 192 countries over 50 years. See The International Atlas of Economic Complexity.
Measures the relative size of an industry or an export product in a location. RCA is not a measure of productive efficiency or competitiveness, but just a \u201clocation quotient\u201d, as is often referred to. RCA is computed as the ratio between an industry\u2019s share of total formal employment in a location and the share of that industry\u2019s total formal employment in Colombia as a whole. For instance, if the chemical industry generates10% of a city\u2019s employment, while it generates only 1% of total employment in Colombia, the RCA of the industry in the city is 10. For exports, RCA is the ratio between the share of the export in the export basket of the location and its share in total world trade. If this ratio is larger than 1, the location is said to have revealed comparative advantage in the industry or export. For instance, if a department\u2019s coffee exports are 30% of its exports but coffee accounts for just 0.3% of world trade, the department\u2019s RCA in coffee is 100.
A measure of the number of places that are able to make a product.
", + "about.glossary_name": "Glossary", + "about.project_description.cid.header": "CID and the Growth Lab", + "about.project_description.cid.p1": "This project was developed by the Center for International Development at Harvard University, under the leadership of Professor Ricardo Hausmann.", + "about.project_description.cid.p2": "The Center for International Development (CID) at Harvard University works to advance the understanding of development challenges and offer viable, inclusive solutions to problems of global poverty. The Growth Lab is one of CID\u2019s core research programs.", + "about.project_description.contact.header": "Contact information", + "about.project_description.contact.link": "Datlascolombia@bancoldex.com", + "about.project_description.founder1.header": "Banc\u00f3ldex", + "about.project_description.founder1.p": "Banc\u00f3ldex is the entrepreneurial development bank of Colombia. It is committed to developing financial and non-financial instruments geared to enhance the competitiveness, productivity, growth and internationalization of Colombian enterprises. Leveraging on its unique relational equity and market position, Banc\u00f3ldex manages financial assets, develops access solutions to financing and deploys innovative capital solutions, to foster and accelerate company growth. Besides offering traditional loans, Banc\u00f3ldex has been appointed to implement several development program such as iNNpulsa Colombia, iNNpulsa Mipyme, Banca de las Oportunidades, and the Productive Transformation Program, all of them, in an effort to consolidate an integrated offer to promote Colombian business environment and overall competitiveness. Datlas elaborates on the work that Banc\u00f3ldex has been undertaking through its Productive Transformation Program and INNpulsa Colombia initiatives.", + "about.project_description.founder2.header": "Mario Santo Domingo Foundation", + "about.project_description.founder2.p": "Created in 1953, the Mario Santo Domingo Foundation (FMSD) is a non-profit organization dedicated to implementing community development programs in Colombia. FMSD decided to concentrate its main efforts in the construction of affordable housing within a Community Development Model, named Integral Development of Sustainable Communities (DINCS in its Spanish initials) and designed by the FMSD as a response to the large housing deficit in Colombia. Through this program, the FMSD delivers social support for families, and social infrastructure and urban development for the less privileged. FMSD also supports entrepreneurs in the Northern region of Colombia and in Bogot\u00e1 through its Microfinance Unit which provides training and financial services such as microcredit. More than 130,000 entrepreneurs have received loans from the Foundation since its launch in 1984. The FMSD works also to identify alliances and synergies between the public and private sectors in critical social development areas such as early childhood, environmental sustainability, disaster attention, education and health.", + "about.project_description.founders.header": "Founding Partners", + "about.project_description.founders.p": "This project is funded by Banc\u00f3ldex and Fundaci\u00f3n Mario Santo Domingo ", + "about.project_description.github": "See our code", + "about.project_description.intro.p1": "In Colombia, income gaps between regions are huge and have been growing: new job opportunities are increasingly concentrated in the metropolitan areas of Bogot\u00e1, Medell\u00edn and Cali, as well as a few places where oil and other minerals are extracted. The average income of residents of Bogot\u00e1 is four times that of Colombians living in the 12 poorest departments", + "about.project_description.intro.p2": "Datlas is a diagnostic tool that firms, investors and policymakers can use to improve the productivity of departments, cities and municipalities. It maps the geographical distribution of Colombia\u2019s productive activities and employment by department, metropolitan area and municipality, and identifies exports and industries of potential to increase economic complexity and accelerate growth.", + "about.project_description.intro.p3": "Economic complexity is a measure of the amount of productive capabilities, or knowhow, that a country or a city has. Products are vehicles for knowledge. To make a shirt, one must design it, produce the fabric, cut it, sew it, pack it, market it and distribute it. For a country to produce shirts, it needs people who have expertise in each of these areas. Each of these tasks involves many more capabilities than any one person can master. Only by combining know-how from different people can any one product be made. The road to economic development involves increasing what a society knows how to do. Countries with more productive capabilities can make a greater diversity of products. Economic growth occurs when countries develop the capabilities and productive knowledge to produce more, and more complex, products.", + "about.project_description.intro.p4": "This conceptual approach, which has been applied at the international level in The Atlas of Economic Complexity, is now used in this online tool to investigate export and industry possibilities at the sub-national level in Colombia.", + "about.project_description.letter.header": "Sign up for our Newsletter", + "about.project_description.letter.p": "Sign up for CID\u2019s Research Newsletter to keep up-to-date with related breakthrough research and practical tools, including updates to this site http://www.hks.harvard.edu/centers/cid/news-events/subscribe ", + "about.project_description.team.header": "Academic and Technical Team", + "about.project_description.team.p": "Academic team at Harvard\u2019s CID: Ricardo Hausmann (director), Eduardo Lora (coordinator), Tim Cheston, Andr\u00e9s G\u00f3mez-Li\u00e9vano, Jos\u00e9 Ram\u00f3n Morales, Neave O\u2019Clery and Juan T\u00e9llez. Programming and visualization team at Harvard\u2019s CID: Greg Shapiro (coordinator), Mali Akmanalp, Katy Harris, Quinn Lee, Romain Vuillemot, and Gus Wezerek. Statistical advisor in Colombia: Marcela Eslava (Universidad de los Andes). Compilation and processing of job vacancies data in Colombia: Jeisson Arley C\u00e1rdenas Rubio (Universidad del Rosario, Bogot\u00e1) and Jaime Mauricio Monta\u00f1a Doncel (Paris School of Economics).", + "about.project_description_name": "About", + "census_year": "2014", + "country.show.ag_farmsize": "45.99 ha", + "country.show.dotplot-column": "Departments Across Colombia", + "country.show.eci": "0.037", + "country.show.economic_structure": "Economic Structure", + "country.show.economic_structure.copy.p1": "With a population of 48.1 million (as of May 2015), Colombia is the third largest country in Latin America. Its total GDP in 2014 was Col$756.1 trillion, or US$377.9 billion at the average exchange rate of 2014 (1 US dollar = 2000.6 Colombian pesos). In 2014, income per capita reached Col$15,864,953 or US$7,930. Yearly economic growth since 2008 has averaged 4.3% (or 3.1% in per capita terms).", + "country.show.economic_structure.copy.p2": "Business and financial services contribute 18.8% of GDP, making it the largest industry, followed by governmental, communal and personal services (16.5%) and manufacturing activities (11.2%). Bogot\u00e1 D.C., Antioquia and Valle del Cauca represent nearly half of economic activity, contributing 24.7, 13.1 and 9.2% to total GDP, respectively. However, two oil-producing departments \u2013 Casanare and Meta \u2013 boast the highest GDP per capita. The following graphs provide more details.", + "country.show.employment_wage_occupation": "Formal Employment, Occupations and Wages", + "country.show.employment_wage_occupation.copy.p1": "In 2014, approximately 21.6 million Colombians were occupied in either a formal or an informal job, increasing slightly over 2013, at 21.1 million. The registries of the PILA, which cover the universe of workers who make contributions to the social security system, indicate that 13.3 million workers were occupied for some period in a formal job in 2013. Taking into account the number of months occupied, the effective number of year-round workers in the formal sector in 2013 was 6.7 million. Bogot\u00e1 DC, Antioquia and Valle del Cauca generate, respectively 32.7, 16.7, and 10.7% of (effective) formal employment.", + "country.show.employment_wage_occupation.copy.p2": "The following graphs present more detailed information on the patterns of formal employment and wages paid based on PILA. Also included is data on vacancies announced and wages offered by occupation, computed from job announcements placed by firms on internet sites in 2014.", + "country.show.export_complexity_possibilities": "Export Complexity and Possibilities", + "country.show.export_complexity_possibilities.copy.p1": "The concept of export complexity is similar to that of industry complexity introduced above. It has been found that countries that export products that are relatively complex for their level of economic development tend to grow faster than countries that export relatively simple products. Based on the complexity of its export basket in 2013, Colombia ranks 53rd among 124 countries and is predicted to grow at an annual rate of 3.3% in the period 2013-2023 based on its economic complexity.", + "country.show.export_complexity_possibilities.copy.p2": "The \u2018Product Technological Similarity Space\u2019 (or Product Space) shown below is a graphical network representation of technological similarities across all export products, and is based on international export patterns. Each dot or node represents a product; nodes connected by lines require similar capabilities. More connected products are clustered towards the middle of the network, implying that the capabilities they use can be deployed in the production of many other products.", + "country.show.export_complexity_possibilities.copy.p3": "The highlighted nodes represent the products that Colombia exports in relatively large amounts (more precisely, with revealed comparative advantage higher than one, see the Glossary). Colors represent product groupings (which match the colors used in the industry technological space shown above). The figure further below and the accompanying table show what export products offer the best possibilities for Colombia, given the capabilities the country already has and how \u2018distant\u2019 are those capabilities to the ones needed for each product.", + "country.show.exports": "Exports", + "country.show.exports.copy.p1": "Colombia exported US$54.8 billion in 2014, down from $58.8 billion in 2013 and $60.1 billion in 2012. Its main export partners are the United States, Venezuela, Ecuador and Peru. In 2014, mining products (of which oil, coal and nickel are the largest items) comprised 59.3% of total merchandise exports, manufactured goods contributed 35.6%, and agricultural products totaled 4.6% of exports. The following graphs provide further details.", + "country.show.exports_composition_by_department": "Export Composition by Department ({{year}})", + "country.show.exports_composition_by_products": "Export Composition by Product ({{year}})", + "country.show.gdp": "Col $756,152 T", + "country.show.gdp_per_capita": "Col $15.864.953", + "country.show.industry_complex": "Industry Complexity", + "country.show.industry_complex.copy.p1": "Industry complexity is a measure of the range of capabilities, skills or know-how required by an industry. Industries such as chemicals and machinery are said to be highly complex, because they require a sophisticated level of productive knowledge likely to be present only in large organizations where a number of highly specialized individuals interact. Conversely, industries such as retail trade or restaurants require only a basic level of know-how which may be found at a family-run business. More complex industries contribute to raising productivity and income per- capita. Departments and cities with more complex industries have a more diversified industrial base and tend to create more formal employment.", + "country.show.industry_complex.copy.p2": "The 'IndustryTechnological Similarity Space\u2019 (or Industry Space) shown below is a graphical representation of the similarity between the capabilities and know-how required by pairs of industries. Each dot or node represents an industry; nodes connected by lines require similar capabilities. More connected industries use capabilities that can be deployed in many other industries. Colors represent industry groupings.", + "country.show.industry_space": "Industry Space", + "country.show.nonag_farmsize": "4.53 ha", + "country.show.occupation.num_vac": "Total advertised vacancies (2014)", + "country.show.population": "48.1 million", + "country.show.product_space": "Product Space", + "country.show.total": "Total", + "ctas.csv": "CSV", + "ctas.download": "Download this data", + "ctas.embed": "Embed", + "ctas.excel": "Excel", + "ctas.export": "Export", + "ctas.facebook": "Facebook", + "ctas.pdf": "PDF", + "ctas.png": "PNG", + "ctas.share": "Share", + "ctas.twitter": "Twitter", + "currency": "Col$", + "decimal_delmiter": ".", + "downloads.cta_download": "Download", + "downloads.cta_na": "Not available", + "downloads.head": "About the Data", + "downloads.industry_copy": "PILA (the Integrated Report of Social Security Contributions), managed by the Ministry of Health) is the main source of industry data. It contains information on formal employment, wages and number of firms by municipality and industry. Colombia\u2019s industry classification is a modified version of the International Standard Industrial Classification of All Economic Activities (ISIC). The list of industries can be found in the downloadable databases for industries. The list of industries in the ISIC which are not included in the industry space (for reasons explained in \"Calculation Methods\") can be downloaded here.", + "downloads.industry_head": "Industry data (PILA)", + "downloads.industry_row_1": "Employment, wages, number of firms and complexity indicators ({{yearRange}})", + "downloads.list_of_cities.header": "Lists of departments, cities and municipalities", + "downloads.map.cell": "Map boundary and geo data is from GeoFabrik.de, based on OpenStreetMap data", + "downloads.map.header": "Map Data", + "downloads.occupations_copy": "All data on occupations (wages offered by occupation and industry, and occupational structure by industry) come from job vacancy announcements placed by firms in public and private Internet job sites. Occupations are classified according to the Occupational Information Network Numerical Index (ONET). The data were processed by Jeisson Arley C\u00e1rdenas Rubio, researcher of Universidad del Rosario, Bogot\u00e1, and Jaime Mauricio Monta\u00f1a Doncel, Masters student at the Paris School of Economics.", + "downloads.occupations_head": "Occupations data", + "downloads.occupations_row_1": "Job vacancies and wages offered (2014)", + "downloads.other_copy": "DANE (the National Statistical Office) is the source of all data on GDP and population.", + "downloads.other_head": "Other data (DANE)", + "downloads.other_row_1": "GDP and demographic variables", + "downloads.thead_departments": "Departments", + "downloads.thead_met": "Cities", + "downloads.thead_muni": "Municipalities", + "downloads.thead_national": "National", + "downloads.trade_copy": "The source of all data on exports and imports by department and municipality is DIAN\u2019s Customs Data (DIAN is the National Tax and Customs Authority). Colombian Customs uses the product classification NANDINA, which matches the Harmonized System (HS) classification at the 6-digit level. We then standardize that to HS 1992 in order to fix any version inconsistencies across the years in order to be able to view the data over time. The list of products can be found in the downloadable databases for exports and imports.The origin of an export is established in two stages. First, the department of origin is defined as the last place of processing, assembly or packaging, according with DIAN. Then, export values are distributed among municipalities according with the composition of employment of the exporting firm based on PILA (for firms without this information the value is assigned to the capital of department). In the case of petroleum oil (2709) and gas (2711), total export values were distributed by origin according to production by municipality (sources: Hydrocarbons National Agency and Colombian Petroleum Association), and in the case of oil refined products (2710), according to value added by municipality (industries 2231, 2322 y 2320 SIIC revision 3, Annual Manufacturing Survey, DANE).
\u00a0Export totals by product may not correspond to official data because the following are excluded: (a) exports lacking information on the industry of the exporter and/or the department or municipality of origin, and (b) exports for which DIAN reports free zones as the place of destination; while the following are included: (c) exports from free zones, which DIAN does not include in those export totals.
In a similar fashion, import totals by product may not correspond to official data because the following are excluded: (a) imports lacking information on the department or municipality of destination, and (b) imports for which DIAN reports free zones as the place of origin; while the following are included: (c) imports done by free zones, which DIAN does not include in those import totals.
A file that describes the correspondence between the HS version used by DIAN and HS 1992 can be found here.
Included here is a file with the list of products in the Harmonized System that are not represented in the product space (for reasons explained in \"Calculation Methods\").", + "downloads.trade_head": "Trade data (DIAN)", + "downloads.trade_row_1": "Exports, imports and export complexity indicators ({{yearRange}})", + "downloads.trade_row_2": "Exports and imports with country of destination and origin ({{yearRange}})", + "first_year": "2008", + "general.export_and_import": "Products", + "general.geo": "Geographic map", + "general.glossary": "Glossary", + "general.industries": "Industries", + "general.industry": "industry", + "general.location": "location", + "general.locations": "Locations", + "general.multiples": "Area charts", + "general.occupation": "occupation", + "general.occupations": "Occupations", + "general.product": "product", + "general.scatter": "Scatterplot", + "general.similarity": "Industry Space", + "general.total": "Total", + "general.treemap": "Treemap", + "geomap.center": "4.6,-74.06", + "glossary.head": "Glossary", + "graph_builder.builder_mod_header.agproduct.departments.land_harvested": "Land Harvested (ha)", + "graph_builder.builder_mod_header.agproduct.departments.land_sown": "Land Sown (ha)", + "graph_builder.builder_mod_header.agproduct.departments.production_tons": "Production (tons)", + "graph_builder.builder_mod_header.agproduct.municipalities.land_harvested": "Land Harvested (ha)", + "graph_builder.builder_mod_header.agproduct.municipalities.land_sown": "Land Sown (ha)", + "graph_builder.builder_mod_header.agproduct.municipalities.production_tons": "Production (tons)", + "graph_builder.builder_mod_header.industry.cities.employment": "Total employment", + "graph_builder.builder_mod_header.industry.cities.wage_avg": "Average monthly wages, Col$", + "graph_builder.builder_mod_header.industry.cities.wages": "Total wages, Col$", + "graph_builder.builder_mod_header.industry.departments.employment": "Total employment", + "graph_builder.builder_mod_header.industry.departments.wage_avg": "Average monthly wages, Col$", + "graph_builder.builder_mod_header.industry.departments.wages": "Total wages, Col$", + "graph_builder.builder_mod_header.industry.locations.employment": "Total employment", + "graph_builder.builder_mod_header.industry.locations.wage_avg": "Average monthly wages, Col$", + "graph_builder.builder_mod_header.industry.locations.wages": "Total wages, Col$", + "graph_builder.builder_mod_header.industry.occupations.num_vacancies": "Total advertised vacancies", + "graph_builder.builder_mod_header.landUse.departments.area": "Total Area", + "graph_builder.builder_mod_header.landUse.municipalities.area": "Total Area ", + "graph_builder.builder_mod_header.location.agproducts.land_harvested": "Land harvested (hectares)", + "graph_builder.builder_mod_header.location.agproducts.land_sown": "Land sown (hectares)", + "graph_builder.builder_mod_header.location.agproducts.production_tons": "Production (tons)", + "graph_builder.builder_mod_header.location.farmtypes.num_farms": "Number of farms", + "graph_builder.builder_mod_header.location.industries.employment": "Total employment", + "graph_builder.builder_mod_header.location.industries.scatter": "Complexity,distance and opportunity gain of potential industries", + "graph_builder.builder_mod_header.location.industries.similarity": "Industries with revealed comparative advantage >1 (colored) and <1 (grey)", + "graph_builder.builder_mod_header.location.industries.wages": "Total wages", + "graph_builder.builder_mod_header.location.landUses.area": "Total Area ", + "graph_builder.builder_mod_header.location.livestock.num_farms": "Number of livestock farms", + "graph_builder.builder_mod_header.location.livestock.num_livestock": "Number of livestock", + "graph_builder.builder_mod_header.location.partners.export_value": "Total exports", + "graph_builder.builder_mod_header.location.partners.import_value": "Total imports", + "graph_builder.builder_mod_header.location.products.export_value": "Total exports", + "graph_builder.builder_mod_header.location.products.import_value": "Total imports", + "graph_builder.builder_mod_header.location.products.scatter": "Complexity, distance and opportunity gain of potential export products", + "graph_builder.builder_mod_header.location.products.similarity": "Export products with revealed comparative advantage >1 (colored) and <1 (grey)", + "graph_builder.builder_mod_header.product.cities.export_value": "Total Exports", + "graph_builder.builder_mod_header.product.cities.import_value": "Total Imports", + "graph_builder.builder_mod_header.product.departments.export_value": "Total Exports", + "graph_builder.builder_mod_header.product.departments.import_value": "Total Imports", + "graph_builder.builder_mod_header.product.partners.export_value": "Total exports", + "graph_builder.builder_mod_header.product.partners.import_value": "Total imports", + "graph_builder.builder_nav.header": "More graphs for this {{entity}}", + "graph_builder.builder_nav.intro": "Select a question to see the corresponding graph. If the question has missing parameters ({{icon}}) , you\u2019ll fill those in when you click.", + "graph_builder.builder_questions.city": "Questions: Cities", + "graph_builder.builder_questions.department": "Questions: Departments", + "graph_builder.builder_questions.employment": "Questions: Employment", + "graph_builder.builder_questions.export": "Questions: Exports", + "graph_builder.builder_questions.import": "Questions: Imports", + "graph_builder.builder_questions.industry": "Questions: Industries", + "graph_builder.builder_questions.landUse": "Questions: Land Use ", + "graph_builder.builder_questions.location": "Questions: Locations", + "graph_builder.builder_questions.occupation": "Questions: Occupations", + "graph_builder.builder_questions.partner": "Questions: Partners", + "graph_builder.builder_questions.product": "Questions: Products", + "graph_builder.builder_questions.wage": "Questions: Total Wages", + "graph_builder.change_graph.geo_description": "Map the data", + "graph_builder.change_graph.label": "Change graph", + "graph_builder.change_graph.multiples_description": "Compare growth over time", + "graph_builder.change_graph.scatter_description": "Plot complexity and distance", + "graph_builder.change_graph.similarity_description": "Show revealed comparative advantages", + "graph_builder.change_graph.treemap_description": "See composition at different levels", + "graph_builder.change_graph.unavailable": "Graph is unavailable for this question", + "graph_builder.download.agproduct": "Agricultural Product", + "graph_builder.download.area": "Area", + "graph_builder.download.average_wages": "Avg. monthly wage, Col$", + "graph_builder.download.avg_wage": "Avg. monthly wage, Col$", + "graph_builder.download.code": "Code", + "graph_builder.download.cog": "Opportunity gain", + "graph_builder.download.complexity": "Complexity", + "graph_builder.download.distance": "Distance", + "graph_builder.download.eci": "Export complexity", + "graph_builder.download.employment": "Employment", + "graph_builder.download.employment_growth": "Employment growth rate ({{yearRange}})", + "graph_builder.download.export": "Export", + "graph_builder.download.export_num_plants": "Firm number", + "graph_builder.download.export_rca": "Revealed comparative advantage", + "graph_builder.download.export_value": "Exports, USD", + "graph_builder.download.farmtype": "Farm Type", + "graph_builder.download.gdp_pc_real": "GDP per Capita, Col $", + "graph_builder.download.gdp_real": "GDP, Col $", + "graph_builder.download.import_value": "Imports, USD", + "graph_builder.download.industry": "Industry", + "graph_builder.download.industry_eci": "Industry complexity", + "graph_builder.download.land_harvested": "Land harvested (ha)", + "graph_builder.download.land_sown": "Land sown (ha)", + "graph_builder.download.land_use": "Land Use", + "graph_builder.download.less_than_5": "Less than 5", + "graph_builder.download.livestock": "Livestock", + "graph_builder.download.location": "Location", + "graph_builder.download.monthly_wages": "Avg. monthly wage, Col$", + "graph_builder.download.name": "Name", + "graph_builder.download.num_establishments": "Firm number", + "graph_builder.download.num_farms": "Number of farms", + "graph_builder.download.num_livestock": "Number of livestock", + "graph_builder.download.num_vacancies": "Vacancies", + "graph_builder.download.occupation": "Occupation", + "graph_builder.download.parent": "Parent", + "graph_builder.download.population": "Population", + "graph_builder.download.production_tons": "Production (tons)", + "graph_builder.download.rca": "Revealed comparative advantage", + "graph_builder.download.read_more": "Unfamiliar with any of the indicators above? Look them up in the", + "graph_builder.download.wages": "Total wages, Col$", + "graph_builder.download.year": "Year", + "graph_builder.download.yield_index": "Yield Index", + "graph_builder.download.yield_ratio": "Yield (tons/ha)", + "graph_builder.explanation": "Explanation", + "graph_builder.explanation.agproduct.departments.land_harvested": "Shows the composition of locations that harvest this agricultural product, by area of land harvested. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.departments.land_sown": "Shows the composition of locations that sow this agricultural product, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.departments.production_tons": "Shows the composition of locations that produce this agricultural product, by tons produced. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.land_harvested": "Shows the composition of locations that harvest this agricultural product, by area of land harvested. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.land_sown": "Shows the composition of locations that sow this agricultural product, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.production_tons": "Shows the composition of locations that produce this agricultural product, by tons produced. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.hide": "Hide", + "graph_builder.explanation.industry.cities.employment": "Shows the composition by department of formal employment in the industry. Source: PILA.", + "graph_builder.explanation.industry.cities.wages": "Shows the composition by department of total wages paid by the industry. Source: PILA.", + "graph_builder.explanation.industry.departments.employment": "Shows the composition by department of formal employment in the industry. Source: PILA.", + "graph_builder.explanation.industry.departments.wages": "Shows the composition by department of total wages paid by the industry. Source: PILA.", + "graph_builder.explanation.industry.occupations.num_vacancies": "Shows the composition of vacancies announced in Internet sites and wages offered.", + "graph_builder.explanation.landUse.departments.area": "Shows the composition of locations that use land in this specific way, by area. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.landUse.municipalities.area": "Shows the composition of locations that use land in this specific way, by area. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.agproducts.land_harvested": "Shows the composition of agricultural products of this location, by area of land harvested. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.agproducts.land_sown": "Shows the composition of agricultural products of this location, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.agproducts.production_tons": "Shows the composition of agricultural products of this location, by weight. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.farmtypes.num_farms": "Shows the composition of farms in this location, by type of farm. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.industries.employment": "Shows the industry composition of formal empoyment in the department. Source: PILA.", + "graph_builder.explanation.location.industries.scatter": "Dots represent industries. Upon selecting a dot, a display shows the industry name and its revealed comparative advantage in the location. Colors represent industry groups (see the table). The vertical axis is the Industry Complexity Index and the horizontal axis is the Distance from the existing industries, where shorter distances mean that the location has more of the knowhow needed to develop the industry. The size of the dots is proportional to the Opportunity Gain of the industry for the department, namely the potential that the industry offers for the department to acquire new capabilities that may help to develop other industries. The more interesting industries are the ones located at the top left, especially if the dots are large. Source: calculations by CID based on PILA data. (The glossary offers more detailed explanations of the concepts). ", + "graph_builder.explanation.location.industries.similarity": "The industry technological similarity space (or industry space) shows how similar is the knowhow required by any pair of industries. Each dot represents an industry. Dots connected with a line represent industries that require similar knowhow. Dots colored are industries with revealed comparative advantage (RCA) higher than one in the department or city. Each color corresponds to an industry group (see table). Upon selecting a dot, a display shows the industry name, its RCA and its links to other industries. Source: calculations by CID based on PILA data. (The glossary offers more detailed explanations of the concepts).", + "graph_builder.explanation.location.industries.wages": "Shows the industry composition of total wages paid in the department or city. Source: PILA.", + "graph_builder.explanation.location.landUses.area": "Shows the composition of land uses in this location, by area. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.livestock.num_farms": "Shows the composition of livestock types of this location, by number of farms. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.livestock.num_livestock": "Shows the composition of livestock types of this location, by number of livestock. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.partners.export_value": "Shows the destination country composition of exports of this place, nested by world regions. Source: DIAN.", + "graph_builder.explanation.location.partners.import_value": "Shows the countries from which this location imports products, nested by world regions. Source: DIAN.", + "graph_builder.explanation.location.products.export_value": "Shows the product composition of exports of the department or city. Colors represent product groups (see table). Source: DIAN.", + "graph_builder.explanation.location.products.import_value": "Shows the product composition of imports of the department or city. Colors represent product groups (see table). Source: DIAN.", + "graph_builder.explanation.location.products.scatter": "Dots represent export products. Upon selecting a dot, a display shows the product name and its revealed comparative advantage in the department or city. Colors represent product groups (see the table). The vertical axis is the Product Complexity Index and the horizontal axis is the Distance from the existing exports, where shorter distances mean that the location has more of the knowhow needed to export the product. The dashed line is the average Index of Economic Complexity of the place. The size of the dots is proportional to the Opportunity Gain of the export for the department or city, namely the potential that exporting the product offers for the department or city to acquire new capabilities that may help to export other products. The more interesting export products are the ones located at the top left, especially if the dots are large. Source: calculations by CID based on DIAN data. (The glossary offers more detailed explanations of the concepts). ", + "graph_builder.explanation.location.products.similarity": "The product technological similarity space (or product space) shows how similar is the knowhow required by any pair of export products. Each dot represents an export product. Dots connected with a line represent products that require similar knowhow. Dots colored are products with revealed comparative advantage (RCA) higher than one in the department or city. Each color corresponds to an export group (see table). Upon selecting a dot, a display shows the product name, its RCA and its links to other products. Source: calculations by CID based on DIAN data. (The glossary offers more detailed explanations of the concepts).", + "graph_builder.explanation.product.cities.export_value": "Shows the composition by city of the product exports. Source: DIAN.", + "graph_builder.explanation.product.cities.import_value": "Shows the composition by city of the product imports. Source: DIAN.", + "graph_builder.explanation.product.departments.export_value": "Shows the composition by department of the product exports. Source: DIAN.", + "graph_builder.explanation.product.departments.import_value": "Shows the composition by department of the product imports. Source: DIAN.", + "graph_builder.explanation.product.partners.export_value": "Shows where Colombia exports this product to, nested by world regions. Source: DIAN.", + "graph_builder.explanation.product.partners.import_value": "Shows where Colombia imports this product from, nested by world regions. Source: DIAN.", + "graph_builder.explanation.show": "Show", + "graph_builder.multiples.show_all": "Show All", + "graph_builder.page_title.agproduct.departments.land_harvested": "What departments harvest this agricultural product?", + "graph_builder.page_title.agproduct.departments.land_sown": "What departments sow this agricultural product?", + "graph_builder.page_title.agproduct.departments.production_tons": "What departments produce this agricultural product?", + "graph_builder.page_title.agproduct.municipalities.land_harvested": "What municipalities harvest this agricultural product?", + "graph_builder.page_title.agproduct.municipalities.land_sown": "What municipalities sow this agricultural product?", + "graph_builder.page_title.agproduct.municipalities.production_tons": "What municipalities produce this agricultural product?", + "graph_builder.page_title.industry.cities.employment": "What cities in Colombia does this industry employ the most people?", + "graph_builder.page_title.industry.cities.wages": "What cities in Colombia does this industry pay the highest total wages?", + "graph_builder.page_title.industry.departments.employment": "What departments in Colombia does this industry employ the most people?", + "graph_builder.page_title.industry.departments.wages": "What departments in Colombia does this industry pay the highest total wages?", + "graph_builder.page_title.industry.occupations.num_vacancies": "What occupations does this industry employ?", + "graph_builder.page_title.landUse.departments.area": "Which departments have this type of land use?", + "graph_builder.page_title.landUse.municipalities.area": "Which municipalities have this type of land use?", + "graph_builder.page_title.location.agproducts.land_harvested.country": "What agricultural products are harvested in Colombia?", + "graph_builder.page_title.location.agproducts.land_harvested.department": "What agricultural products are harvested in this department?", + "graph_builder.page_title.location.agproducts.land_harvested.municipality": "What agricultural products are harvested in this municipality?", + "graph_builder.page_title.location.agproducts.land_sown.country": "What agricultural products are planted in Colombia?", + "graph_builder.page_title.location.agproducts.land_sown.department": "What agricultural products are planted in this department?", + "graph_builder.page_title.location.agproducts.land_sown.municipality": "What agricultural products are planted in this municipality?", + "graph_builder.page_title.location.agproducts.production_tons.country": "What agricultural products are produced in Colombia?", + "graph_builder.page_title.location.agproducts.production_tons.department": "What agricultural products are produced in this department?", + "graph_builder.page_title.location.agproducts.production_tons.municipality": "What agricultural products are produced in this municipality?", + "graph_builder.page_title.location.destination_by_product.export_value.department": "Where does this department export oil to?", + "graph_builder.page_title.location.destination_by_product.import_value.department": "Where does this department import cars from?", + "graph_builder.page_title.location.farmtypes.num_farms.country": "What types of farms are there in Colombia?", + "graph_builder.page_title.location.farmtypes.num_farms.department": "What types of farms are there in this department?", + "graph_builder.page_title.location.farmtypes.num_farms.municipality": "What types of farms are there in this municipality?", + "graph_builder.page_title.location.industries.employment.country": "What industries in Colombia employ the most people?", + "graph_builder.page_title.location.industries.employment.department": "What industries in this department employ the most people?", + "graph_builder.page_title.location.industries.employment.msa": "What industries in this city employ the most people?", + "graph_builder.page_title.location.industries.employment.municipality": "What industries in this municipality employ the most people?", + "graph_builder.page_title.location.industries.scatter.country": "What relatively complex industries have the most possibilities for Colombia?", + "graph_builder.page_title.location.industries.scatter.department": "What relatively complex industries have the most possibilities for this department?", + "graph_builder.page_title.location.industries.scatter.msa": "What relatively complex industries have the most possibilities for this city?", + "graph_builder.page_title.location.industries.scatter.municipality": "What relatively complex industries have the most possibilities for this municipality?", + "graph_builder.page_title.location.industries.similarity.country": "Where is Colombia in the industry space?", + "graph_builder.page_title.location.industries.similarity.department": "Where is this department in the industry space?", + "graph_builder.page_title.location.industries.similarity.msa": "Where is this city in the industry space?", + "graph_builder.page_title.location.industries.similarity.municipality": "Where is this municipality in the industry space?", + "graph_builder.page_title.location.industries.wages.country": "What industries in Colombia are the largest by total wages?", + "graph_builder.page_title.location.industries.wages.department": "What industries in this department are the largest by total wages?", + "graph_builder.page_title.location.industries.wages.msa": "What industries in this city are the largest by total wages?", + "graph_builder.page_title.location.industries.wages.municipality": "What industries in this municipality are the largest by total wages?", + "graph_builder.page_title.location.landUses.area.country": "Which types of land uses are in Colombia?", + "graph_builder.page_title.location.landUses.area.department": "Which types of land uses are in this department?", + "graph_builder.page_title.location.landUses.area.municipality": "Which types of land uses are in this municipality?", + "graph_builder.page_title.location.livestock.num_farms.country": "What kinds of livestock farms does Colombia have?", + "graph_builder.page_title.location.livestock.num_farms.department": "What kinds of livestock farms does this department have?", + "graph_builder.page_title.location.livestock.num_farms.municipality": "What kinds of livestock farms does this municipality have?", + "graph_builder.page_title.location.livestock.num_livestock.country": "What kinds of livestock does Colombia have?", + "graph_builder.page_title.location.livestock.num_livestock.department": "What kinds of livestock does this department have?", + "graph_builder.page_title.location.livestock.num_livestock.municipality": "What kinds of livestock does this municipality have?", + "graph_builder.page_title.location.partners.export_value.country": "What countries does Colombia export to?", + "graph_builder.page_title.location.partners.export_value.department": "What countries does this department export to?", + "graph_builder.page_title.location.partners.export_value.msa": "What countries does this city export to?", + "graph_builder.page_title.location.partners.export_value.municipality": "What countries does this municipality export to?", + "graph_builder.page_title.location.partners.import_value.country": "What countries does Colombia import from?", + "graph_builder.page_title.location.partners.import_value.department": "What countries does this department import from?", + "graph_builder.page_title.location.partners.import_value.msa": "What countries does this city import from?", + "graph_builder.page_title.location.partners.import_value.municipality": "What countries does this municipality import from?", + "graph_builder.page_title.location.products.export_value.country": "What products does Colombia export?", + "graph_builder.page_title.location.products.export_value.department": "What products does this department export?", + "graph_builder.page_title.location.products.export_value.msa": "What products does this city export?", + "graph_builder.page_title.location.products.export_value.municipality": "What products does this municipality export?", + "graph_builder.page_title.location.products.import_value.country": "What products does Colombia import?", + "graph_builder.page_title.location.products.import_value.department": "What products does this department import?", + "graph_builder.page_title.location.products.import_value.msa": "What products does this city import?", + "graph_builder.page_title.location.products.import_value.municipality": "What products does this municipality import?", + "graph_builder.page_title.location.products.scatter.country": "What products have the most potential for Colombia?", + "graph_builder.page_title.location.products.scatter.department": "What products have the most potential for this department?", + "graph_builder.page_title.location.products.scatter.msa": "What products have the most potential for this city?", + "graph_builder.page_title.location.products.scatter.municipality": "What products have the most potential for this municipality?", + "graph_builder.page_title.location.products.similarity.country": "Where is Colombia in the product space?", + "graph_builder.page_title.location.products.similarity.department": "Where is this department in the product space?", + "graph_builder.page_title.location.products.similarity.msa": "Where is this city in the product space?", + "graph_builder.page_title.location.products.similarity.municipality": "Where is this municipality in the product space?", + "graph_builder.page_title.product.cities.export_value": "What cities in Colombia export this product?", + "graph_builder.page_title.product.cities.import_value": "What cities in Colombia import this product?", + "graph_builder.page_title.product.departments.export_value": "What departments in Colombia export this product?", + "graph_builder.page_title.product.departments.import_value": "What departments in Colombia import this product?", + "graph_builder.page_title.product.partners.export_value": "Where does Colombia export this product to?", + "graph_builder.page_title.product.partners.export_value.destination": "Where does {{location}} export {{product}} to?", + "graph_builder.page_title.product.partners.import_value": "Where does Colombia import this product from?", + "graph_builder.page_title.product.partners.import_value.origin": "Where does {{location}} import {{product}} from?", + "graph_builder.questions.label": "Change question", + "graph_builder.recirc.header.industry": "Read the profile for this industry", + "graph_builder.recirc.header.location": "Read the profile for this location", + "graph_builder.recirc.header.product": "Read the profile for this product", + "graph_builder.search.placeholder.agproducts": "Highlight agricultural products in the graph below", + "graph_builder.search.placeholder.cities": "Highlight a city on the graph below", + "graph_builder.search.placeholder.departments": "Highlight a department on the graph below", + "graph_builder.search.placeholder.farmtypes": "Highlight a farm type in the graph below", + "graph_builder.search.placeholder.industries": "Highlight industries on the graph below", + "graph_builder.search.placeholder.landUses": "Highlight a land use on the graph below", + "graph_builder.search.placeholder.livestock": "Highlight a livestock type in the graph below", + "graph_builder.search.placeholder.locations": "Highlight locations on the graph below", + "graph_builder.search.placeholder.municipalities": "Highlight a municipality on the graph below", + "graph_builder.search.placeholder.occupations": "Highlight an occupation on the graph below", + "graph_builder.search.placeholder.partners": "Highlight trade partners on the graph below", + "graph_builder.search.placeholder.products": "Highlight products on the graph below", + "graph_builder.search.submit": "Highlight", + "graph_builder.settings.change_time": "Change time period", + "graph_builder.settings.close_settings": "Save and close", + "graph_builder.settings.label": "Change Characteristics", + "graph_builder.settings.rca": "Revealed comparative advantage", + "graph_builder.settings.rca.all": "All", + "graph_builder.settings.rca.greater": "> 1", + "graph_builder.settings.rca.less": "< 1", + "graph_builder.settings.to": "to", + "graph_builder.settings.year": "Years selector", + "graph_builder.settings.year.next": "Next", + "graph_builder.settings.year.previous": "Previous", + "graph_builder.table.agproduct": "Agricultural Product", + "graph_builder.table.area": "Area ", + "graph_builder.table.average_wages": "Avg. monthly wage, Col$", + "graph_builder.table.avg_wage": "Avg. monthly wage, Col$", + "graph_builder.table.code": "Code", + "graph_builder.table.cog": "Opportunity gain", + "graph_builder.table.coi": "Export complexity outlook", + "graph_builder.table.complexity": "Complexity", + "graph_builder.table.country": "Country", + "graph_builder.table.distance": "Distance", + "graph_builder.table.eci": "Export complexity", + "graph_builder.table.employment": "Employment", + "graph_builder.table.employment_growth": "Employment growth rate ({{yearRange}})", + "graph_builder.table.export": "Export", + "graph_builder.table.export_num_plants": "Firm number", + "graph_builder.table.export_rca": "Revealed comparative advantage", + "graph_builder.table.export_value": "Exports, USD", + "graph_builder.table.farmtype": "Farm Type", + "graph_builder.table.gdp_pc_real": "GDP per Capita", + "graph_builder.table.gdp_real": "GDP", + "graph_builder.table.import_value": "Imports, USD", + "graph_builder.table.industry": "Industry", + "graph_builder.table.industry_coi": "Industry complexity outlook", + "graph_builder.table.industry_eci": "Industry complexity", + "graph_builder.table.land_harvested": "Land harvested (ha)", + "graph_builder.table.land_sown": "Land sown (ha)", + "graph_builder.table.land_use": "Land Use", + "graph_builder.table.less_than_5": "Less than 5", + "graph_builder.table.livestock": "Livestock", + "graph_builder.table.location": "Location", + "graph_builder.table.monthly_wages": "Avg. monthly wage, Col$", + "graph_builder.table.name": "Name", + "graph_builder.table.num_establishments": "Firm number", + "graph_builder.table.num_farms": "Number of farms", + "graph_builder.table.num_livestock": "Number of livestock", + "graph_builder.table.num_vacancies": "Vacancies", + "graph_builder.table.occupation": "Occupation", + "graph_builder.table.parent": "Parent", + "graph_builder.table.parent.country": "Region", + "graph_builder.table.population": "Population", + "graph_builder.table.production_tons": "Production (tons)", + "graph_builder.table.rca": "Revealed comparative advantage", + "graph_builder.table.read_more": "Unfamiliar with any of the indicators above? Look them up in the", + "graph_builder.table.share": "Share", + "graph_builder.table.wages": "Total wages, Col$ (in thousands)", + "graph_builder.table.year": "Year", + "graph_builder.table.yield_index": "Yield Index", + "graph_builder.table.yield_ratio": "Yield (tons/ha)", + "graph_builder.view_more": "View more", + "header.destination": "Destination", + "header.destination_by_products": "Destinations by Products", + "header.employment": "Employment", + "header.export": "Exports", + "header.import": "Imports", + "header.industry": "Industries", + "header.industry_potential": "Potential", + "header.industry_space": "Industry space", + "header.landUse": "Land Use", + "header.land_harvested": "Land Harvested", + "header.land_sown": "Land Sown", + "header.occupation": "Occupations", + "header.occupation.available_jobs": "Job openings", + "header.origin": "Origin", + "header.origin_by_products": "Origin by Products", + "header.overview": "Overview", + "header.partner": "Partners", + "header.product": "Products", + "header.product_potential": "Potential", + "header.product_space": "Product space", + "header.production_tons": "Production", + "header.region": "By department", + "header.subregion": "By city", + "header.subsubregion": "By municipality ", + "header.wage": "Total wages", + "index.builder_cta": "Build graphs about coffee", + "index.builder_head": "Then dive into the graph builder", + "index.builder_subhead": "Create graphs and maps for your presentations", + "index.complexity_caption": "How good is it? Country growth predictions using economic complexity were more than six times as accurate as conventional metrics, such as the Global Competitiveness Index.", + "index.complexity_cta": "Read more about complexity concepts", + "index.complexity_figure.WEF_name": "Global Competitiveness Index", + "index.complexity_figure.complexity_name": "Complexity ranking", + "index.complexity_figure.head": "Growth explained (percent of 10-year variance)", + "index.complexity_head": "The complexity advantage", + "index.complexity_subhead": "Countries that export complex products, which require a lot of knowledge, grow faster than those that export raw materials. Using the methods of measuring and visualizing economic complexity developed by Harvard University, Datlas helps to explore the production and export possibilities of every city and department in Colombia.", + "index.country_profile": "Read the profile for Colombia", + "index.dropdown.industries": "461,488", + "index.dropdown.locations": "41,87,34,40", + "index.dropdown.products": "1143,87", + "index.future_head": "Mapping the future", + "index.future_subhead": "Scatterplots and network diagrams help find the untapped markets best suited to a city or a department.", + "index.graphbuilder.id": "87", + "index.header_h1": "The Colombian Atlas of Economic Complexity", + "index.header_head": "You haven\u2019t seen Colombia like this before", + "index.header_subhead": "Visualize the possibilities for industries, exports and locations across Colombia.", + "index.industry_head": "Learn about an industry", + "index.industry_q1": "Where in Colombia does the chemical industry employ the most people?", + "index.industry_q1.id": "461", + "index.industry_q2": "What occupations are demanded by the chemical industry?", + "index.industry_q2.id": "461", + "index.location_head": "Learn about a location", + "index.location_q1": "What industries in Bogot\u00e1 Met employ the most people?", + "index.location_q1.id": "41", + "index.location_q2": "What products have the most potential in Bogot\u00e1 Met?", + "index.location_q2.id": "41", + "index.location_viewall": "See all questions", + "index.present_head": "Charting the present", + "index.present_subhead": "Use our treemaps, charts, and maps to break down your department, city or municipality\u2019s exports and employment.", + "index.product_head": "Learn about an export", + "index.product_q1": "What places in Colombia export computers?", + "index.product_q1.id": "1143", + "index.product_q2": "What places in Colombia import computers?", + "index.product_q2.id": "1143", + "index.profile.id": "1", + "index.profiles_cta": "Read the profile for Antioquia", + "index.profiles_head": "Start with our profiles", + "index.profiles_subhead": "Just the essentials, presented as a one-page summary", + "index.questions_head": "We\u2019re not a crystal ball, but we can answer a lot of questions", + "index.questions_subhead": "index.questions_subhead", + "index.research_head": "Research featured in", + "industry.show.avg_wages": "Average wages ({{year}})", + "industry.show.employment": "Employment ({{year}})", + "industry.show.employment_and_wages": "Formal employment and wages", + "industry.show.employment_growth": "Employment growth rate ({{yearRange}})", + "industry.show.industries": "Industries", + "industry.show.industry_composition": "Industry composition, {{year}}", + "industry.show.occupation": "Occupations", + "industry.show.occupation_demand": "Occupations most demanded by this industry, 2014", + "industry.show.value": "Value", + "last_year": "2014", + "location.model.country": "Colombia", + "location.model.department": "department", + "location.model.msa": "city", + "location.model.municipality": "municipality", + "location.show.ag_farmsize": "Avg. agricultural farm size (ha)", + "location.show.all_departments": "Compared to the other departments", + "location.show.all_regions": "Compared to the other locations", + "location.show.bullet.gdp_grow_rate": "The GDP growth rate in the period {{yearRange}} was {{gdpGrowth}}, compared to 5.3% for Colombia", + "location.show.bullet.gdp_pc": "{{name}} has a GDP per capita of {{lastGdpPerCapita}}, compared to Col$15.1 million for Colombia in 2014.", + "location.show.bullet.last_pop": "The population is {{lastPop}}, compared to 46.3 million in Colombia as a whole in 2014.", + "location.show.eci": "Export complexity", + "location.show.employment": "Employment ({{lastYear}})", + "location.show.employment_and_wages": "Formal employment and wages", + "location.show.export_possiblities": "Export possiblities", + "location.show.export_possiblities.footer": "Some exports make not be viable due to local factors not considered by the technological similarity approach.", + "location.show.export_possiblities.intro": "We\u2019ve found that countries which export complex products grow faster than those which export simple products. Using the product space presented above, we\u2019ve highlighted \u00a0high potential products for {{name}}, ranked by which have the highest combination of opportunity and complexity.", + "location.show.exports": "Exports ({{year}})", + "location.show.exports_and_imports": "Exports and imports", + "location.show.gdp": "GDP", + "location.show.gdp_pc": "GDP per Capita", + "location.show.growth_annual": "Growth rate ({{yearRange}})", + "location.show.imports": "Imports ({{year}})", + "location.show.nonag_farmsize": "Avg. nonagricultural farm size (ha)", + "location.show.overview": "Overview", + "location.show.population": "Population", + "location.show.subregion.exports": "Export Composition by Municipality ({{year}})", + "location.show.subregion.imports": "Import Composition by Municipality ({{year}})", + "location.show.subregion.title": "Export and Import by Municipality", + "location.show.total_wages": "Total wages ({{lastYear}})", + "location.show.value": "Value", + "pageheader.about": "About", + "pageheader.alternative_title": "Atlas of Economic Complexity", + "pageheader.brand_slogan": "You haven't seen Colombia like this before", + "pageheader.download": "About the Data", + "pageheader.graph_builder_link": "Graph Builder", + "pageheader.profile_link": "Profile", + "pageheader.rankings": "Rankings", + "pageheader.search_link": "Search", + "pageheader.search_placeholder": "Search for a location, product or industry", + "pageheader.search_placeholder.industry": "Search for a industry", + "pageheader.search_placeholder.location": "Search for a location", + "pageheader.search_placeholder.product": "Search for a product", + "rankings.explanation.body": "", + "rankings.explanation.title": "Explanation", + "rankings.intro.p": "Compare departments and cities across Colombia.", + "rankings.pagetitle": "Rankings", + "rankings.section.cities": "Cities", + "rankings.section.departments": "Departments", + "rankings.table-title": "rank", + "search.didnt_find": "Didn\u2019t find what you were looking for? Let us know: Datlascolombia@bancoldex.com", + "search.header": "results", + "search.intro": "Search for the location, product, industry or occupation that you\u2019re interested in", + "search.level.4digit": "HS (1992) four-digit", + "search.level.class": "ISIC four-digit", + "search.level.country": "Country", + "search.level.department": "Department", + "search.level.division": "ISIC two-digit", + "search.level.msa": "City", + "search.level.municipality": "Municipality", + "search.level.parent.4digit": "HS (1992) two-digit", + "search.level.parent.class": "ISIC two-digit", + "search.level.parent.country": "Region", + "search.placeholder": "Type here to search", + "search.results_industries": "Industries", + "search.results_locations": "Locations", + "search.results_products": "Products", + "table.export_data": "Export Data", + "thousands_delimiter": "," +}; diff --git a/app/locales/en-col/translations_2016.js b/app/locales/en-col/translations_2016.js new file mode 100644 index 00000000..499d69a8 --- /dev/null +++ b/app/locales/en-col/translations_2016.js @@ -0,0 +1,657 @@ +export default { + "abbr_billion": "B", + "abbr_million": "M", + "abbr_thousand": "K", + "abbr_trillion": "T", + "about.downloads.explanation.p1": "Download the document explaining how each of the complexity variables of Datlas is computed.", + "about.downloads.explanation.title": "Method of calculation of complexity variables", + "about.downloads.locations": "Lists of departments, cities (including metropolitan areas) and municipalities", + "about.glossary": "See page \"About the data\" for further information about sources, computational methods of the complexity variables and downloadable databases.
A city is a metropolitan area or a municipality with more than 50,000 inhabitants, 75% of whom reside in the main urban location (cabecera). There are 62 cities (19 metropolitan areas comprising 115 municipalities, plus 43 other cities of just one municipality). The concept of city is relevant because Datlas presents complexity indicators by department and city, but not by municipality.
Complexity is the amount and sophistication of knowhow required to produce something. The concept of complexity is central to Datlas because productivity and growth everywhere depend on firms to successfully produce and export goods and services that require skills and knowledge that are diverse and unique. Complexity can be measured by location, by industry or by export product.
Measures the potential of a location to reach higher complexity levels. The measure accounts for the level of complexity of the industries (or exports) along with the distance of how close the productive capabilities that these industries require are to its current industries (or exports). More specifically, it measures the likelihood of different industries (or exports) appearing and the value of their added complexity. Higher outlook values indicate \u201ccloser distance\u201d to more, and more complex, industries (or exports).
Industry complexity outlook values are computed for departments and cities, not for the rest of municipalities. Export complexity outlook values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
DANE is the National Statistical Office. It is the source of all data on GDP and population used by Datlas.
DIAN is the National Tax and Customs Authority. It is the source of all data on exports and imports by department and municipality in Datlas.
A measure of a location\u2019s ability to enter a specific industry or export, as determined by its current productive capabilities. Also known as a capability distance, the measure accounts for the similarity between the capabilities required by an industry or export and the capabilities already present in a location\u2019s industries or exports. Where a new industry or export requires many of the same capabilities already present in a location\u2019s industries or exports, the product is considered \u201ccloser\u201d or of a shorter \u201cdistance\u201d to acquire the missing capabilities to produce it. New industries or exports of a further distance require larger sets of productive capabilities that do not exist in the location and are therefore riskier ventures or less likely to be sustained. Thus, distance reflects the proportion of the productive knowledge necessary for an industry or export that a location does not have. This is measured by the proximity between industries or exports, or the probability that two industries or exports will both be present in a location, as embodied by the industry space and product space, respectively.
Industry distance values are computed for departments and cities, but not for the rest of municipalities. Export distance values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
A measure of how many different types of products a place is able to produce. The production of a good requires a specific set of know-how; therefore, a country\u2019s total diversity is another way of expressing the amount of collective know-how that a place has.
A measure of the sophistication of the productive capabilities of a location based on the diversity and ubiquity of its industries or exports. A location with high complexity produces or exports goods and services that few other locations produce. Highly complex locations tend to be more productive and generate higher wages and incomes. Countries with export baskets more sophisticated than what is expected for their income level (such as China) tend to grow faster than those where the opposite is true (such as Greece).
Industry ECI values are computed for departments and cities, but not for the rest of municipalities. Export ECI values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
Formal employment is defined as employment covered by the health social security system and/or the pension system. The self-employed are not included. Formal wages are those reported by firms to that aim. Formal employment reported is the number of formal employees in an average month. Formality rate is defined as formal employment divided by population older than 15. Employment and wage data are taken from PILA. Population data comes from DANE.
A measure of the amount of productive capabilities that an industry requires to operate. The ICI and the Product Complexity Index (PCI) are closely related, but are measured through independent datasets and classification systems as the PCI is computed only for internationally tradable goods, while the ICI is calculated for all industries that generate formal employment, including the public sector. Industries are complex when they require a sophisticated level of productive knowledge, such as many financial services and pharmaceutical industries, with many individuals with distinct specialized knowledge interacting in a large organization. Complexity of the industry is measured by calculating the average diversity of locations that hold the industry and the average ubiquity of the industries that those locations hold. The formal employment data required for these calculations comes from the PILA dataset held by the Ministry of Health.
Colombia\u2019s industry classification system is a modified version of the International Standard Industrial Classification of All Economic Activities (ISIC). Datlas shows industry information at two- and four-digit level. All industry data come from PILA. Following national accounting conventions, workers hired by temporary employment firms are classified in the labor recruitment industry (7491), not in the industry of the firm where they physically work.
A visualization that depicts how similar/dissimilar the productive knowledge requirements are between industries. Each dot represents an industry and each link between a pair of industries indicates that they require similar productive capabilities to operate. Colored dots are industries with revealed comparative advantage larger than one. When an industry is selected, the map shows the industries that require similar productive capabilities. An industry with more links offers greater potential for diversification across shared capabilities. Thus the number of links that existing industries share to untapped, complex industries determines the complexity outlook of the location. The Colombian industry similarity space is based on formal employment data by industry and municipality from the PILA dataset of the Ministry of Health.
A metropolitan area is a combination of two or more municipalities that are connected through relatively large commuting flows (irrespective of their size or contiguity). A municipality must send at least 10% of its workers as daily commuters to the rest of the metropolitan area municipalities to be included.
Based on this definition there are 19 metropolitan areas in Colombia, which comprise 115 municipalities. The resulting metro areas, which are distinct from official measures, are computed with the methodology of G. Duranton (2013): \u201cDelineating metropolitan areas: Measuring spatial labour market networks through commuting patterns.\u201d Wharton School, University of Pennsylvania.
Occupations are classified according to the Occupational Information Network Numerical Index (ONET). All data on occupations (wages offered by occupation, occupational structure by industry, and education level required by occupation) come from job vacancy announcements placed by firms in public and private Internet job sites during 2014. The data were processed by Jeisson Arley C\u00e1rdenas Rubio (Universidad del Rosario, Bogot\u00e1) and Jaime Mauricio Monta\u00f1a Doncel (Paris School of Economics).
Measures how much a location could benefit by developing a particular industry (or export). Also known also as \u201cstrategic value,\u201d the measure accounts for the distances to all other industries (or exports) that a location does not currently produce with revealed comparative advantage larger than one and their respective complexities. Opportunity gain quantifies how a new industry (or export) can open up links to more, and more complex, products. Thus, the measure calculates the value of an industry (or export) based on the paths it opens to industrial expansion into more complex sectors.
Industry opportunity gain values are computed for departments and cities, but not for the rest of municipalities. Export opportunity gain values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
PILA is the Integrated Report of Social Security Contributions, managed by the Ministry of Health. It is the main source of industry data. It contains information on formal employment, wages and number of firms by municipality and industry.
Measures the amount of productive capabilities required to manufacture a product. Complex exports, which include many chemical and machinery products, require a sophisticated level, and diverse base, of productive knowledge, with many individuals with distinct specialized knowledge interacting in a large organization. This contrasts with low complexity exports, like coffee, which require much less basic productive knowledge that can be found in a family-run business. UN Comtrade data are used to compute the complexity of export products.
A visualization that depicts how similar/dissimilar the productive knowledge requirements are between export products. Each dot represents a product and each link between a pair of products indicates that the two products require similar capabilities in their production. Colored dots are exports with revealed comparative advantage larger than one. When a product is selected, the map shows the products that require similar productive capabilities. A product with more links offers greater potential for diversification across shared capabilities. Thus the number of links that existing products share to complex products that a location does not currently produce determines the complexity outlook of its exports.
The shape of the space is based on international trade data for 192 countries over 50 years. See The International Atlas of Economic Complexity.
Measures the relative size of an industry or an export product in a location. RCA is not a measure of productive efficiency or competitiveness, but just a \u201clocation quotient\u201d, as is often referred to. RCA is computed as the ratio between an industry\u2019s share of total formal employment in a location and the share of that industry\u2019s total formal employment in Colombia as a whole. For instance, if the chemical industry generates10% of a city\u2019s employment, while it generates only 1% of total employment in Colombia, the RCA of the industry in the city is 10. For exports, RCA is the ratio between the share of the export in the export basket of the location and its share in total world trade. If this ratio is larger than 1, the location is said to have revealed comparative advantage in the industry or export. For instance, if a department\u2019s coffee exports are 30% of its exports but coffee accounts for just 0.3% of world trade, the department\u2019s RCA in coffee is 100.
A measure of the number of places that are able to make a product.
Rural production units are classified according to DANE\u2019s Agricultural National Census (2014) in \u201cagriculture production units\u201d, or UPAs, and \u201cnon-agriculture production units\u201d, or UPNAs. While agriculture production (which includes crops and livestock) can only take place in UPAs, both UPAs and UPNAs may have non-agriculture production activities.
For any product and location, land productivity is the yield in tons per hectare of harvested land. Computations are made by agricultural year (adding up the second semester of the previous year and the first semester of the corresponding year) with data taken from the Ministry of Agriculture\u2019s Agronet survey (2017).
A yield index (for any product and location) is the yield divided by the national-level yield. Yield indexes for more than one product (by location) are computed as the weighted average of the yield indices of the products, where the weights are the corresponding lands harvested for each product.
\n", + "about.glossary_name": "Glossary", + "about.project_description.cid.header": "CID and the Growth Lab", + "about.project_description.cid.p1": "This project was developed by the Center for International Development at Harvard University, under the leadership of Professor Ricardo Hausmann.", + "about.project_description.cid.p2": "The Center for International Development (CID) at Harvard University works to advance the understanding of development challenges and offer viable, inclusive solutions to problems of global poverty. The Growth Lab is one of CID\u2019s core research programs.", + "about.project_description.contact.header": "Contact information", + "about.project_description.contact.link": "Datlascolombia@bancoldex.com", + "about.project_description.founder1.header": "Banc\u00f3ldex", + "about.project_description.founder1.p": "Banc\u00f3ldex is the entrepreneurial development bank of Colombia. It is committed to developing financial and non-financial instruments geared to enhance the competitiveness, productivity, growth and internationalization of Colombian enterprises. Leveraging on its unique relational equity and market position, Banc\u00f3ldex manages financial assets, develops access solutions to financing and deploys innovative capital solutions, to foster and accelerate company growth. Besides offering traditional loans, Banc\u00f3ldex has been appointed to implement several development program such as iNNpulsa Colombia, iNNpulsa Mipyme, Banca de las Oportunidades, and the Productive Transformation Program, all of them, in an effort to consolidate an integrated offer to promote Colombian business environment and overall competitiveness. Datlas elaborates on the work that Banc\u00f3ldex has been undertaking through its Productive Transformation Program and INNpulsa Colombia initiatives.", + "about.project_description.founder2.header": "The National Department of Planning", + "about.project_description.founder2.p": "The National Department of Planning (DNP) is an Administrative Department that belongs to the executive branch of public power and reports directly to the President of the Republic. The DNP is a technical institution that promotes the implementation of a strategic vision for the country in the social, economic and environmental fields, through the design, direction and evaluation of public policies to Colombia, also is the responsible of the management, allocation of the public investment and the realization of the plans, programs and projects of the government.", + "about.project_description.founder3.header": "Mario Santo Domingo Foundation", + "about.project_description.founder3.p": "Created in 1953, the Mario Santo Domingo Foundation (FMSD) is a non-profit organization dedicated to implementing community development programs in Colombia. FMSD decided to concentrate its main efforts in the construction of affordable housing within a Community Development Model, named Integral Development of Sustainable Communities (DINCS in its Spanish initials) and designed by the FMSD as a response to the large housing deficit in Colombia. Through this program, the FMSD delivers social support for families, and social infrastructure and urban development for the less privileged. FMSD also supports entrepreneurs in the Northern region of Colombia and in Bogot\u00e1 through its Microfinance Unit which provides training and financial services such as microcredit. More than 130,000 entrepreneurs have received loans from the Foundation since its launch in 1984. The FMSD works also to identify alliances and synergies between the public and private sectors in critical social development areas such as early childhood, environmental sustainability, disaster attention, education and health.", + "about.project_description.founders.header": "Founding Partners", + "about.project_description.founders.p": "This project is funded by Banc\u00f3ldex and Fundaci\u00f3n Mario Santo Domingo ", + "about.project_description.github": "See our code", + "about.project_description.intro.p1": "In Colombia, income gaps between regions are huge and have been growing: new job opportunities are increasingly concentrated in the metropolitan areas of Bogot\u00e1, Medell\u00edn and Cali, as well as a few places where oil and other minerals are extracted. The average income of residents of Bogot\u00e1 is four times that of Colombians living in the 12 poorest departments", + "about.project_description.intro.p2": "Datlas is a diagnostic tool that firms, investors and policymakers can use to improve the productivity of departments, cities and municipalities. It maps the geographical distribution of Colombia\u2019s productive activities and employment by department, metropolitan area and municipality, and identifies exports and industries of potential to increase economic complexity and accelerate growth.", + "about.project_description.intro.p3": "Economic complexity is a measure of the amount of productive capabilities, or knowhow, that a country or a city has. Products are vehicles for knowledge. To make a shirt, one must design it, produce the fabric, cut it, sew it, pack it, market it and distribute it. For a country to produce shirts, it needs people who have expertise in each of these areas. Each of these tasks involves many more capabilities than any one person can master. Only by combining know-how from different people can any one product be made. The road to economic development involves increasing what a society knows how to do. Countries with more productive capabilities can make a greater diversity of products. Economic growth occurs when countries develop the capabilities and productive knowledge to produce more, and more complex, products.", + "about.project_description.intro.p4": "This conceptual approach, which has been applied at the international level in The Atlas of Economic Complexity, is now used in this online tool to investigate export and industry possibilities at the sub-national level in Colombia.", + "about.project_description.letter.header": "Sign up for our Newsletter", + "about.project_description.letter.p": "Sign up for CID\u2019s Research Newsletter to keep up-to-date with related breakthrough research and practical tools, including updates to this site http://www.hks.harvard.edu/centers/cid/news-events/subscribe ", + "about.project_description.team.header": "Academic and Technical Team", + "about.project_description.team.p": "The academic team at Harvard\u2019s CID included Ricardo Hausmann (director), Andr\u00e9s G\u00f3mez- Li\u00e9vano, Eduardo Lora and Sid Ravinutala. In previous phases of the project, Tim Cheston, Jos\u00e9 Ram\u00f3n Morales, Neave O\u2019Clery and Juan T\u00e9llez were part of the academic team. Programming and visualization team at Harvard\u2019s CID: Annie White (coordinator) and Mali Akmanalp. In previous phases of the project, Katy Harris, Quinn Lee, Greg Shapiro, Romain Vuillemot and Gus Wezerek were part of the programming and visualization team. Compilation and processing of job vacancies data in Colombia were done by Jeisson Arley C\u00e1rdenas Rubio (Institute for Employment Research \u2013IER, University of Warwick) and Jaime Mauricio Monta\u00f1a Doncel (Paris School of Economics). Updates by Gustavo Montes and Oscar Hern\u00e1ndez (Banc\u00f3ldex).", + "about.project_description_name": "About", + "census_year": "2014", + "country.show.ag_farmsize": "45.99 ha", + "country.show.agproducts": "Tons Produced Per Crop in Colombia", + "country.show.agproducts.production_tons": "Production (tons)", + "country.show.average_livestock_load": "628 livestock / UPA", + "country.show.dotplot-column": "Departments Across Colombia", + "country.show.eci": "0.037", + "country.show.economic_structure": "Economic Structure", + "country.show.economic_structure.copy.p1": "With a population of 49.5 million (as of December 2017), Colombia is the third largest country in Latin America. Its total GDP in 2016 was Col$772.4 trillion, or US$253.2 billion at the average exchange rate of 2016 (1 US dollar = 3.050 Colombian pesos). In 2016, income per capita reached Col$17.708.353 or US$5.806 . Colombia\u2019s economic growth rate hits 2% in 2016.", + "country.show.economic_structure.copy.p2": "Business and financial services contribute 20.9% of GDP, making it the largest industry, followed by governmental, communal and personal services (15,4%) and manufacturing activities (11,2%). Bogot\u00e1 D.C., Antioquia and Valle del Cauca represent nearly half of economic activity, contributing 25.7, 13.9 and 9.7% to total GDP, respectively. However, two oil-producing departments \u2013 Casanare and Meta \u2013 boast the highest GDP per capita. The following graphs provide more details.", + "country.show.employment_wage_occupation": "Formal Employment, Occupations and Wages", + "country.show.employment_wage_occupation.copy.p1": "The registries of the PILA, which cover the universe of workers who make contributions to the social security system, indicate that the effective number of year-round workers in the formal sector in 2016 was 8.2 million. Bogot\u00e1 DC, Antioquia and Valle del Cauca generate, respectively 31.7%, 17.1%, and 10.8% of (effective) formal employment.", + "country.show.employment_wage_occupation.copy.p2": "The following graphs present more detailed information on the patterns of formal employment and wages paid based on PILA. Also included is data on vacancies announced and wages offered by occupation, computed from job announcements placed by firms on internet sites in 2014.", + "country.show.export_complexity_possibilities": "Export Complexity and Possibilities", + "country.show.export_complexity_possibilities.copy.p1": "The concept of export complexity is similar to that of industry complexity introduced above. It has been found that countries that export products that are relatively complex for their level of economic development tend to grow faster than countries that export relatively simple products. Based on the complexity of its export basket in 2013, Colombia ranks 53rd among 124 countries and is predicted to grow at an annual rate of 3.3% in the period 2013-2023 based on its economic complexity.", + "country.show.export_complexity_possibilities.copy.p2": "The \u2018Product Technological Similarity Space\u2019 (or Product Space) shown below is a graphical network representation of technological similarities across all export products, and is based on international export patterns. Each dot or node represents a product; nodes connected by lines require similar capabilities. More connected products are clustered towards the middle of the network, implying that the capabilities they use can be deployed in the production of many other products.", + "country.show.export_complexity_possibilities.copy.p3": "The highlighted nodes represent the products that Colombia exports in relatively large amounts (more precisely, with revealed comparative advantage higher than one, see the Glossary). Colors represent product groupings (which match the colors used in the industry technological space shown above). The figure further below and the accompanying table show what export products offer the best possibilities for Colombia, given the capabilities the country already has and how \u2018distant\u2019 are those capabilities to the ones needed for each product.", + "country.show.exports": "Exports", + "country.show.exports.copy.p1": "Colombia exported US$32.5 billion in 2016, down from $35.1 billion in 2015 and $57.8 billion in 2016. Its main export partners are the United States, Panama, China and Spain. In 2016, minerals products (of which oil, coal and nickel are the largest items) comprised 51.75% of total merchandise exports, vegetables, foodstuffs and wood contributed 22.57%, and chemical and plastics products totaled 9.78% of exports. The following graphs provide further details.", + "country.show.exports_composition_by_department": "Export Composition by Department ({{year}})", + "country.show.exports_composition_by_products": "Export Composition by Product ({{year}})", + "country.show.gdp": "Col $756,152 T", + "country.show.gdp_per_capita": "Col $15.864.953", + "country.show.industry_complex": "Industry Complexity", + "country.show.industry_complex.copy.p1": "Industry complexity is a measure of the range of capabilities, skills or know-how required by an industry. Industries such as chemicals and machinery are said to be highly complex, because they require a sophisticated level of productive knowledge likely to be present only in large organizations where a number of highly specialized individuals interact. Conversely, industries such as retail trade or restaurants require only a basic level of know-how which may be found at a family-run business. More complex industries contribute to raising productivity and income per- capita. Departments and cities with more complex industries have a more diversified industrial base and tend to create more formal employment.", + "country.show.industry_complex.copy.p2": "The 'IndustryTechnological Similarity Space\u2019 (or Industry Space) shown below is a graphical representation of the similarity between the capabilities and know-how required by pairs of industries. Each dot or node represents an industry; nodes connected by lines require similar capabilities. More connected industries use capabilities that can be deployed in many other industries. Colors represent industry groupings.", + "country.show.industry_space": "Industry Space", + "country.show.landuses": "Land Uses in Colombia", + "country.show.landuses.area": "Total Area (ha)", + "country.show.nonag_farmsize": "4.53 ha", + "country.show.occupation.num_vac": "Total advertised vacancies", + "country.show.population": "48.1 million", + "country.show.product_space": "Product Space", + "country.show.total": "Total", + "ctas.csv": "CSV", + "ctas.download": "Download this data", + "ctas.embed": "Embed", + "ctas.excel": "Excel", + "ctas.export": "Export", + "ctas.facebook": "Facebook", + "ctas.pdf": "PDF", + "ctas.png": "PNG", + "ctas.share": "Share", + "ctas.twitter": "Twitter", + "currency": "Col$", + "decimal_delmiter": ".", + "downloads.cta_download": "Download", + "downloads.cta_na": "Not available", + "downloads.head": "About the Data", + "downloads.industry_copy": "PILA (the Integrated Report of Social Security Contributions), managed by the Ministry of Health) is the main source of industry data. It contains information on formal employment, wages and number of firms by municipality and industry. Colombia\u2019s industry classification is a modified version of the International Standard Industrial Classification of All Economic Activities (ISIC). The list of industries can be found in the downloadable databases for industries. The list of industries in the ISIC which are not included in the industry space (for reasons explained in \"Calculation Methods\") can be downloaded here.", + "downloads.industry_head": "Industry data (PILA)", + "downloads.industry_row_1": "Employment, wages, number of firms and complexity indicators ({{yearRange}})", + "downloads.list_of_cities.header": "Lists of departments, cities and municipalities", + "downloads.map.cell": "Map boundary and geo data is from GeoFabrik.de, based on OpenStreetMap data", + "downloads.map.header": "Map Data", + "downloads.occupations_copy": "All data on occupations (wages offered by occupation and industry, and occupational structure by industry) come from job vacancy announcements placed by firms in public and private Internet job sites. Occupations are classified according to the Occupational Information Network Numerical Index (ONET). The data were processed by Jeisson Arley C\u00e1rdenas Rubio, researcher of Universidad del Rosario, Bogot\u00e1, and Jaime Mauricio Monta\u00f1a Doncel, Masters student at the Paris School of Economics.", + "downloads.occupations_head": "Occupations data", + "downloads.occupations_row_1": "Job vacancies and wages offered (2014)", + "downloads.other_copy": "DANE (the National Statistical Office) is the source of all data on GDP and population.", + "downloads.other_head": "Other data (DANE)", + "downloads.other_row_1": "GDP and demographic variables", + "downloads.rural_agproduct": "Agricultural products", + "downloads.rural_copy": "Two sources of rural data are utilized: DANE\u2019s Agricultural National Census (2014) and the Ministry of Agriculture\u2019s Agronet survey (2017).
Land use classification and the corresponding extensions in hectares (1 hectare = 10,000 squared meters) come from the Census. Rural production units are classified according to the Census in \u201cAgriculture Production Units\u201d, or UPAs, and \u201cNon-Agriculture Production units\u201d, or UPNAs. While agriculture production (which includes crops and livestock) can only take place in UPAs, both UPAs and UPNAs may have non-agriculture production activities. The classification of non-agriculture production activities comes from the Census and does not match the CIIU classification used for industries. UPAs and UPNAs may be informal (not registered as businesses).
Crop information, which comes from Agronet, is for agricultural years 2008-2015 (an agricultural year corresponds to the second semester of the previous year and the first semester of the corresponding year). Land sown and land harvested are measured in hectares and production is measured in metric tons (in all cases, adding the two semesters of the agricultural year). Land productivity (for any product and location) is the yield in tons per hectare of harvested land. A yield index (for any product and location) is the yield divided by the national-level yield. Yield indexes for more than one product (by location) are computed as the weighted average of the yield indices of the products, where the weights are the corresponding lands harvested for each product.
It is important to bear in mind that the information presented in this section for sugarcane corresponds to the yield (ton/ha) of green material and not to sugar. This is because there is a ratio of approximately 10 tons of green material per ton of sugar.
", + "downloads.rural_farmsize": "Size of UPA", + "downloads.rural_farmtype": "Type of UPA", + "downloads.rural_head": "Rural data", + "downloads.rural_landuse": "Land use", + "downloads.rural_livestock": "Livestock", + "downloads.rural_nonag": "Non-agricultural activities", + "downloads.thead_departments": "Departments", + "downloads.thead_met": "Cities", + "downloads.thead_muni": "Municipalities", + "downloads.thead_national": "National", + "downloads.trade_copy": "The source of all data on exports and imports by department and municipality is DIAN\u2019s Customs Data (DIAN is the National Tax and Customs Authority). Colombian Customs uses the product classification NANDINA, which matches the Harmonized System (HS) classification at the 6-digit level. We then standardize that to HS 1992 in order to fix any version inconsistencies across the years in order to be able to view the data over time. The list of products can be found in the downloadable databases for exports and imports.The origin of an export is established in two stages. First, the department of origin is defined as the last place of processing, assembly or packaging, according with DIAN. Then, export values are distributed among municipalities according with the composition of employment of the exporting firm based on PILA (for firms without this information the value is assigned to the capital of department). In the case of petroleum oil (2709) and gas (2711), total export values were distributed by origin according to production by municipality (sources: Hydrocarbons National Agency and Colombian Petroleum Association), and in the case of oil refined products (2710), according to value added by municipality (industries 2231, 2322 and 2320 SIIC revision 3, Annual Manufacturing Survey, DANE).
\u00a0Export totals by product may not correspond to official data because the following are excluded: (a) exports lacking information on the industry of the exporter and/or the department or municipality of origin, and (b) exports for which DIAN reports free zones as the place of destination; while the following are included: (c) exports from free zones, which DIAN does not include in those export totals.
In a similar fashion, import totals by product may not correspond to official data because the following are excluded: (a) imports lacking information on the department or municipality of destination, and (b) imports for which DIAN reports free zones as the place of origin; while the following are included: (c) imports done by free zones, which DIAN does not include in those import totals.
A file that describes the correspondence between the HS version used by DIAN and HS 1992 can be found here.
Included here is a file with the list of products in the Harmonized System that are not represented in the product space (for reasons explained in \"Calculation Methods\").", + "downloads.trade_head": "Trade data (DIAN)", + "downloads.trade_row_1": "Exports, imports and export complexity indicators ({{yearRange}})", + "downloads.trade_row_2": "Exports and imports with country of destination and origin ({{yearRange}})", + "first_year": "2008", + "general.export_and_import": "Products", + "general.geo": "Geographic map", + "general.glossary": "Glossary", + "general.industries": "Industries", + "general.industry": "industry", + "general.location": "location", + "general.locations": "Locations", + "general.multiples": "Area charts", + "general.occupation": "occupation", + "general.occupations": "Occupations", + "general.product": "product", + "general.scatter": "Scatterplot", + "general.similarity": "Industry Space", + "general.total": "Total", + "general.treemap": "Treemap", + "geomap.center": "4.6,-74.06", + "glossary.head": "Glossary", + "graph_builder.builder_mod_header.agproduct.departments.land_harvested": "Land Harvested (ha)", + "graph_builder.builder_mod_header.agproduct.departments.land_sown": "Land Sown (ha)", + "graph_builder.builder_mod_header.agproduct.departments.production_tons": "Production (tons)", + "graph_builder.builder_mod_header.agproduct.municipalities.land_harvested": "Land Harvested (ha)", + "graph_builder.builder_mod_header.agproduct.municipalities.land_sown": "Land Sown (ha)", + "graph_builder.builder_mod_header.agproduct.municipalities.production_tons": "Production (tons)", + "graph_builder.builder_mod_header.industry.cities.employment": "Total employment", + "graph_builder.builder_mod_header.industry.cities.wage_avg": "Average monthly wages", + "graph_builder.builder_mod_header.industry.cities.wages": "Total wages", + "graph_builder.builder_mod_header.industry.departments.employment": "Total employment", + "graph_builder.builder_mod_header.industry.departments.wage_avg": "Average monthly wages", + "graph_builder.builder_mod_header.industry.departments.wages": "Total wages", + "graph_builder.builder_mod_header.industry.locations.employment": "Total employment", + "graph_builder.builder_mod_header.industry.locations.wage_avg": "Average monthly wages", + "graph_builder.builder_mod_header.industry.locations.wages": "Total wages", + "graph_builder.builder_mod_header.industry.occupations.num_vacancies": "Total advertised vacancies", + "graph_builder.builder_mod_header.landUse.departments.area": "Total area", + "graph_builder.builder_mod_header.landUse.municipalities.area": "Total area", + "graph_builder.builder_mod_header.livestock.departments.num_farms": "Number of UPAs", + "graph_builder.builder_mod_header.livestock.departments.num_livestock": "Number of livestock", + "graph_builder.builder_mod_header.livestock.municipalities.num_farms": "Number of UPAs", + "graph_builder.builder_mod_header.livestock.municipalities.num_livestock": "Number of livestock", + "graph_builder.builder_mod_header.location.agproducts.land_harvested": "Land harvested (hectares)", + "graph_builder.builder_mod_header.location.agproducts.land_sown": "Land sown (hectares)", + "graph_builder.builder_mod_header.location.agproducts.production_tons": "Production (tons)", + "graph_builder.builder_mod_header.location.agproducts.yield_ratio": "Productivity (tons/ha)", + "graph_builder.builder_mod_header.location.farmtypes.num_farms": "UPAs and UPNAs", + "graph_builder.builder_mod_header.location.industries.employment": "Total employment", + "graph_builder.builder_mod_header.location.industries.scatter": "Complexity,distance and opportunity gain of potential industries", + "graph_builder.builder_mod_header.location.industries.similarity": "Industries with revealed comparative advantage >1 (colored) and <1 (grey)", + "graph_builder.builder_mod_header.location.industries.wages": "Total wages", + "graph_builder.builder_mod_header.location.landUses.area": "Total area", + "graph_builder.builder_mod_header.location.livestock.num_farms": "Number of livestock UPAs", + "graph_builder.builder_mod_header.location.livestock.num_livestock": "Number of livestock", + "graph_builder.builder_mod_header.location.nonags.num_farms": "Number of UPNAs", + "graph_builder.builder_mod_header.location.partners.export_value": "Total exports", + "graph_builder.builder_mod_header.location.partners.import_value": "Total imports", + "graph_builder.builder_mod_header.location.products.export_value": "Total exports", + "graph_builder.builder_mod_header.location.products.import_value": "Total imports", + "graph_builder.builder_mod_header.location.products.scatter": "Complexity, distance and opportunity gain of potential export products", + "graph_builder.builder_mod_header.location.products.similarity": "Export products with revealed comparative advantage >1 (colored) and <1 (grey)", + "graph_builder.builder_mod_header.nonag.departments.num_farms": "Number of UPNAs", + "graph_builder.builder_mod_header.nonag.municipalities.num_farms": "Number of UPNAs", + "graph_builder.builder_mod_header.product.cities.export_value": "Total Exports", + "graph_builder.builder_mod_header.product.cities.import_value": "Total Imports", + "graph_builder.builder_mod_header.product.departments.export_value": "Total Exports", + "graph_builder.builder_mod_header.product.departments.import_value": "Total Imports", + "graph_builder.builder_mod_header.product.partners.export_value": "Total exports", + "graph_builder.builder_mod_header.product.partners.import_value": "Total imports", + "graph_builder.builder_nav.header": "More graphs for this {{entity}}", + "graph_builder.builder_nav.intro": "Select a question to see the corresponding graph. If the question has missing parameters ({{icon}}) , you\u2019ll fill those in when you click.", + "graph_builder.builder_questions.city": "Questions: Cities", + "graph_builder.builder_questions.department": "Questions: Departments", + "graph_builder.builder_questions.employment": "Questions: Employment", + "graph_builder.builder_questions.export": "Questions: Exports", + "graph_builder.builder_questions.import": "Questions: Imports", + "graph_builder.builder_questions.industry": "Questions: Industries", + "graph_builder.builder_questions.landUse": "Questions: Land Use ", + "graph_builder.builder_questions.land_harvested": "Questions: Land Harvested", + "graph_builder.builder_questions.land_sown": "Questions: Land Sown", + "graph_builder.builder_questions.livestock_num_farms": "Questions: Number of UPAs", + "graph_builder.builder_questions.livestock_num_livestock": "Questions: Number of livestock", + "graph_builder.builder_questions.location": "Questions: Locations", + "graph_builder.builder_questions.nonag": "Questions: Non-agricultural Activities", + "graph_builder.builder_questions.occupation": "Questions: Occupations", + "graph_builder.builder_questions.partner": "Questions: Partners", + "graph_builder.builder_questions.product": "Questions: Products", + "graph_builder.builder_questions.production_tons": "Questions: Production", + "graph_builder.builder_questions.rural": "Questions: Rural activities", + "graph_builder.builder_questions.wage": "Questions: Total Wages", + "graph_builder.change_graph.geo_description": "Map the data", + "graph_builder.change_graph.label": "Change graph", + "graph_builder.change_graph.multiples_description": "Compare growth over time", + "graph_builder.change_graph.scatter_description": "Plot complexity and distance", + "graph_builder.change_graph.similarity_description": "Show revealed comparative advantages", + "graph_builder.change_graph.treemap_description": "See composition at different levels", + "graph_builder.change_graph.unavailable": "Graph is unavailable for this question", + "graph_builder.download.agproduct": "Agricultural Product", + "graph_builder.download.area": "Area", + "graph_builder.download.average_livestock_load": "Livestock load", + "graph_builder.download.average_wages": "Avg. monthly wage, Col$", + "graph_builder.download.avg_wage": "Avg. monthly wage, Col$", + "graph_builder.download.code": "Code", + "graph_builder.download.cog": "Opportunity gain", + "graph_builder.download.complexity": "Complexity", + "graph_builder.download.distance": "Distance", + "graph_builder.download.eci": "Export complexity", + "graph_builder.download.employment": "Employment", + "graph_builder.download.employment_growth": "Employment growth rate ({{yearRange}})", + "graph_builder.download.export": "Export", + "graph_builder.download.export_num_plants": "Firm number", + "graph_builder.download.export_rca": "Revealed comparative advantage", + "graph_builder.download.export_value": "Exports, USD", + "graph_builder.download.farmtype": "Type of UPA", + "graph_builder.download.gdp_pc_real": "GDP per Capita, Col $", + "graph_builder.download.gdp_real": "GDP, Col $", + "graph_builder.download.import_value": "Imports, USD", + "graph_builder.download.industry": "Industry", + "graph_builder.download.industry_eci": "Industry complexity", + "graph_builder.download.land_harvested": "Land harvested (ha)", + "graph_builder.download.land_sown": "Land sown (ha)", + "graph_builder.download.land_use": "Land Use", + "graph_builder.download.less_than_5": "Less than 5", + "graph_builder.download.livestock": "Livestock", + "graph_builder.download.location": "Location", + "graph_builder.download.monthly_wages": "Avg. monthly wage, Col$", + "graph_builder.download.name": "Name", + "graph_builder.download.num_establishments": "Firm number", + "graph_builder.download.num_farms": "Number of Production Units", + "graph_builder.download.num_farms_ag": "Number of UPAs", + "graph_builder.download.num_farms_nonag": "Number of UPNAs", + "graph_builder.download.num_livestock": "Number of livestock", + "graph_builder.download.num_vacancies": "Vacancies", + "graph_builder.download.occupation": "Occupation", + "graph_builder.download.parent": "Parent", + "graph_builder.download.population": "Population", + "graph_builder.download.production_tons": "Production (tons)", + "graph_builder.download.rca": "Revealed comparative advantage", + "graph_builder.download.read_more": "Unfamiliar with any of the indicators above? Look them up in the", + "graph_builder.download.wages": "Total wages, Col$", + "graph_builder.download.year": "Year", + "graph_builder.download.yield_index": "Yield Index", + "graph_builder.download.yield_ratio": "Yield (tons/ha)", + "graph_builder.explanation": "Explanation", + "graph_builder.explanation.agproduct.departments.land_harvested": "Shows the composition of locations that harvest this agricultural product, by area of land harvested. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.departments.land_sown": "Shows the composition of locations that sow this agricultural product, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.departments.production_tons": "Shows the composition of locations that produce this agricultural product, by tons produced. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.land_harvested": "Shows the composition of locations that harvest this agricultural product, by area of land harvested. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.land_sown": "Shows the composition of locations that sow this agricultural product, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.production_tons": "Shows the composition of locations that produce this agricultural product, by tons produced. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.hide": "Hide", + "graph_builder.explanation.industry.cities.employment": "Shows the composition by department of formal employment in the industry. Source: PILA.", + "graph_builder.explanation.industry.cities.wages": "Shows the composition by department of total wages paid by the industry. Source: PILA.", + "graph_builder.explanation.industry.departments.employment": "Shows the composition by department of formal employment in the industry. Source: PILA.", + "graph_builder.explanation.industry.departments.wages": "Shows the composition by department of total wages paid by the industry. Source: PILA.", + "graph_builder.explanation.industry.occupations.num_vacancies": "Shows the composition of vacancies announced in Internet sites and wages offered.", + "graph_builder.explanation.landUse.departments.area": "Shows the composition of locations that use land in this specific way, by area. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.landUse.municipalities.area": "Shows the composition of locations that use land in this specific way, by area. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.livestock.departments.num_farms": "Shows the composition of locations for this livestock type, by number of UPAs. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.livestock.departments.num_livestock": "Shows the composition of locations for this livestock type, by number of livestock. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.livestock.municipalities.num_farms": "Shows the composition of locations for this livestock type, by number of UPAs. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.livestock.municipalities.num_livestock": "Shows the composition of locations for this livestock type, by number of livestock. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.agproducts.land_harvested": "Shows the composition of agricultural products of this location, by area of land harvested. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.agproducts.land_sown": "Shows the composition of agricultural products of this location, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.agproducts.production_tons": "Shows the composition of agricultural products of this location, by weight. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.agproducts.yield_ratio": "Shows the productivity of the UPAs of this location, by agricultural product. Source: Agronet (2017), Ministerio de Agricultura. Link. Information about sugarcane: It is important to bear in mind that the information presented in this section for sugarcane corresponds to the yield (ton/ha) of green material and not to sugar. This is because there is a ratio of approximately 10 tons of green material per ton of sugar.", + "graph_builder.explanation.location.farmtypes.num_farms": "Shows the composition of UPAs in this location, by type of UPA. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.industries.employment": "Shows the industry composition of formal empoyment in the department. Source: PILA.", + "graph_builder.explanation.location.industries.scatter": "Dots represent industries. Upon selecting a dot, a display shows the industry name and its revealed comparative advantage in the location. Colors represent industry groups (see the table). The vertical axis is the Industry Complexity Index and the horizontal axis is the Distance from the existing industries, where shorter distances mean that the location has more of the knowhow needed to develop the industry. The size of the dots is proportional to the Opportunity Gain of the industry for the department, namely the potential that the industry offers for the department to acquire new capabilities that may help to develop other industries. The more interesting industries are the ones located at the top left, especially if the dots are large. Source: calculations by CID based on PILA data. (The glossary offers more detailed explanations of the concepts). ", + "graph_builder.explanation.location.industries.similarity": "The industry technological similarity space (or industry space) shows how similar is the knowhow required by any pair of industries. Each dot represents an industry. Dots connected with a line represent industries that require similar knowhow. Dots colored are industries with revealed comparative advantage (RCA) higher than one in the department or city. Each color corresponds to an industry group (see table). Upon selecting a dot, a display shows the industry name, its RCA and its links to other industries. Source: calculations by CID based on PILA data. (The glossary offers more detailed explanations of the concepts).", + "graph_builder.explanation.location.industries.wages": "Shows the industry composition of total wages paid in the department or city. Source: PILA.", + "graph_builder.explanation.location.landUses.area": "Shows the composition of land uses in this location, by area. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.livestock.num_farms": "Shows the composition of livestock types of this location, by number of UPAs. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.livestock.num_livestock": "Shows the composition of livestock types of this location, by number of livestock. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.nonags.num_farms": "Shows the composition of non-agricultural activities performed in this location, by the number of UPAs that perform them. Source: CNA", + "graph_builder.explanation.location.partners.export_value": "Shows the destination country composition of exports of this place, nested by world regions. Source: DIAN.", + "graph_builder.explanation.location.partners.import_value": "Shows the countries from which this location imports products, nested by world regions. Source: DIAN.", + "graph_builder.explanation.location.products.export_value": "Shows the product composition of exports of the department or city. Colors represent product groups (see table). Source: DIAN.", + "graph_builder.explanation.location.products.import_value": "Shows the product composition of imports of the department or city. Colors represent product groups (see table). Source: DIAN.", + "graph_builder.explanation.location.products.scatter": "Dots represent export products. Upon selecting a dot, a display shows the product name and its revealed comparative advantage in the department or city. Colors represent product groups (see the table). The vertical axis is the Product Complexity Index and the horizontal axis is the Distance from the existing exports, where shorter distances mean that the location has more of the knowhow needed to export the product. The dashed line is the average Index of Economic Complexity of the place. The size of the dots is proportional to the Opportunity Gain of the export for the department or city, namely the potential that exporting the product offers for the department or city to acquire new capabilities that may help to export other products. The more interesting export products are the ones located at the top left, especially if the dots are large. Source: calculations by CID based on DIAN data. (The glossary offers more detailed explanations of the concepts). ", + "graph_builder.explanation.location.products.similarity": "The product technological similarity space (or product space) shows how similar is the knowhow required by any pair of export products. Each dot represents an export product. Dots connected with a line represent products that require similar knowhow. Dots colored are products with revealed comparative advantage (RCA) higher than one in the department or city. Each color corresponds to an export group (see table). Upon selecting a dot, a display shows the product name, its RCA and its links to other products. Source: calculations by CID based on DIAN data. (The glossary offers more detailed explanations of the concepts).", + "graph_builder.explanation.nonag.departments.num_farms": "Shows the composition of locations that perform this non-agricultural activity, by number of UPAs that perform it. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.nonag.municipalities.num_farms": "Shows the composition of locations that sow this agricultural product, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.product.cities.export_value": "Shows the composition by city of the product exports. Source: DIAN.", + "graph_builder.explanation.product.cities.import_value": "Shows the composition by city of the product imports. Source: DIAN.", + "graph_builder.explanation.product.departments.export_value": "Shows the composition by department of the product exports. Source: DIAN.", + "graph_builder.explanation.product.departments.import_value": "Shows the composition by department of the product imports. Source: DIAN.", + "graph_builder.explanation.product.partners.export_value": "Shows where Colombia exports this product to, nested by world regions. Source: DIAN.", + "graph_builder.explanation.product.partners.import_value": "Shows where Colombia imports this product from, nested by world regions. Source: DIAN.", + "graph_builder.explanation.show": "Show", + "graph_builder.multiples.show_all": "Show All", + "graph_builder.page_title.agproduct.departments.land_harvested": "What departments harvest this agricultural product?", + "graph_builder.page_title.agproduct.departments.land_sown": "What departments sow this agricultural product?", + "graph_builder.page_title.agproduct.departments.production_tons": "What departments produce this agricultural product?", + "graph_builder.page_title.agproduct.municipalities.land_harvested": "What municipalities harvest this agricultural product?", + "graph_builder.page_title.agproduct.municipalities.land_sown": "What municipalities sow this agricultural product?", + "graph_builder.page_title.agproduct.municipalities.production_tons": "What municipalities produce this agricultural product?", + "graph_builder.page_title.industry.cities.employment": "What cities in Colombia does this industry employ the most people?", + "graph_builder.page_title.industry.cities.wages": "What cities in Colombia does this industry pay the highest total wages?", + "graph_builder.page_title.industry.departments.employment": "What departments in Colombia does this industry employ the most people?", + "graph_builder.page_title.industry.departments.wages": "What departments in Colombia does this industry pay the highest total wages?", + "graph_builder.page_title.industry.occupations.num_vacancies": "What occupations does this industry employ?", + "graph_builder.page_title.landUse.departments.area": "Which departments have this type of land use?", + "graph_builder.page_title.landUse.municipalities.area": "Which municipalities have this type of land use?", + "graph_builder.page_title.livestock.departments.num_farms": "How many rural production units raise this livestock species in each department?", + "graph_builder.page_title.livestock.departments.num_livestock": "How many animals of this livestock species are raised in each department?", + "graph_builder.page_title.livestock.municipalities.num_farms": "How many rural production units raise this livestock species in each municipality?", + "graph_builder.page_title.livestock.municipalities.num_livestock": "How many animals of this livestock species are raised in each municipality?", + "graph_builder.page_title.location.agproducts.land_harvested.country": "How many hectares per crop are harvested in Colombia?", + "graph_builder.page_title.location.agproducts.land_harvested.department": "How many hectares per crop are harvested in this department?", + "graph_builder.page_title.location.agproducts.land_harvested.municipality": "How many hectares per crop are harvested in this municipality?", + "graph_builder.page_title.location.agproducts.land_sown.country": "How many hectares per crop are sown in Colombia?", + "graph_builder.page_title.location.agproducts.land_sown.department": "How many hectares per crop are sown in this department?", + "graph_builder.page_title.location.agproducts.land_sown.municipality": "How many hectares per crop are sown in this municipality?", + "graph_builder.page_title.location.agproducts.production_tons.country": "How many tons of each crop does Colombia produce?", + "graph_builder.page_title.location.agproducts.production_tons.department": "How many tons of each crop does this department produce?", + "graph_builder.page_title.location.agproducts.production_tons.municipality": "How many tons of each crop does this municipality produce?", + "graph_builder.page_title.location.agproducts.yield_ratio.country": "What is the yield (ton/ha) of crops in Colombia?", + "graph_builder.page_title.location.agproducts.yield_ratio.department": "What is the yield (ton/ha) of crops in this department?", + "graph_builder.page_title.location.agproducts.yield_ratio.municipality": "What is the yield (ton/ha) of crops in this municipality?", + "graph_builder.page_title.location.destination_by_product.export_value.department": "Where does this department export oil to?", + "graph_builder.page_title.location.destination_by_product.import_value.department": "Where does this department import cars from?", + "graph_builder.page_title.location.farmtypes.num_farms.country": "How many agricultural production units (UPAs) and non-agricultural production units (UPNAs) are there in Colombia?", + "graph_builder.page_title.location.farmtypes.num_farms.department": "How many agricultural production units (UPAs) and non-agricultural production units (UPNAs) are there in this department?", + "graph_builder.page_title.location.farmtypes.num_farms.municipality": "How many agricultural production units (UPAs) and non-agricultural production units (UPNAs) are there in this municipality?", + "graph_builder.page_title.location.industries.employment.country": "What industries in Colombia employ the most people?", + "graph_builder.page_title.location.industries.employment.department": "What industries in this department employ the most people?", + "graph_builder.page_title.location.industries.employment.msa": "What industries in this city employ the most people?", + "graph_builder.page_title.location.industries.employment.municipality": "What industries in this municipality employ the most people?", + "graph_builder.page_title.location.industries.scatter.country": "What relatively complex industries have the most possibilities for Colombia?", + "graph_builder.page_title.location.industries.scatter.department": "What relatively complex industries have the most possibilities for this department?", + "graph_builder.page_title.location.industries.scatter.msa": "What relatively complex industries have the most possibilities for this city?", + "graph_builder.page_title.location.industries.scatter.municipality": "What relatively complex industries have the most possibilities for this municipality?", + "graph_builder.page_title.location.industries.similarity.country": "Where is Colombia in the industry space?", + "graph_builder.page_title.location.industries.similarity.department": "Where is this department in the industry space?", + "graph_builder.page_title.location.industries.similarity.msa": "Where is this city in the industry space?", + "graph_builder.page_title.location.industries.similarity.municipality": "Where is this municipality in the industry space?", + "graph_builder.page_title.location.industries.wages.country": "What industries in Colombia are the largest by total wages?", + "graph_builder.page_title.location.industries.wages.department": "What industries in this department are the largest by total wages?", + "graph_builder.page_title.location.industries.wages.msa": "What industries in this city are the largest by total wages?", + "graph_builder.page_title.location.industries.wages.municipality": "What industries in this municipality are the largest by total wages?", + "graph_builder.page_title.location.landUses.area.country": "How is the land used in Colombia?", + "graph_builder.page_title.location.landUses.area.department": "How is the land used in this department?", + "graph_builder.page_title.location.landUses.area.municipality": "How is the land used in this municipality?", + "graph_builder.page_title.location.livestock.num_farms.country": "How many rural production units raise each livestock species in Colombia?", + "graph_builder.page_title.location.livestock.num_farms.department": "How many rural production units raise each livestock species in this department?", + "graph_builder.page_title.location.livestock.num_farms.municipality": "How many rural production units raise each livestock species in this municipality?", + "graph_builder.page_title.location.livestock.num_livestock.country": "How many and which livestock species are raised in Colombia?", + "graph_builder.page_title.location.livestock.num_livestock.department": "How many and which livestock species are raised in this department?", + "graph_builder.page_title.location.livestock.num_livestock.municipality": "How many and which livestock species are raised in this municipality?", + "graph_builder.page_title.location.nonags.num_farms.country": "What non-agricultural activities do the rural production units of Colombia perform?", + "graph_builder.page_title.location.nonags.num_farms.department": "What non-agricultural activities do the rural production units of this department perform?", + "graph_builder.page_title.location.nonags.num_farms.municipality": "What non-agricultural activities do the rural production units of this municipality perform?", + "graph_builder.page_title.location.partners.export_value.country": "What countries does Colombia export to?", + "graph_builder.page_title.location.partners.export_value.department": "What countries does this department export to?", + "graph_builder.page_title.location.partners.export_value.msa": "What countries does this city export to?", + "graph_builder.page_title.location.partners.export_value.municipality": "What countries does this municipality export to?", + "graph_builder.page_title.location.partners.import_value.country": "What countries does Colombia import from?", + "graph_builder.page_title.location.partners.import_value.department": "What countries does this department import from?", + "graph_builder.page_title.location.partners.import_value.msa": "What countries does this city import from?", + "graph_builder.page_title.location.partners.import_value.municipality": "What countries does this municipality import from?", + "graph_builder.page_title.location.products.export_value.country": "What products does Colombia export?", + "graph_builder.page_title.location.products.export_value.department": "What products does this department export?", + "graph_builder.page_title.location.products.export_value.msa": "What products does this city export?", + "graph_builder.page_title.location.products.export_value.municipality": "What products does this municipality export?", + "graph_builder.page_title.location.products.import_value.country": "What products does Colombia import?", + "graph_builder.page_title.location.products.import_value.department": "What products does this department import?", + "graph_builder.page_title.location.products.import_value.msa": "What products does this city import?", + "graph_builder.page_title.location.products.import_value.municipality": "What products does this municipality import?", + "graph_builder.page_title.location.products.scatter.country": "What products have the most potential for Colombia?", + "graph_builder.page_title.location.products.scatter.department": "What products have the most potential for this department?", + "graph_builder.page_title.location.products.scatter.msa": "What products have the most potential for this city?", + "graph_builder.page_title.location.products.scatter.municipality": "What products have the most potential for this municipality?", + "graph_builder.page_title.location.products.similarity.country": "Where is Colombia in the product space?", + "graph_builder.page_title.location.products.similarity.department": "Where is this department in the product space?", + "graph_builder.page_title.location.products.similarity.msa": "Where is this city in the product space?", + "graph_builder.page_title.location.products.similarity.municipality": "Where is this municipality in the product space?", + "graph_builder.page_title.nonag.departments.num_farms": "How many rural production units (UPAs and UPNAs) by department have this non-agricultural activity?", + "graph_builder.page_title.nonag.municipalities.num_farms": "How many rural production units (UPAs and UPNAs) by municipality have this non-agricultural activity?", + "graph_builder.page_title.product.cities.export_value": "What cities in Colombia export this product?", + "graph_builder.page_title.product.cities.import_value": "What cities in Colombia import this product?", + "graph_builder.page_title.product.departments.export_value": "What departments in Colombia export this product?", + "graph_builder.page_title.product.departments.import_value": "What departments in Colombia import this product?", + "graph_builder.page_title.product.partners.export_value": "Where does Colombia export this product to?", + "graph_builder.page_title.product.partners.export_value.destination": "Where does {{location}} export {{product}} to?", + "graph_builder.page_title.product.partners.import_value": "Where does Colombia import this product from?", + "graph_builder.page_title.product.partners.import_value.origin": "Where does {{location}} import {{product}} from?", + "graph_builder.questions.label": "Change question", + "graph_builder.recirc.header.industry": "Read the profile for this industry", + "graph_builder.recirc.header.location": "Read the profile for this location", + "graph_builder.recirc.header.product": "Read the profile for this product", + "graph_builder.search.placeholder.agproducts": "Highlight agricultural products in the graph below", + "graph_builder.search.placeholder.cities": "Highlight a city on the graph below", + "graph_builder.search.placeholder.departments": "Highlight a department on the graph below", + "graph_builder.search.placeholder.farmtypes": "Highlight a type of rural production unit in the graph below", + "graph_builder.search.placeholder.industries": "Highlight industries on the graph below", + "graph_builder.search.placeholder.landUses": "Highlight a land use on the graph below", + "graph_builder.search.placeholder.livestock": "Highlight a livestock type in the graph below", + "graph_builder.search.placeholder.locations": "Highlight locations on the graph below", + "graph_builder.search.placeholder.municipalities": "Highlight a municipality on the graph below", + "graph_builder.search.placeholder.nonags": "Highlight a non-agricultural activity on the graph below", + "graph_builder.search.placeholder.occupations": "Highlight an occupation on the graph below", + "graph_builder.search.placeholder.partners": "Highlight trade partners on the graph below", + "graph_builder.search.placeholder.products": "Highlight products on the graph below", + "graph_builder.search.submit": "Highlight", + "graph_builder.settings.change_time": "Change time period", + "graph_builder.settings.close_settings": "Save and close", + "graph_builder.settings.label": "Change Characteristics", + "graph_builder.settings.rca": "Revealed comparative advantage", + "graph_builder.settings.rca.all": "All", + "graph_builder.settings.rca.greater": "> 1", + "graph_builder.settings.rca.less": "< 1", + "graph_builder.settings.to": "to", + "graph_builder.settings.year": "Years selector", + "graph_builder.settings.year.next": "Next", + "graph_builder.settings.year.previous": "Previous", + "graph_builder.table.agproduct": "Agricultural Product", + "graph_builder.table.area": "Area (ha)", + "graph_builder.table.average_livestock_load": "Livestock load", + "graph_builder.table.average_wages": "Avg. monthly wage, Col$", + "graph_builder.table.avg_wage": "Avg. monthly wage, Col$", + "graph_builder.table.code": "Code", + "graph_builder.table.cog": "Opportunity gain", + "graph_builder.table.coi": "Export complexity outlook", + "graph_builder.table.complexity": "Complexity", + "graph_builder.table.country": "Country", + "graph_builder.table.department": "Department", + "graph_builder.table.distance": "Distance", + "graph_builder.table.eci": "Export complexity", + "graph_builder.table.employment": "Employment", + "graph_builder.table.employment_growth": "Employment growth rate ({{yearRange}})", + "graph_builder.table.export": "Export", + "graph_builder.table.export_num_plants": "Firm number", + "graph_builder.table.export_rca": "Revealed comparative advantage", + "graph_builder.table.export_value": "Exports, USD", + "graph_builder.table.farmtype": "Type of UPA", + "graph_builder.table.gdp_pc_real": "GDP per Capita", + "graph_builder.table.gdp_real": "GDP", + "graph_builder.table.import_value": "Imports, USD", + "graph_builder.table.industry": "Industry", + "graph_builder.table.industry_coi": "Industry complexity outlook", + "graph_builder.table.industry_eci": "Industry complexity", + "graph_builder.table.land_harvested": "Land harvested (ha)", + "graph_builder.table.land_sown": "Land sown (ha)", + "graph_builder.table.land_use": "Land Use", + "graph_builder.table.less_than_5": "Less than 5", + "graph_builder.table.livestock": "Livestock", + "graph_builder.table.location": "Location", + "graph_builder.table.monthly_wages": "Avg. monthly wage, Col$", + "graph_builder.table.name": "Name", + "graph_builder.table.nonag": "Non-agricultural activities", + "graph_builder.table.num_establishments": "Firm number", + "graph_builder.table.num_farms": "Number of production units", + "graph_builder.table.num_farms_ag": "Number of UPAs", + "graph_builder.table.num_farms_nonag": "Number of UPNAs", + "graph_builder.table.num_livestock": "Number of livestock", + "graph_builder.table.num_vacancies": "Vacancies", + "graph_builder.table.occupation": "Occupation", + "graph_builder.table.parent": "Parent", + "graph_builder.table.parent.country": "Region", + "graph_builder.table.parent.location": "Region", + "graph_builder.table.population": "Population", + "graph_builder.table.production_tons": "Production (tons)", + "graph_builder.table.rca": "Revealed comparative advantage", + "graph_builder.table.read_more": "Unfamiliar with any of the indicators above? Look them up in the", + "graph_builder.table.share": "Share", + "graph_builder.table.wages": "Total wages, Col$ (in thousands)", + "graph_builder.table.year": "Year", + "graph_builder.table.yield_index": "Yield Index", + "graph_builder.table.yield_ratio": "Yield (tons/ha)", + "graph_builder.view_more": "View more", + "header.agproduct": "Agricultural products", + "header.destination": "Destination", + "header.destination_by_products": "Destinations by Products", + "header.employment": "Employment", + "header.export": "Exports", + "header.farmtypes.area": "Types of UPAs", + "header.import": "Imports", + "header.index": "Index", + "header.industry": "Industries", + "header.industry_potential": "Potential", + "header.industry_space": "Industry space", + "header.land-use": "Land Use", + "header.landUse": "Land Use", + "header.landUses.area": "Land uses", + "header.land_harvested": "Land Harvested", + "header.land_sown": "Land Sown", + "header.landuse": "Land uses", + "header.livestock": "Livestock", + "header.livestock.num_farms": "Number of UPAs", + "header.livestock.num_livestock": "Number of livestock", + "header.livestock_num_farms": "Number of UPAs", + "header.livestock_num_livestock": "Number of livestock", + "header.location": "Locations", + "header.nonag": "Non-agricultural activities", + "header.occupation": "Occupations", + "header.occupation.available_jobs": "Job openings", + "header.origin": "Origin", + "header.origin_by_products": "Origin by Products", + "header.overview": "Overview", + "header.partner": "Partners", + "header.product": "Products", + "header.product_potential": "Potential", + "header.product_space": "Product space", + "header.production_tons": "Production", + "header.region": "By department", + "header.rural": "Questions: Rural activities", + "header.subregion": "By city", + "header.subsubregion": "By municipality ", + "header.wage": "Total wages", + "header.yield_ratio": "Productivity", + "index.builder_cta": "Build graphs about coffee", + "index.builder_head": "Then dive into the graph builder", + "index.builder_subhead": "Create graphs and maps for your presentations", + "index.complexity_caption": "How good is it? Country growth predictions using economic complexity were more than six times as accurate as conventional metrics, such as the Global Competitiveness Index.", + "index.complexity_cta": "Read more about complexity concepts", + "index.complexity_figure.WEF_name": "Global Competitiveness Index", + "index.complexity_figure.complexity_name": "Complexity ranking", + "index.complexity_figure.head": "Growth explained (percent of 10-year variance)", + "index.complexity_head": "The complexity advantage", + "index.complexity_subhead": "Countries that export complex products, which require a lot of knowledge, grow faster than those that export raw materials. Using the methods of measuring and visualizing economic complexity developed by Harvard University, Datlas helps to explore the production and export possibilities of every city and department in Colombia.", + "index.country_profile": "Read the profile for Colombia", + "index.dropdown.industries": "461,488", + "index.dropdown.locations": "41,87,34,40", + "index.dropdown.products": "1143,87", + "index.farmandland_head": "Learn about Rural Activities", + "index.future_head": "Mapping the future", + "index.future_subhead": "Scatterplots and network diagrams help find the untapped markets best suited to a city or a department.", + "index.graphbuilder.id": "87", + "index.header_h1": "The Colombian Atlas of Economic Complexity", + "index.header_head": "You haven\u2019t seen Colombia like this before", + "index.header_subhead": "Visualize the possibilities for industries, exports and locations across Colombia.", + "index.industry_head": "Learn about an industry", + "index.industry_q1": "Where in Colombia does the chemical industry employ the most people?", + "index.industry_q1.id": "461", + "index.industry_q2": "What occupations are demanded by the chemical industry?", + "index.industry_q2.id": "461", + "index.landuse_q1": "How much land do departments use for crops?", + "index.livestock_q1": "What kinds of livestock UPAs does Colombia have?", + "index.location_head": "Learn about a location", + "index.location_q1": "What industries in Bogot\u00e1 Met employ the most people?", + "index.location_q1.id": "41", + "index.location_q2": "What products have the most potential in Bogot\u00e1 Met?", + "index.location_q2.id": "41", + "index.location_viewall": "See all questions", + "index.present_head": "Charting the present", + "index.present_subhead": "Use our treemaps, charts and maps to break down your department, city or municipality's exports, formal employment or rural activities.", + "index.product_head": "Learn about a product", + "index.product_q1": "What places in Colombia export computers?", + "index.product_q1.id": "1143", + "index.product_q2": "What places in Colombia import computers?", + "index.product_q2.id": "1143", + "index.profile.id": "1", + "index.profiles_cta": "Read the profile for Antioquia", + "index.profiles_head": "Start with our profiles", + "index.profiles_subhead": "Just the essentials, presented as a one-page summary", + "index.questions_head": "New 2016 update!See page \"About the data\" for further information about sources, computational methods of the complexity variables and downloadable databases.
A city is a metropolitan area or a municipality with more than 50,000 inhabitants, 75% of whom reside in the main urban location (cabecera). There are 62 cities (19 metropolitan areas comprising 115 municipalities, plus 43 other cities of just one municipality). The concept of city is relevant because Datlas presents complexity indicators by department and city, but not by municipality.
Complexity is the amount and sophistication of knowhow required to produce something. The concept of complexity is central to Datlas because productivity and growth everywhere depend on firms to successfully produce and export goods and services that require skills and knowledge that are diverse and unique. Complexity can be measured by location, by industry or by export product.
Measures the potential of a location to reach higher complexity levels. The measure accounts for the level of complexity of the industries (or exports) along with the distance of how close the productive capabilities that these industries require are to its current industries (or exports). More specifically, it measures the likelihood of different industries (or exports) appearing and the value of their added complexity. Higher outlook values indicate \u201ccloser distance\u201d to more, and more complex, industries (or exports).
Industry complexity outlook values are computed for departments and cities, not for the rest of municipalities. Export complexity outlook values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
DANE is the National Statistical Office. It is the source of all data on GDP and population used by Datlas.
DIAN is the National Tax and Customs Authority. It is the source of all data on exports and imports by department and municipality in Datlas.
A measure of a location\u2019s ability to enter a specific industry or export, as determined by its current productive capabilities. Also known as a capability distance, the measure accounts for the similarity between the capabilities required by an industry or export and the capabilities already present in a location\u2019s industries or exports. Where a new industry or export requires many of the same capabilities already present in a location\u2019s industries or exports, the product is considered \u201ccloser\u201d or of a shorter \u201cdistance\u201d to acquire the missing capabilities to produce it. New industries or exports of a further distance require larger sets of productive capabilities that do not exist in the location and are therefore riskier ventures or less likely to be sustained. Thus, distance reflects the proportion of the productive knowledge necessary for an industry or export that a location does not have. This is measured by the proximity between industries or exports, or the probability that two industries or exports will both be present in a location, as embodied by the industry space and product space, respectively.
Industry distance values are computed for departments and cities, but not for the rest of municipalities. Export distance values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
A measure of how many different types of products a place is able to produce. The production of a good requires a specific set of know-how; therefore, a country\u2019s total diversity is another way of expressing the amount of collective know-how that a place has.
A measure of the sophistication of the productive capabilities of a location based on the diversity and ubiquity of its industries or exports. A location with high complexity produces or exports goods and services that few other locations produce. Highly complex locations tend to be more productive and generate higher wages and incomes. Countries with export baskets more sophisticated than what is expected for their income level (such as China) tend to grow faster than those where the opposite is true (such as Greece).
Industry ECI values are computed for departments and cities, but not for the rest of municipalities. Export ECI values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
Formal employment is defined as employment covered by the health social security system and/or the pension system. The self-employed are not included. Formal wages are those reported by firms to that aim. Formal employment reported is the number of formal employees in an average month. Formality rate is defined as formal employment divided by population older than 15. Employment and wage data are taken from PILA. Population data comes from DANE.
A measure of the amount of productive capabilities that an industry requires to operate. The ICI and the Product Complexity Index (PCI) are closely related, but are measured through independent datasets and classification systems as the PCI is computed only for internationally tradable goods, while the ICI is calculated for all industries that generate formal employment, including the public sector. Industries are complex when they require a sophisticated level of productive knowledge, such as many financial services and pharmaceutical industries, with many individuals with distinct specialized knowledge interacting in a large organization. Complexity of the industry is measured by calculating the average diversity of locations that hold the industry and the average ubiquity of the industries that those locations hold. The formal employment data required for these calculations comes from the PILA dataset held by the Ministry of Health.
Colombia\u2019s industry classification system is a modified version of the International Standard Industrial Classification of All Economic Activities (ISIC). Datlas shows industry information at two- and four-digit level. All industry data come from PILA. Following national accounting conventions, workers hired by temporary employment firms are classified in the labor recruitment industry (7491), not in the industry of the firm where they physically work.
A visualization that depicts how similar/dissimilar the productive knowledge requirements are between industries. Each dot represents an industry and each link between a pair of industries indicates that they require similar productive capabilities to operate. Colored dots are industries with revealed comparative advantage larger than one. When an industry is selected, the map shows the industries that require similar productive capabilities. An industry with more links offers greater potential for diversification across shared capabilities. Thus the number of links that existing industries share to untapped, complex industries determines the complexity outlook of the location. The Colombian industry similarity space is based on formal employment data by industry and municipality from the PILA dataset of the Ministry of Health.
A metropolitan area is a combination of two or more municipalities that are connected through relatively large commuting flows (irrespective of their size or contiguity). A municipality must send at least 10% of its workers as daily commuters to the rest of the metropolitan area municipalities to be included.
Based on this definition there are 19 metropolitan areas in Colombia, which comprise 115 municipalities. The resulting metro areas, which are distinct from official measures, are computed with the methodology of G. Duranton (2013): \u201cDelineating metropolitan areas: Measuring spatial labour market networks through commuting patterns.\u201d Wharton School, University of Pennsylvania.
Occupations are classified according to the Occupational Information Network Numerical Index (ONET). All data on occupations (wages offered by occupation, occupational structure by industry, and education level required by occupation) come from job vacancy announcements placed by firms in public and private Internet job sites during 2014. The data were processed by Jeisson Arley C\u00e1rdenas Rubio (Universidad del Rosario, Bogot\u00e1) and Jaime Mauricio Monta\u00f1a Doncel (Paris School of Economics).
Measures how much a location could benefit by developing a particular industry (or export). Also known also as \u201cstrategic value,\u201d the measure accounts for the distances to all other industries (or exports) that a location does not currently produce with revealed comparative advantage larger than one and their respective complexities. Opportunity gain quantifies how a new industry (or export) can open up links to more, and more complex, products. Thus, the measure calculates the value of an industry (or export) based on the paths it opens to industrial expansion into more complex sectors.
Industry opportunity gain values are computed for departments and cities, but not for the rest of municipalities. Export opportunity gain values are computed for departments and cities with at least 50 dollars of exports per capita (below this threshold export baskets are unstable and/or lack representativeness).
PILA is the Integrated Report of Social Security Contributions, managed by the Ministry of Health. It is the main source of industry data. It contains information on formal employment, wages and number of firms by municipality and industry.
Measures the amount of productive capabilities required to manufacture a product. Complex exports, which include many chemical and machinery products, require a sophisticated level, and diverse base, of productive knowledge, with many individuals with distinct specialized knowledge interacting in a large organization. This contrasts with low complexity exports, like coffee, which require much less basic productive knowledge that can be found in a family-run business. UN Comtrade data are used to compute the complexity of export products.
A visualization that depicts how similar/dissimilar the productive knowledge requirements are between export products. Each dot represents a product and each link between a pair of products indicates that the two products require similar capabilities in their production. Colored dots are exports with revealed comparative advantage larger than one. When a product is selected, the map shows the products that require similar productive capabilities. A product with more links offers greater potential for diversification across shared capabilities. Thus the number of links that existing products share to complex products that a location does not currently produce determines the complexity outlook of its exports.
The shape of the space is based on international trade data for 192 countries over 50 years. See The International Atlas of Economic Complexity.
Measures the relative size of an industry or an export product in a location. RCA is not a measure of productive efficiency or competitiveness, but just a \u201clocation quotient\u201d, as is often referred to. RCA is computed as the ratio between an industry\u2019s share of total formal employment in a location and the share of that industry\u2019s total formal employment in Colombia as a whole. For instance, if the chemical industry generates10% of a city\u2019s employment, while it generates only 1% of total employment in Colombia, the RCA of the industry in the city is 10. For exports, RCA is the ratio between the share of the export in the export basket of the location and its share in total world trade. If this ratio is larger than 1, the location is said to have revealed comparative advantage in the industry or export. For instance, if a department\u2019s coffee exports are 30% of its exports but coffee accounts for just 0.3% of world trade, the department\u2019s RCA in coffee is 100.
A measure of the number of places that are able to make a product.
", + "about.glossary_name": "Glossary", + "about.project_description.cid.header": "CID and the Growth Lab", + "about.project_description.cid.p1": "This project was developed by the Center for International Development at Harvard University, under the leadership of Professor Ricardo Hausmann.", + "about.project_description.cid.p2": "The Center for International Development (CID) at Harvard University works to advance the understanding of development challenges and offer viable, inclusive solutions to problems of global poverty. The Growth Lab is one of CID\u2019s core research programs.", + "about.project_description.contact.header": "Contact information", + "about.project_description.contact.link": "Datlascolombia@bancoldex.com", + "about.project_description.founder1.header": "Banc\u00f3ldex", + "about.project_description.founder1.p": "Banc\u00f3ldex is the entrepreneurial development bank of Colombia. It is committed to developing financial and non-financial instruments geared to enhance the competitiveness, productivity, growth and internationalization of Colombian enterprises. Leveraging on its unique relational equity and market position, Banc\u00f3ldex manages financial assets, develops access solutions to financing and deploys innovative capital solutions, to foster and accelerate company growth. Besides offering traditional loans, Banc\u00f3ldex has been appointed to implement several development program such as iNNpulsa Colombia, iNNpulsa Mipyme, Banca de las Oportunidades, and the Productive Transformation Program, all of them, in an effort to consolidate an integrated offer to promote Colombian business environment and overall competitiveness. Datlas elaborates on the work that Banc\u00f3ldex has been undertaking through its Productive Transformation Program and INNpulsa Colombia initiatives.", + "about.project_description.founder2.header": "Mario Santo Domingo Foundation", + "about.project_description.founder2.p": "Created in 1953, the Mario Santo Domingo Foundation (FMSD) is a non-profit organization dedicated to implementing community development programs in Colombia. FMSD decided to concentrate its main efforts in the construction of affordable housing within a Community Development Model, named Integral Development of Sustainable Communities (DINCS in its Spanish initials) and designed by the FMSD as a response to the large housing deficit in Colombia. Through this program, the FMSD delivers social support for families, and social infrastructure and urban development for the less privileged. FMSD also supports entrepreneurs in the Northern region of Colombia and in Bogot\u00e1 through its Microfinance Unit which provides training and financial services such as microcredit. More than 130,000 entrepreneurs have received loans from the Foundation since its launch in 1984. The FMSD works also to identify alliances and synergies between the public and private sectors in critical social development areas such as early childhood, environmental sustainability, disaster attention, education and health.", + "about.project_description.founders.header": "Founding Partners", + "about.project_description.founders.p": "This project is funded by Banc\u00f3ldex and Fundaci\u00f3n Mario Santo Domingo ", + "about.project_description.github": "See our code", + "about.project_description.intro.p1": "In Colombia, income gaps between regions are huge and have been growing: new job opportunities are increasingly concentrated in the metropolitan areas of Bogot\u00e1, Medell\u00edn and Cali, as well as a few places where oil and other minerals are extracted. The average income of residents of Bogot\u00e1 is four times that of Colombians living in the 12 poorest departments", + "about.project_description.intro.p2": "Datlas is a diagnostic tool that firms, investors and policymakers can use to improve the productivity of departments, cities and municipalities. It maps the geographical distribution of Colombia\u2019s productive activities and employment by department, metropolitan area and municipality, and identifies exports and industries of potential to increase economic complexity and accelerate growth.", + "about.project_description.intro.p3": "Economic complexity is a measure of the amount of productive capabilities, or knowhow, that a country or a city has. Products are vehicles for knowledge. To make a shirt, one must design it, produce the fabric, cut it, sew it, pack it, market it and distribute it. For a country to produce shirts, it needs people who have expertise in each of these areas. Each of these tasks involves many more capabilities than any one person can master. Only by combining know-how from different people can any one product be made. The road to economic development involves increasing what a society knows how to do. Countries with more productive capabilities can make a greater diversity of products. Economic growth occurs when countries develop the capabilities and productive knowledge to produce more, and more complex, products.", + "about.project_description.intro.p4": "This conceptual approach, which has been applied at the international level in The Atlas of Economic Complexity, is now used in this online tool to investigate export and industry possibilities at the sub-national level in Colombia.", + "about.project_description.letter.header": "Sign up for our Newsletter", + "about.project_description.letter.p": "Sign up for CID\u2019s Research Newsletter to keep up-to-date with related breakthrough research and practical tools, including updates to this site http://www.hks.harvard.edu/centers/cid/news-events/subscribe ", + "about.project_description.team.header": "Academic and Technical Team", + "about.project_description.team.p": "Academic team at Harvard\u2019s CID: Ricardo Hausmann (director), Eduardo Lora (coordinator), Tim Cheston, Andr\u00e9s G\u00f3mez-Li\u00e9vano, Jos\u00e9 Ram\u00f3n Morales, Neave O\u2019Clery and Juan T\u00e9llez. Programming and visualization team at Harvard\u2019s CID: Greg Shapiro (coordinator), Mali Akmanalp, Katy Harris, Quinn Lee, Romain Vuillemot, and Gus Wezerek. Statistical advisor in Colombia: Marcela Eslava (Universidad de los Andes). Compilation and processing of job vacancies data in Colombia: Jeisson Arley C\u00e1rdenas Rubio (Universidad del Rosario, Bogot\u00e1) and Jaime Mauricio Monta\u00f1a Doncel (Paris School of Economics).", + "about.project_description_name": "About", + "census_year": "2014", + "country.show.ag_farmsize": "45.99 ha", + "country.show.dotplot-column": "Departments Across Colombia", + "country.show.eci": "0.037", + "country.show.economic_structure": "Economic Structure", + "country.show.economic_structure.copy.p1": "With a population of 48.1 million (as of May 2015), Colombia is the third largest country in Latin America. Its total GDP in 2014 was Col$756.1 trillion, or US$377.9 billion at the average exchange rate of 2014 (1 US dollar = 2000.6 Colombian pesos). In 2014, income per capita reached Col$15,864,953 or US$7,930. Yearly economic growth since 2008 has averaged 4.3% (or 3.1% in per capita terms).", + "country.show.economic_structure.copy.p2": "Business and financial services contribute 18.8% of GDP, making it the largest industry, followed by governmental, communal and personal services (16.5%) and manufacturing activities (11.2%). Bogot\u00e1 D.C., Antioquia and Valle del Cauca represent nearly half of economic activity, contributing 24.7, 13.1 and 9.2% to total GDP, respectively. However, two oil-producing departments \u2013 Casanare and Meta \u2013 boast the highest GDP per capita. The following graphs provide more details.", + "country.show.employment_wage_occupation": "Formal Employment, Occupations and Wages", + "country.show.employment_wage_occupation.copy.p1": "In 2014, approximately 21.6 million Colombians were occupied in either a formal or an informal job, increasing slightly over 2013, at 21.1 million. The registries of the PILA, which cover the universe of workers who make contributions to the social security system, indicate that 13.3 million workers were occupied for some period in a formal job in 2013. Taking into account the number of months occupied, the effective number of year-round workers in the formal sector in 2013 was 6.7 million. Bogot\u00e1 DC, Antioquia and Valle del Cauca generate, respectively 32.7, 16.7, and 10.7% of (effective) formal employment.", + "country.show.employment_wage_occupation.copy.p2": "The following graphs present more detailed information on the patterns of formal employment and wages paid based on PILA. Also included is data on vacancies announced and wages offered by occupation, computed from job announcements placed by firms on internet sites in 2014.", + "country.show.export_complexity_possibilities": "Export Complexity and Possibilities", + "country.show.export_complexity_possibilities.copy.p1": "The concept of export complexity is similar to that of industry complexity introduced above. It has been found that countries that export products that are relatively complex for their level of economic development tend to grow faster than countries that export relatively simple products. Based on the complexity of its export basket in 2013, Colombia ranks 53rd among 124 countries and is predicted to grow at an annual rate of 3.3% in the period 2013-2023 based on its economic complexity.", + "country.show.export_complexity_possibilities.copy.p2": "The \u2018Product Technological Similarity Space\u2019 (or Product Space) shown below is a graphical network representation of technological similarities across all export products, and is based on international export patterns. Each dot or node represents a product; nodes connected by lines require similar capabilities. More connected products are clustered towards the middle of the network, implying that the capabilities they use can be deployed in the production of many other products.", + "country.show.export_complexity_possibilities.copy.p3": "The highlighted nodes represent the products that Colombia exports in relatively large amounts (more precisely, with revealed comparative advantage higher than one, see the Glossary). Colors represent product groupings (which match the colors used in the industry technological space shown above). The figure further below and the accompanying table show what export products offer the best possibilities for Colombia, given the capabilities the country already has and how \u2018distant\u2019 are those capabilities to the ones needed for each product.", + "country.show.exports": "Exports", + "country.show.exports.copy.p1": "Colombia exported US$54.8 billion in 2014, down from $58.8 billion in 2013 and $60.1 billion in 2012. Its main export partners are the United States, Venezuela, Ecuador and Peru. In 2014, mining products (of which oil, coal and nickel are the largest items) comprised 59.3% of total merchandise exports, manufactured goods contributed 35.6%, and agricultural products totaled 4.6% of exports. The following graphs provide further details.", + "country.show.exports_composition_by_department": "Export Composition by Department ({{year}})", + "country.show.exports_composition_by_products": "Export Composition by Product ({{year}})", + "country.show.gdp": "Col $756,152 T", + "country.show.gdp_per_capita": "Col $15.864.953", + "country.show.industry_complex": "Industry Complexity", + "country.show.industry_complex.copy.p1": "Industry complexity is a measure of the range of capabilities, skills or know-how required by an industry. Industries such as chemicals and machinery are said to be highly complex, because they require a sophisticated level of productive knowledge likely to be present only in large organizations where a number of highly specialized individuals interact. Conversely, industries such as retail trade or restaurants require only a basic level of know-how which may be found at a family-run business. More complex industries contribute to raising productivity and income per- capita. Departments and cities with more complex industries have a more diversified industrial base and tend to create more formal employment.", + "country.show.industry_complex.copy.p2": "The 'IndustryTechnological Similarity Space\u2019 (or Industry Space) shown below is a graphical representation of the similarity between the capabilities and know-how required by pairs of industries. Each dot or node represents an industry; nodes connected by lines require similar capabilities. More connected industries use capabilities that can be deployed in many other industries. Colors represent industry groupings.", + "country.show.industry_space": "Industry Space", + "country.show.nonag_farmsize": "4.53 ha", + "country.show.occupation.num_vac": "Total advertised vacancies (2014)", + "country.show.population": "48.1 million", + "country.show.product_space": "Product Space", + "country.show.total": "Total", + "ctas.csv": "CSV", + "ctas.download": "Download this data", + "ctas.embed": "Embed", + "ctas.excel": "Excel", + "ctas.export": "Export", + "ctas.facebook": "Facebook", + "ctas.pdf": "PDF", + "ctas.png": "PNG", + "ctas.share": "Share", + "ctas.twitter": "Twitter", + "currency": "Col$", + "decimal_delmiter": ".", + "downloads.cta_download": "Download", + "downloads.cta_na": "Not available", + "downloads.head": "About the Data", + "downloads.industry_copy": "PILA (the Integrated Report of Social Security Contributions), managed by the Ministry of Health) is the main source of industry data. It contains information on formal employment, wages and number of firms by municipality and industry. Colombia\u2019s industry classification is a modified version of the International Standard Industrial Classification of All Economic Activities (ISIC). The list of industries can be found in the downloadable databases for industries. The list of industries in the ISIC which are not included in the industry space (for reasons explained in \"Calculation Methods\") can be downloaded here.", + "downloads.industry_head": "Industry data (PILA)", + "downloads.industry_row_1": "Employment, wages, number of firms and complexity indicators ({{yearRange}})", + "downloads.list_of_cities.header": "Lists of departments, cities and municipalities", + "downloads.map.cell": "Map boundary and geo data is from GeoFabrik.de, based on OpenStreetMap data", + "downloads.map.header": "Map Data", + "downloads.occupations_copy": "All data on occupations (wages offered by occupation and industry, and occupational structure by industry) come from job vacancy announcements placed by firms in public and private Internet job sites. Occupations are classified according to the Occupational Information Network Numerical Index (ONET). The data were processed by Jeisson Arley C\u00e1rdenas Rubio, researcher of Universidad del Rosario, Bogot\u00e1, and Jaime Mauricio Monta\u00f1a Doncel, Masters student at the Paris School of Economics.", + "downloads.occupations_head": "Occupations data", + "downloads.occupations_row_1": "Job vacancies and wages offered (2014)", + "downloads.other_copy": "DANE (the National Statistical Office) is the source of all data on GDP and population.", + "downloads.other_head": "Other data (DANE)", + "downloads.other_row_1": "GDP and demographic variables", + "downloads.thead_departments": "Departments", + "downloads.thead_met": "Cities", + "downloads.thead_muni": "Municipalities", + "downloads.thead_national": "National", + "downloads.trade_copy": "The source of all data on exports and imports by department and municipality is DIAN\u2019s Customs Data (DIAN is the National Tax and Customs Authority). Colombian Customs uses the product classification NANDINA, which matches the Harmonized System (HS) classification at the 6-digit level. We then standardize that to HS 1992 in order to fix any version inconsistencies across the years in order to be able to view the data over time. The list of products can be found in the downloadable databases for exports and imports.The origin of an export is established in two stages. First, the department of origin is defined as the last place of processing, assembly or packaging, according with DIAN. Then, export values are distributed among municipalities according with the composition of employment of the exporting firm based on PILA (for firms without this information the value is assigned to the capital of department). In the case of petroleum oil (2709) and gas (2711), total export values were distributed by origin according to production by municipality (sources: Hydrocarbons National Agency and Colombian Petroleum Association), and in the case of oil refined products (2710), according to value added by municipality (industries 2231, 2322 y 2320 SIIC revision 3, Annual Manufacturing Survey, DANE).
\u00a0Export totals by product may not correspond to official data because the following are excluded: (a) exports lacking information on the industry of the exporter and/or the department or municipality of origin, and (b) exports for which DIAN reports free zones as the place of destination; while the following are included: (c) exports from free zones, which DIAN does not include in those export totals.
In a similar fashion, import totals by product may not correspond to official data because the following are excluded: (a) imports lacking information on the department or municipality of destination, and (b) imports for which DIAN reports free zones as the place of origin; while the following are included: (c) imports done by free zones, which DIAN does not include in those import totals.
A file that describes the correspondence between the HS version used by DIAN and HS 1992 can be found here.
Included here is a file with the list of products in the Harmonized System that are not represented in the product space (for reasons explained in \"Calculation Methods\").", + "downloads.trade_head": "Trade data (DIAN)", + "downloads.trade_row_1": "Exports, imports and export complexity indicators ({{yearRange}})", + "downloads.trade_row_2": "Exports and imports with country of destination and origin ({{yearRange}})", + "first_year": "2008", + "general.export_and_import": "Products", + "general.geo": "Geographic map", + "general.glossary": "Glossary", + "general.industries": "Industries", + "general.industry": "industry", + "general.location": "location", + "general.locations": "Locations", + "general.multiples": "Area charts", + "general.occupation": "occupation", + "general.occupations": "Occupations", + "general.product": "product", + "general.scatter": "Scatterplot", + "general.similarity": "Industry Space", + "general.total": "Total", + "general.treemap": "Treemap", + "geomap.center": "4.6,-74.06", + "glossary.head": "Glossary", + "graph_builder.builder_mod_header.agproduct.departments.land_harvested": "Land Harvested (ha)", + "graph_builder.builder_mod_header.agproduct.departments.land_sown": "Land Sown (ha)", + "graph_builder.builder_mod_header.agproduct.departments.production_tons": "Production (tons)", + "graph_builder.builder_mod_header.agproduct.municipalities.land_harvested": "Land Harvested (ha)", + "graph_builder.builder_mod_header.agproduct.municipalities.land_sown": "Land Sown (ha)", + "graph_builder.builder_mod_header.agproduct.municipalities.production_tons": "Production (tons)", + "graph_builder.builder_mod_header.industry.cities.employment": "Total employment", + "graph_builder.builder_mod_header.industry.cities.wage_avg": "Average monthly wages, Col$", + "graph_builder.builder_mod_header.industry.cities.wages": "Total wages, Col$", + "graph_builder.builder_mod_header.industry.departments.employment": "Total employment", + "graph_builder.builder_mod_header.industry.departments.wage_avg": "Average monthly wages, Col$", + "graph_builder.builder_mod_header.industry.departments.wages": "Total wages, Col$", + "graph_builder.builder_mod_header.industry.locations.employment": "Total employment", + "graph_builder.builder_mod_header.industry.locations.wage_avg": "Average monthly wages, Col$", + "graph_builder.builder_mod_header.industry.locations.wages": "Total wages, Col$", + "graph_builder.builder_mod_header.industry.occupations.num_vacancies": "Total advertised vacancies", + "graph_builder.builder_mod_header.landUse.departments.area": "Total Area", + "graph_builder.builder_mod_header.landUse.municipalities.area": "Total Area ", + "graph_builder.builder_mod_header.location.agproducts.land_harvested": "Land harvested (hectares)", + "graph_builder.builder_mod_header.location.agproducts.land_sown": "Land sown (hectares)", + "graph_builder.builder_mod_header.location.agproducts.production_tons": "Production (tons)", + "graph_builder.builder_mod_header.location.farmtypes.num_farms": "Number of farms", + "graph_builder.builder_mod_header.location.industries.employment": "Total employment", + "graph_builder.builder_mod_header.location.industries.scatter": "Complexity,distance and opportunity gain of potential industries", + "graph_builder.builder_mod_header.location.industries.similarity": "Industries with revealed comparative advantage >1 (colored) and <1 (grey)", + "graph_builder.builder_mod_header.location.industries.wages": "Total wages", + "graph_builder.builder_mod_header.location.landUses.area": "Total Area ", + "graph_builder.builder_mod_header.location.livestock.num_farms": "Number of livestock farms", + "graph_builder.builder_mod_header.location.livestock.num_livestock": "Number of livestock", + "graph_builder.builder_mod_header.location.partners.export_value": "Total exports", + "graph_builder.builder_mod_header.location.partners.import_value": "Total imports", + "graph_builder.builder_mod_header.location.products.export_value": "Total exports", + "graph_builder.builder_mod_header.location.products.import_value": "Total imports", + "graph_builder.builder_mod_header.location.products.scatter": "Complexity, distance and opportunity gain of potential export products", + "graph_builder.builder_mod_header.location.products.similarity": "Export products with revealed comparative advantage >1 (colored) and <1 (grey)", + "graph_builder.builder_mod_header.product.cities.export_value": "Total Exports", + "graph_builder.builder_mod_header.product.cities.import_value": "Total Imports", + "graph_builder.builder_mod_header.product.departments.export_value": "Total Exports", + "graph_builder.builder_mod_header.product.departments.import_value": "Total Imports", + "graph_builder.builder_mod_header.product.partners.export_value": "Total exports", + "graph_builder.builder_mod_header.product.partners.import_value": "Total imports", + "graph_builder.builder_nav.header": "More graphs for this {{entity}}", + "graph_builder.builder_nav.intro": "Select a question to see the corresponding graph. If the question has missing parameters ({{icon}}) , you\u2019ll fill those in when you click.", + "graph_builder.builder_questions.city": "Questions: Cities", + "graph_builder.builder_questions.department": "Questions: Departments", + "graph_builder.builder_questions.employment": "Questions: Employment", + "graph_builder.builder_questions.export": "Questions: Exports", + "graph_builder.builder_questions.import": "Questions: Imports", + "graph_builder.builder_questions.industry": "Questions: Industries", + "graph_builder.builder_questions.landUse": "Questions: Land Use ", + "graph_builder.builder_questions.location": "Questions: Locations", + "graph_builder.builder_questions.occupation": "Questions: Occupations", + "graph_builder.builder_questions.partner": "Questions: Partners", + "graph_builder.builder_questions.product": "Questions: Products", + "graph_builder.builder_questions.wage": "Questions: Total Wages", + "graph_builder.change_graph.geo_description": "Map the data", + "graph_builder.change_graph.label": "Change graph", + "graph_builder.change_graph.multiples_description": "Compare growth over time", + "graph_builder.change_graph.scatter_description": "Plot complexity and distance", + "graph_builder.change_graph.similarity_description": "Show revealed comparative advantages", + "graph_builder.change_graph.treemap_description": "See composition at different levels", + "graph_builder.change_graph.unavailable": "Graph is unavailable for this question", + "graph_builder.download.agproduct": "Agricultural Product", + "graph_builder.download.area": "Area", + "graph_builder.download.average_wages": "Avg. monthly wage, Col$", + "graph_builder.download.avg_wage": "Avg. monthly wage, Col$", + "graph_builder.download.code": "Code", + "graph_builder.download.cog": "Opportunity gain", + "graph_builder.download.complexity": "Complexity", + "graph_builder.download.distance": "Distance", + "graph_builder.download.eci": "Export complexity", + "graph_builder.download.employment": "Employment", + "graph_builder.download.employment_growth": "Employment growth rate ({{yearRange}})", + "graph_builder.download.export": "Export", + "graph_builder.download.export_num_plants": "Firm number", + "graph_builder.download.export_rca": "Revealed comparative advantage", + "graph_builder.download.export_value": "Exports, USD", + "graph_builder.download.farmtype": "Farm Type", + "graph_builder.download.gdp_pc_real": "GDP per Capita, Col $", + "graph_builder.download.gdp_real": "GDP, Col $", + "graph_builder.download.import_value": "Imports, USD", + "graph_builder.download.industry": "Industry", + "graph_builder.download.industry_eci": "Industry complexity", + "graph_builder.download.land_harvested": "Land harvested (ha)", + "graph_builder.download.land_sown": "Land sown (ha)", + "graph_builder.download.land_use": "Land Use", + "graph_builder.download.less_than_5": "Less than 5", + "graph_builder.download.livestock": "Livestock", + "graph_builder.download.location": "Location", + "graph_builder.download.monthly_wages": "Avg. monthly wage, Col$", + "graph_builder.download.name": "Name", + "graph_builder.download.num_establishments": "Firm number", + "graph_builder.download.num_farms": "Number of farms", + "graph_builder.download.num_livestock": "Number of livestock", + "graph_builder.download.num_vacancies": "Vacancies", + "graph_builder.download.occupation": "Occupation", + "graph_builder.download.parent": "Parent", + "graph_builder.download.population": "Population", + "graph_builder.download.production_tons": "Production (tons)", + "graph_builder.download.rca": "Revealed comparative advantage", + "graph_builder.download.read_more": "Unfamiliar with any of the indicators above? Look them up in the", + "graph_builder.download.wages": "Total wages, Col$", + "graph_builder.download.year": "Year", + "graph_builder.download.yield_index": "Yield Index", + "graph_builder.download.yield_ratio": "Yield (tons/ha)", + "graph_builder.explanation": "Explanation", + "graph_builder.explanation.agproduct.departments.land_harvested": "Shows the composition of locations that harvest this agricultural product, by area of land harvested. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.departments.land_sown": "Shows the composition of locations that sow this agricultural product, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.departments.production_tons": "Shows the composition of locations that produce this agricultural product, by tons produced. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.land_harvested": "Shows the composition of locations that harvest this agricultural product, by area of land harvested. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.land_sown": "Shows the composition of locations that sow this agricultural product, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.production_tons": "Shows the composition of locations that produce this agricultural product, by tons produced. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.hide": "Hide", + "graph_builder.explanation.industry.cities.employment": "Shows the composition by department of formal employment in the industry. Source: PILA.", + "graph_builder.explanation.industry.cities.wages": "Shows the composition by department of total wages paid by the industry. Source: PILA.", + "graph_builder.explanation.industry.departments.employment": "Shows the composition by department of formal employment in the industry. Source: PILA.", + "graph_builder.explanation.industry.departments.wages": "Shows the composition by department of total wages paid by the industry. Source: PILA.", + "graph_builder.explanation.industry.occupations.num_vacancies": "Shows the composition of vacancies announced in Internet sites and wages offered.", + "graph_builder.explanation.landUse.departments.area": "Shows the composition of locations that use land in this specific way, by area. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.landUse.municipalities.area": "Shows the composition of locations that use land in this specific way, by area. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.agproducts.land_harvested": "Shows the composition of agricultural products of this location, by area of land harvested. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.agproducts.land_sown": "Shows the composition of agricultural products of this location, by area of land sown. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.agproducts.production_tons": "Shows the composition of agricultural products of this location, by weight. Source: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.farmtypes.num_farms": "Shows the composition of farms in this location, by type of farm. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.industries.employment": "Shows the industry composition of formal empoyment in the department. Source: PILA.", + "graph_builder.explanation.location.industries.scatter": "Dots represent industries. Upon selecting a dot, a display shows the industry name and its revealed comparative advantage in the location. Colors represent industry groups (see the table). The vertical axis is the Industry Complexity Index and the horizontal axis is the Distance from the existing industries, where shorter distances mean that the location has more of the knowhow needed to develop the industry. The size of the dots is proportional to the Opportunity Gain of the industry for the department, namely the potential that the industry offers for the department to acquire new capabilities that may help to develop other industries. The more interesting industries are the ones located at the top left, especially if the dots are large. Source: calculations by CID based on PILA data. (The glossary offers more detailed explanations of the concepts). ", + "graph_builder.explanation.location.industries.similarity": "The industry technological similarity space (or industry space) shows how similar is the knowhow required by any pair of industries. Each dot represents an industry. Dots connected with a line represent industries that require similar knowhow. Dots colored are industries with revealed comparative advantage (RCA) higher than one in the department or city. Each color corresponds to an industry group (see table). Upon selecting a dot, a display shows the industry name, its RCA and its links to other industries. Source: calculations by CID based on PILA data. (The glossary offers more detailed explanations of the concepts).", + "graph_builder.explanation.location.industries.wages": "Shows the industry composition of total wages paid in the department or city. Source: PILA.", + "graph_builder.explanation.location.landUses.area": "Shows the composition of land uses in this location, by area. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.livestock.num_farms": "Shows the composition of livestock types of this location, by number of farms. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.livestock.num_livestock": "Shows the composition of livestock types of this location, by number of livestock. Source: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE).", + "graph_builder.explanation.location.partners.export_value": "Shows the destination country composition of exports of this place, nested by world regions. Source: DIAN.", + "graph_builder.explanation.location.partners.import_value": "Shows the countries from which this location imports products, nested by world regions. Source: DIAN.", + "graph_builder.explanation.location.products.export_value": "Shows the product composition of exports of the department or city. Colors represent product groups (see table). Source: DIAN.", + "graph_builder.explanation.location.products.import_value": "Shows the product composition of imports of the department or city. Colors represent product groups (see table). Source: DIAN.", + "graph_builder.explanation.location.products.scatter": "Dots represent export products. Upon selecting a dot, a display shows the product name and its revealed comparative advantage in the department or city. Colors represent product groups (see the table). The vertical axis is the Product Complexity Index and the horizontal axis is the Distance from the existing exports, where shorter distances mean that the location has more of the knowhow needed to export the product. The dashed line is the average Index of Economic Complexity of the place. The size of the dots is proportional to the Opportunity Gain of the export for the department or city, namely the potential that exporting the product offers for the department or city to acquire new capabilities that may help to export other products. The more interesting export products are the ones located at the top left, especially if the dots are large. Source: calculations by CID based on DIAN data. (The glossary offers more detailed explanations of the concepts). ", + "graph_builder.explanation.location.products.similarity": "The product technological similarity space (or product space) shows how similar is the knowhow required by any pair of export products. Each dot represents an export product. Dots connected with a line represent products that require similar knowhow. Dots colored are products with revealed comparative advantage (RCA) higher than one in the department or city. Each color corresponds to an export group (see table). Upon selecting a dot, a display shows the product name, its RCA and its links to other products. Source: calculations by CID based on DIAN data. (The glossary offers more detailed explanations of the concepts).", + "graph_builder.explanation.product.cities.export_value": "Shows the composition by city of the product exports. Source: DIAN.", + "graph_builder.explanation.product.cities.import_value": "Shows the composition by city of the product imports. Source: DIAN.", + "graph_builder.explanation.product.departments.export_value": "Shows the composition by department of the product exports. Source: DIAN.", + "graph_builder.explanation.product.departments.import_value": "Shows the composition by department of the product imports. Source: DIAN.", + "graph_builder.explanation.product.partners.export_value": "Shows where Colombia exports this product to, nested by world regions. Source: DIAN.", + "graph_builder.explanation.product.partners.import_value": "Shows where Colombia imports this product from, nested by world regions. Source: DIAN.", + "graph_builder.explanation.show": "Show", + "graph_builder.multiples.show_all": "Show All", + "graph_builder.page_title.agproduct.departments.land_harvested": "What departments harvest this agricultural product?", + "graph_builder.page_title.agproduct.departments.land_sown": "What departments sow this agricultural product?", + "graph_builder.page_title.agproduct.departments.production_tons": "What departments produce this agricultural product?", + "graph_builder.page_title.agproduct.municipalities.land_harvested": "What municipalities harvest this agricultural product?", + "graph_builder.page_title.agproduct.municipalities.land_sown": "What municipalities sow this agricultural product?", + "graph_builder.page_title.agproduct.municipalities.production_tons": "What municipalities produce this agricultural product?", + "graph_builder.page_title.industry.cities.employment": "What cities in Colombia does this industry employ the most people?", + "graph_builder.page_title.industry.cities.wages": "What cities in Colombia does this industry pay the highest total wages?", + "graph_builder.page_title.industry.departments.employment": "What departments in Colombia does this industry employ the most people?", + "graph_builder.page_title.industry.departments.wages": "What departments in Colombia does this industry pay the highest total wages?", + "graph_builder.page_title.industry.occupations.num_vacancies": "What occupations does this industry employ?", + "graph_builder.page_title.landUse.departments.area": "Which departments have this type of land use?", + "graph_builder.page_title.landUse.municipalities.area": "Which municipalities have this type of land use?", + "graph_builder.page_title.location.agproducts.land_harvested.country": "What agricultural products are harvested in Colombia?", + "graph_builder.page_title.location.agproducts.land_harvested.department": "What agricultural products are harvested in this department?", + "graph_builder.page_title.location.agproducts.land_harvested.municipality": "What agricultural products are harvested in this municipality?", + "graph_builder.page_title.location.agproducts.land_sown.country": "What agricultural products are planted in Colombia?", + "graph_builder.page_title.location.agproducts.land_sown.department": "What agricultural products are planted in this department?", + "graph_builder.page_title.location.agproducts.land_sown.municipality": "What agricultural products are planted in this municipality?", + "graph_builder.page_title.location.agproducts.production_tons.country": "What agricultural products are produced in Colombia?", + "graph_builder.page_title.location.agproducts.production_tons.department": "What agricultural products are produced in this department?", + "graph_builder.page_title.location.agproducts.production_tons.municipality": "What agricultural products are produced in this municipality?", + "graph_builder.page_title.location.destination_by_product.export_value.department": "Where does this department export oil to?", + "graph_builder.page_title.location.destination_by_product.import_value.department": "Where does this department import cars from?", + "graph_builder.page_title.location.farmtypes.num_farms.country": "What types of farms are there in Colombia?", + "graph_builder.page_title.location.farmtypes.num_farms.department": "What types of farms are there in this department?", + "graph_builder.page_title.location.farmtypes.num_farms.municipality": "What types of farms are there in this municipality?", + "graph_builder.page_title.location.industries.employment.country": "What industries in Colombia employ the most people?", + "graph_builder.page_title.location.industries.employment.department": "What industries in this department employ the most people?", + "graph_builder.page_title.location.industries.employment.msa": "What industries in this city employ the most people?", + "graph_builder.page_title.location.industries.employment.municipality": "What industries in this municipality employ the most people?", + "graph_builder.page_title.location.industries.scatter.country": "What relatively complex industries have the most possibilities for Colombia?", + "graph_builder.page_title.location.industries.scatter.department": "What relatively complex industries have the most possibilities for this department?", + "graph_builder.page_title.location.industries.scatter.msa": "What relatively complex industries have the most possibilities for this city?", + "graph_builder.page_title.location.industries.scatter.municipality": "What relatively complex industries have the most possibilities for this municipality?", + "graph_builder.page_title.location.industries.similarity.country": "Where is Colombia in the industry space?", + "graph_builder.page_title.location.industries.similarity.department": "Where is this department in the industry space?", + "graph_builder.page_title.location.industries.similarity.msa": "Where is this city in the industry space?", + "graph_builder.page_title.location.industries.similarity.municipality": "Where is this municipality in the industry space?", + "graph_builder.page_title.location.industries.wages.country": "What industries in Colombia are the largest by total wages?", + "graph_builder.page_title.location.industries.wages.department": "What industries in this department are the largest by total wages?", + "graph_builder.page_title.location.industries.wages.msa": "What industries in this city are the largest by total wages?", + "graph_builder.page_title.location.industries.wages.municipality": "What industries in this municipality are the largest by total wages?", + "graph_builder.page_title.location.landUses.area.country": "Which types of land uses are in Colombia?", + "graph_builder.page_title.location.landUses.area.department": "Which types of land uses are in this department?", + "graph_builder.page_title.location.landUses.area.municipality": "Which types of land uses are in this municipality?", + "graph_builder.page_title.location.livestock.num_farms.country": "What kinds of livestock farms does Colombia have?", + "graph_builder.page_title.location.livestock.num_farms.department": "What kinds of livestock farms does this department have?", + "graph_builder.page_title.location.livestock.num_farms.municipality": "What kinds of livestock farms does this municipality have?", + "graph_builder.page_title.location.livestock.num_livestock.country": "What kinds of livestock does Colombia have?", + "graph_builder.page_title.location.livestock.num_livestock.department": "What kinds of livestock does this department have?", + "graph_builder.page_title.location.livestock.num_livestock.municipality": "What kinds of livestock does this municipality have?", + "graph_builder.page_title.location.partners.export_value.country": "What countries does Colombia export to?", + "graph_builder.page_title.location.partners.export_value.department": "What countries does this department export to?", + "graph_builder.page_title.location.partners.export_value.msa": "What countries does this city export to?", + "graph_builder.page_title.location.partners.export_value.municipality": "What countries does this municipality export to?", + "graph_builder.page_title.location.partners.import_value.country": "What countries does Colombia import from?", + "graph_builder.page_title.location.partners.import_value.department": "What countries does this department import from?", + "graph_builder.page_title.location.partners.import_value.msa": "What countries does this city import from?", + "graph_builder.page_title.location.partners.import_value.municipality": "What countries does this municipality import from?", + "graph_builder.page_title.location.products.export_value.country": "What products does Colombia export?", + "graph_builder.page_title.location.products.export_value.department": "What products does this department export?", + "graph_builder.page_title.location.products.export_value.msa": "What products does this city export?", + "graph_builder.page_title.location.products.export_value.municipality": "What products does this municipality export?", + "graph_builder.page_title.location.products.import_value.country": "What products does Colombia import?", + "graph_builder.page_title.location.products.import_value.department": "What products does this department import?", + "graph_builder.page_title.location.products.import_value.msa": "What products does this city import?", + "graph_builder.page_title.location.products.import_value.municipality": "What products does this municipality import?", + "graph_builder.page_title.location.products.scatter.country": "What products have the most potential for Colombia?", + "graph_builder.page_title.location.products.scatter.department": "What products have the most potential for this department?", + "graph_builder.page_title.location.products.scatter.msa": "What products have the most potential for this city?", + "graph_builder.page_title.location.products.scatter.municipality": "What products have the most potential for this municipality?", + "graph_builder.page_title.location.products.similarity.country": "Where is Colombia in the product space?", + "graph_builder.page_title.location.products.similarity.department": "Where is this department in the product space?", + "graph_builder.page_title.location.products.similarity.msa": "Where is this city in the product space?", + "graph_builder.page_title.location.products.similarity.municipality": "Where is this municipality in the product space?", + "graph_builder.page_title.product.cities.export_value": "What cities in Colombia export this product?", + "graph_builder.page_title.product.cities.import_value": "What cities in Colombia import this product?", + "graph_builder.page_title.product.departments.export_value": "What departments in Colombia export this product?", + "graph_builder.page_title.product.departments.import_value": "What departments in Colombia import this product?", + "graph_builder.page_title.product.partners.export_value": "Where does Colombia export this product to?", + "graph_builder.page_title.product.partners.export_value.destination": "Where does {{location}} export {{product}} to?", + "graph_builder.page_title.product.partners.import_value": "Where does Colombia import this product from?", + "graph_builder.page_title.product.partners.import_value.origin": "Where does {{location}} import {{product}} from?", + "graph_builder.questions.label": "Change question", + "graph_builder.recirc.header.industry": "Read the profile for this industry", + "graph_builder.recirc.header.location": "Read the profile for this location", + "graph_builder.recirc.header.product": "Read the profile for this product", + "graph_builder.search.placeholder.agproducts": "Highlight agricultural products in the graph below", + "graph_builder.search.placeholder.cities": "Highlight a city on the graph below", + "graph_builder.search.placeholder.departments": "Highlight a department on the graph below", + "graph_builder.search.placeholder.farmtypes": "Highlight a farm type in the graph below", + "graph_builder.search.placeholder.industries": "Highlight industries on the graph below", + "graph_builder.search.placeholder.landUses": "Highlight a land use on the graph below", + "graph_builder.search.placeholder.livestock": "Highlight a livestock type in the graph below", + "graph_builder.search.placeholder.locations": "Highlight locations on the graph below", + "graph_builder.search.placeholder.municipalities": "Highlight a municipality on the graph below", + "graph_builder.search.placeholder.occupations": "Highlight an occupation on the graph below", + "graph_builder.search.placeholder.partners": "Highlight trade partners on the graph below", + "graph_builder.search.placeholder.products": "Highlight products on the graph below", + "graph_builder.search.submit": "Highlight", + "graph_builder.settings.change_time": "Change time period", + "graph_builder.settings.close_settings": "Save and close", + "graph_builder.settings.label": "Change Characteristics", + "graph_builder.settings.rca": "Revealed comparative advantage", + "graph_builder.settings.rca.all": "All", + "graph_builder.settings.rca.greater": "> 1", + "graph_builder.settings.rca.less": "< 1", + "graph_builder.settings.to": "to", + "graph_builder.settings.year": "Years selector", + "graph_builder.settings.year.next": "Next", + "graph_builder.settings.year.previous": "Previous", + "graph_builder.table.agproduct": "Agricultural Product", + "graph_builder.table.area": "Area ", + "graph_builder.table.average_wages": "Avg. monthly wage, Col$", + "graph_builder.table.avg_wage": "Avg. monthly wage, Col$", + "graph_builder.table.code": "Code", + "graph_builder.table.cog": "Opportunity gain", + "graph_builder.table.coi": "Export complexity outlook", + "graph_builder.table.complexity": "Complexity", + "graph_builder.table.country": "Country", + "graph_builder.table.distance": "Distance", + "graph_builder.table.eci": "Export complexity", + "graph_builder.table.employment": "Employment", + "graph_builder.table.employment_growth": "Employment growth rate ({{yearRange}})", + "graph_builder.table.export": "Export", + "graph_builder.table.export_num_plants": "Firm number", + "graph_builder.table.export_rca": "Revealed comparative advantage", + "graph_builder.table.export_value": "Exports, USD", + "graph_builder.table.farmtype": "Farm Type", + "graph_builder.table.gdp_pc_real": "GDP per Capita", + "graph_builder.table.gdp_real": "GDP", + "graph_builder.table.import_value": "Imports, USD", + "graph_builder.table.industry": "Industry", + "graph_builder.table.industry_coi": "Industry complexity outlook", + "graph_builder.table.industry_eci": "Industry complexity", + "graph_builder.table.land_harvested": "Land harvested (ha)", + "graph_builder.table.land_sown": "Land sown (ha)", + "graph_builder.table.land_use": "Land Use", + "graph_builder.table.less_than_5": "Less than 5", + "graph_builder.table.livestock": "Livestock", + "graph_builder.table.location": "Location", + "graph_builder.table.monthly_wages": "Avg. monthly wage, Col$", + "graph_builder.table.name": "Name", + "graph_builder.table.num_establishments": "Firm number", + "graph_builder.table.num_farms": "Number of farms", + "graph_builder.table.num_livestock": "Number of livestock", + "graph_builder.table.num_vacancies": "Vacancies", + "graph_builder.table.occupation": "Occupation", + "graph_builder.table.parent": "Parent", + "graph_builder.table.parent.country": "Region", + "graph_builder.table.population": "Population", + "graph_builder.table.production_tons": "Production (tons)", + "graph_builder.table.rca": "Revealed comparative advantage", + "graph_builder.table.read_more": "Unfamiliar with any of the indicators above? Look them up in the", + "graph_builder.table.share": "Share", + "graph_builder.table.wages": "Total wages, Col$ (in thousands)", + "graph_builder.table.year": "Year", + "graph_builder.table.yield_index": "Yield Index", + "graph_builder.table.yield_ratio": "Yield (tons/ha)", + "graph_builder.view_more": "View more", + "header.destination": "Destination", + "header.destination_by_products": "Destinations by Products", + "header.employment": "Employment", + "header.export": "Exports", + "header.import": "Imports", + "header.industry": "Industries", + "header.industry_potential": "Potential", + "header.industry_space": "Industry space", + "header.landUse": "Land Use", + "header.land_harvested": "Land Harvested", + "header.land_sown": "Land Sown", + "header.occupation": "Occupations", + "header.occupation.available_jobs": "Job openings", + "header.origin": "Origin", + "header.origin_by_products": "Origin by Products", + "header.overview": "Overview", + "header.partner": "Partners", + "header.product": "Products", + "header.product_potential": "Potential", + "header.product_space": "Product space", + "header.production_tons": "Production", + "header.region": "By department", + "header.subregion": "By city", + "header.subsubregion": "By municipality ", + "header.wage": "Total wages", + "index.builder_cta": "Build graphs about coffee", + "index.builder_head": "Then dive into the graph builder", + "index.builder_subhead": "Create graphs and maps for your presentations", + "index.complexity_caption": "How good is it? Country growth predictions using economic complexity were more than six times as accurate as conventional metrics, such as the Global Competitiveness Index.", + "index.complexity_cta": "Read more about complexity concepts", + "index.complexity_figure.WEF_name": "Global Competitiveness Index", + "index.complexity_figure.complexity_name": "Complexity ranking", + "index.complexity_figure.head": "Growth explained (percent of 10-year variance)", + "index.complexity_head": "The complexity advantage", + "index.complexity_subhead": "Countries that export complex products, which require a lot of knowledge, grow faster than those that export raw materials. Using the methods of measuring and visualizing economic complexity developed by Harvard University, Datlas helps to explore the production and export possibilities of every city and department in Colombia.", + "index.country_profile": "Read the profile for Colombia", + "index.dropdown.industries": "461,488", + "index.dropdown.locations": "41,87,34,40", + "index.dropdown.products": "1143,87", + "index.future_head": "Mapping the future", + "index.future_subhead": "Scatterplots and network diagrams help find the untapped markets best suited to a city or a department.", + "index.graphbuilder.id": "87", + "index.header_h1": "The Colombian Atlas of Economic Complexity", + "index.header_head": "You haven\u2019t seen Colombia like this before", + "index.header_subhead": "Visualize the possibilities for industries, exports and locations across Colombia.", + "index.industry_head": "Learn about an industry", + "index.industry_q1": "Where in Colombia does the chemical industry employ the most people?", + "index.industry_q1.id": "461", + "index.industry_q2": "What occupations are demanded by the chemical industry?", + "index.industry_q2.id": "461", + "index.location_head": "Learn about a location", + "index.location_q1": "What industries in Bogot\u00e1 Met employ the most people?", + "index.location_q1.id": "41", + "index.location_q2": "What products have the most potential in Bogot\u00e1 Met?", + "index.location_q2.id": "41", + "index.location_viewall": "See all questions", + "index.present_head": "Charting the present", + "index.present_subhead": "Use our treemaps, charts, and maps to break down your department, city or municipality\u2019s exports and employment.", + "index.product_head": "Learn about an export", + "index.product_q1": "What places in Colombia export computers?", + "index.product_q1.id": "1143", + "index.product_q2": "What places in Colombia import computers?", + "index.product_q2.id": "1143", + "index.profile.id": "1", + "index.profiles_cta": "Read the profile for Antioquia", + "index.profiles_head": "Start with our profiles", + "index.profiles_subhead": "Just the essentials, presented as a one-page summary", + "index.questions_head": "We\u2019re not a crystal ball, but we can answer a lot of questions", + "index.questions_subhead": "index.questions_subhead", + "index.research_head": "Research featured in", + "industry.show.avg_wages": "Average wages ({{year}})", + "industry.show.employment": "Employment ({{year}})", + "industry.show.employment_and_wages": "Formal employment and wages", + "industry.show.employment_growth": "Employment growth rate ({{yearRange}})", + "industry.show.industries": "Industries", + "industry.show.industry_composition": "Industry composition, {{year}}", + "industry.show.occupation": "Occupations", + "industry.show.occupation_demand": "Occupations most demanded by this industry, 2014", + "industry.show.value": "Value", + "last_year": "2014", + "location.model.country": "Colombia", + "location.model.department": "department", + "location.model.msa": "city", + "location.model.municipality": "municipality", + "location.show.ag_farmsize": "Avg. agricultural farm size (ha)", + "location.show.all_departments": "Compared to the other departments", + "location.show.all_regions": "Compared to the other locations", + "location.show.bullet.gdp_grow_rate": "The GDP growth rate in the period {{yearRange}} was {{gdpGrowth}}, compared to 5.3% for Colombia", + "location.show.bullet.gdp_pc": "{{name}} has a GDP per capita of {{lastGdpPerCapita}}, compared to Col$15.1 million for Colombia in 2014.", + "location.show.bullet.last_pop": "The population is {{lastPop}}, compared to 46.3 million in Colombia as a whole in 2014.", + "location.show.eci": "Export complexity", + "location.show.employment": "Employment ({{lastYear}})", + "location.show.employment_and_wages": "Formal employment and wages", + "location.show.export_possiblities": "Export possiblities", + "location.show.export_possiblities.footer": "Some exports make not be viable due to local factors not considered by the technological similarity approach.", + "location.show.export_possiblities.intro": "We\u2019ve found that countries which export complex products grow faster than those which export simple products. Using the product space presented above, we\u2019ve highlighted \u00a0high potential products for {{name}}, ranked by which have the highest combination of opportunity and complexity.", + "location.show.exports": "Exports ({{year}})", + "location.show.exports_and_imports": "Exports and imports", + "location.show.gdp": "GDP", + "location.show.gdp_pc": "GDP per Capita", + "location.show.growth_annual": "Growth rate ({{yearRange}})", + "location.show.imports": "Imports ({{year}})", + "location.show.nonag_farmsize": "Avg. nonagricultural farm size (ha)", + "location.show.overview": "Overview", + "location.show.population": "Population", + "location.show.subregion.exports": "Export Composition by Municipality ({{year}})", + "location.show.subregion.imports": "Import Composition by Municipality ({{year}})", + "location.show.subregion.title": "Export and Import by Municipality", + "location.show.total_wages": "Total wages ({{lastYear}})", + "location.show.value": "Value", + "pageheader.about": "About", + "pageheader.alternative_title": "Atlas of Economic Complexity", + "pageheader.brand_slogan": "You haven't seen Colombia like this before", + "pageheader.download": "About the Data", + "pageheader.graph_builder_link": "Graph Builder", + "pageheader.profile_link": "Profile", + "pageheader.rankings": "Rankings", + "pageheader.search_link": "Search", + "pageheader.search_placeholder": "Search for a location, product or industry", + "pageheader.search_placeholder.industry": "Search for a industry", + "pageheader.search_placeholder.location": "Search for a location", + "pageheader.search_placeholder.product": "Search for a product", + "rankings.explanation.body": "", + "rankings.explanation.title": "Explanation", + "rankings.intro.p": "Compare departments and cities across Colombia.", + "rankings.pagetitle": "Rankings", + "rankings.section.cities": "Cities", + "rankings.section.departments": "Departments", + "rankings.table-title": "rank", + "search.didnt_find": "Didn\u2019t find what you were looking for? Let us know: Datlascolombia@bancoldex.com", + "search.header": "results", + "search.intro": "Search for the location, product, industry or occupation that you\u2019re interested in", + "search.level.4digit": "HS (1992) four-digit", + "search.level.class": "ISIC four-digit", + "search.level.country": "Country", + "search.level.department": "Department", + "search.level.division": "ISIC two-digit", + "search.level.msa": "City", + "search.level.municipality": "Municipality", + "search.level.parent.4digit": "HS (1992) two-digit", + "search.level.parent.class": "ISIC two-digit", + "search.level.parent.country": "Region", + "search.placeholder": "Type here to search", + "search.results_industries": "Industries", + "search.results_locations": "Locations", + "search.results_products": "Products", + "table.export_data": "Export Data", + "thousands_delimiter": "," +}; diff --git a/app/locales/en-mex/translations.js b/app/locales/en-mex/translations.js index eee80795..d873a73d 100644 --- a/app/locales/en-mex/translations.js +++ b/app/locales/en-mex/translations.js @@ -6,7 +6,7 @@ export default { "about.downloads.explanation.p1": "Download the document explaining how each of the complexity variables of the Mexican Atlas of Economic Complexity is computed.", "about.downloads.explanation.title": "Method of calculation of complexity variables", "about.downloads.locations": "Lists of states, cities (metropolitan zones) and municipalities", - "about.glossary": "Economic complexity is important because prosperity implies having firms able to produce and export goods and services that require diverse skills and knowledge. Complexity can be measured by location industry or exports .
Ranks the potential for a location to increase its economic complexity. The ranking accounts for the level of complexity of the industries (or exports) already present, and the distance in terms of skills and knowledge that separate them from other industries (exports). In practice, it measures the likelihood of different industries (exports) appearing and the value of their added complexity. Higher outlook values indicate \u201ccloser distance\u201d to more complex industries (exports).
A measure of a location\u2019s ability to conquer a specific industry (or export), as determined by its current productive capabilities. It accounts for the similarity between the capabilities required by an industry (or export) and the capabilities already present in a location. Where a new industry or export requires many of the same capabilities already present in a location, the product is considered \u201ccloser\u201d or \"at a shorter distance\u201d. New industries or exports at further distance require larger sets of productive capabilities that do not exist in the location and are therefore riskier ventures. Thus, distance reflects the proportion of the productive knowledge required by an industry or export that a location does not have.
A measure of the sophistication of the productive capabilities of a location based on the diversity and exclusivity of its industries (or exports). A location with high complexity is able to produce goods and services that few other locations can produce. Highly complex locations tend to be more productive and generate higher wages and incomes. Countries with export baskets more sophisticated than what is expected for their income level, tend to grow faster than those where the opposite is true.
Ranks industries by the diversity and uniqueness of productive skills and capabilities it requires. The complexity of industries and exports are closely related, but are measured through independent datasets and classification systems. Exports only comprise tradable sectors (using the Harmonized System of product classification, 1992 revision), while industries contain all sectors that generate employment (using the Mexican version of the North American Industry Classification System -NAICS-, 2007 revision). Also, a single industry may be able to produce and export different products. Industries are complex when they require a sophisticated level of productive knowledge. Industry complexity is measured by calculating the average diversity of locations that hold the industry and the average ubiquity of the industries that those locations hold. The formal employment data required for these calculations comes from aggregating Social Security data at the industry-location level.
Formal employment by industry is defined as employment covered by the social security system. Wages are those reported by firms to that aim. The formal employment and wagebill estimates use information from those firms to which a clear industry code (NAICS 2007) can be imputed. Since the Mexican Atlas of Economic Complexity does not include information from all firms affiliated to the Mexican Institute of Social Security (IMSS), totals across sectors in the Mexican Atlas of Economic Complexity should not be interpreted as the totals of formal employment and wagebill, either at a national or a subnational level. To ascertain such totals, please refer to the IMSS open data page (http://busca.datos.gob.mx/#/conjuntos/asegurados-en-el-imss). Population data comes from INEGI.
A visualization that depicts how similar are the knowledge and skills required by different industries. Each color represents a different sector, dots represent industries within that sector, and each link between a pair of industries indicates that both require similar capabilities and skills. The space also illustrates (filled dots) what industries exhibit a relative comparative advantage (RCA), and how close they are from industries that are not present at that location. The industry space represents potential paths for industrial expansion by understanding how capabilities are shared across industries. Thus, industries can be understood by the number of links they share with others and the complexity of those industries. An industry with more links offers greater potential for diversification across shared capabilities. The Mexican industry similarity space is based on formal employment data by industry and municipality coming from IMSS.
The definition of Metropolitan areas follows the guidelines established in 2004 by CONAPO, INEGI and SEDESOL: 1) the group of two or more municipalities, in which a city with a population of at least 50,000 is located whose urban area extends over the limit of the municipality that originally contained the core city incorporating either physically or, under its area of direct influence, other adjacent predominantly urban municipalities, all of which either have a high degree of social and economic integration or are relevant for urban politics and administration; or 2) a single municipality, in which a city of a population of at least one million is located and fully contained without transcending the limits of a single municipality; or 3) a city with a population of at least 250,000 that forms a conurbation with other cities in the United States.
Ranks export products by the diversity and uniqueness of productive skills and capabilities it requires. A product such as toothpaste is much more than paste in a tube, as it embeds the tacit productive knowledge (or knowhow) of the chemicals that kill the germs that cause cavities and gum disease. Complex exports, which include many chemical and machinery products, require a sophisticated level, and diverse base, of productive knowledge, with many individuals with distinct specialized knowledge interacting in a large organization. This contrasts with low complexity exports, like coffee, which require much less basic productive knowledge that can be found in a family-run business. UN Comtrade data are used to compute the complexity of export products.
A visualization that depicts how similar are the knowledge and skills required by different export products. Each color represents a different sector, dots represent export products within that sector, and each link between a pair of products indicates that both require similar capabilities and skills. The space also illustrates (filled dots) where does the location exhibits relative comparative advantages (RCA), and how close they are from export products where it does not. The space represents potential paths for export expansion by understanding how capabilities are shared across products. Thus, products can be understood by the number of links they share with other products and the complexity of those products. A product with more links offers greater potential for diversification across shared capabilities. Thus the number of links that existing products share to complex products that a location does not currently produce determines the complexity outlook of its exports.
The shape of the space is based on international trade data for 192 countries over 50 years. See The International Atlas of Economic Complexity.
Measures how much a location could benefit by developing a particular industry (or export). Also known also as \u201copportunity gain,\u201d the measure accounts for the distance to all other industries (or exports) that a location does not currently produce and their respective complexity. Strategic gain quantifies how a new industry (or export) can open up links to more, and more complex, products. Thus, the measure calculates the strategic value of an industry (or export) based on the paths it opens to industrial expansion into more complex sectors.
Measures the relative size of an industry or an export product in a location. RCA is not a measure of productive efficiency or competitiveness, but just a \u201clocation quotient\u201d, as is often referred to. RCA is computed as the ratio between an industry\u2019s share of total formal employment in a location and the share of that industry\u2019s total formal employment in the country. For exports, RCA is the ratio between the share of the export in the export basket of the location and its share in total world trade. If this ratio is larger than 1, the location is said to have revealed comparative advantage in the industry or export.
", + "about.glossary": "Economic complexity is important because prosperity implies having firms able to produce and export goods and services that require diverse skills and knowledge. Complexity can be measured by location industry or exports .
Ranks the potential for a location to increase its economic complexity. The ranking accounts for the level of complexity of the industries (or exports) already present, and the distance in terms of skills and knowledge that separate them from other industries (exports). In practice, it measures the likelihood of different industries (exports) appearing and the value of their added complexity. Higher outlook values indicate \u201ccloser distance\u201d to more complex industries (exports).
A measure of a location\u2019s ability to conquer a specific industry (or export), as determined by its current productive capabilities. It accounts for the similarity between the capabilities required by an industry (or export) and the capabilities already present in a location. Where a new industry or export requires many of the same capabilities already present in a location, the product is considered \u201ccloser\u201d or \"at a shorter distance\u201d. New industries or exports at further distance require larger sets of productive capabilities that do not exist in the location and are therefore riskier ventures. Thus, distance reflects the proportion of the productive knowledge required by an industry or export that a location does not have.
A measure of the sophistication of the productive capabilities of a location based on the diversity and exclusivity of its industries (or exports). A location with high complexity is able to produce goods and services that few other locations can produce. Highly complex locations tend to be more productive and generate higher wages and incomes. Countries with export baskets more sophisticated than what is expected for their income level, tend to grow faster than those where the opposite is true.
Ranks industries by the diversity and uniqueness of productive skills and capabilities it requires. The complexity of industries and exports are closely related, but are measured through independent datasets and classification systems. Exports only comprise tradable sectors (using the Harmonized System of product classification, 1992 revision), while industries contain all sectors that generate employment (using the Mexican version of the North American Industry Classification System -NAICS-, 2007 revision). Also, a single industry may be able to produce and export different products. Industries are complex when they require a sophisticated level of productive knowledge. Industry complexity is measured by calculating the average diversity of locations that hold the industry and the average ubiquity of the industries that those locations hold. The formal employment data required for these calculations comes from aggregating Social Security data at the industry-location level.
Formal employment by industry is defined as employment covered by the social security system. Wages are those reported by firms to that aim. The formal employment and wagebill estimates use information from those firms to which a clear industry code (NAICS 2007) can be imputed. Since the Mexican Atlas of Economic Complexity does not include information from all firms affiliated to the Mexican Institute of Social Security (IMSS), totals across sectors in the Mexican Atlas of Economic Complexity should not be interpreted as the totals of formal employment and wagebill, either at a national or a subnational level. To ascertain such totals, please refer to the IMSS open data page (http://busca.datos.gob.mx/#/conjuntos/asegurados-en-el-imss). Population data comes from INEGI.
A visualization that depicts how similar are the knowledge and skills required by different industries. Each color represents a different sector, dots represent industries within that sector, and each link between a pair of industries indicates that both require similar capabilities and skills. The space also illustrates (filled dots) what industries exhibit a relative comparative advantage (RCA), and how close they are from industries that are not present at that location. The industry space represents potential paths for industrial expansion by understanding how capabilities are shared across industries. Thus, industries can be understood by the number of links they share with others and the complexity of those industries. An industry with more links offers greater potential for diversification across shared capabilities. The Mexican industry similarity space is based on formal employment data by industry and municipality coming from IMSS.
The definition of Metropolitan areas follows the guidelines established in 2004 by CONAPO, INEGI and SEDESOL: 1) the group of two or more municipalities, in which a city with a population of at least 50,000 is located whose urban area extends over the limit of the municipality that originally contained the core city incorporating either physically or, under its area of direct influence, other adjacent predominantly urban municipalities, all of which either have a high degree of social and economic integration or are relevant for urban politics and administration; or 2) a single municipality, in which a city of a population of at least one million is located and fully contained without transcending the limits of a single municipality; or 3) a city with a population of at least 250,000 that forms a conurbation with other cities in the United States.
Ranks export products by the diversity and uniqueness of productive skills and capabilities it requires. A product such as toothpaste is much more than paste in a tube, as it embeds the tacit productive knowledge (or knowhow) of the chemicals that kill the germs that cause cavities and gum disease. Complex exports, which include many chemical and machinery products, require a sophisticated level, and diverse base, of productive knowledge, with many individuals with distinct specialized knowledge interacting in a large organization. This contrasts with low complexity exports, like coffee, which require much less basic productive knowledge that can be found in a family-run business. UN Comtrade data are used to compute the complexity of export products.
A visualization that depicts how similar are the knowledge and skills required by different export products. Each color represents a different sector, dots represent export products within that sector, and each link between a pair of products indicates that both require similar capabilities and skills. The space also illustrates (filled dots) where does the location exhibits relative comparative advantages (RCA), and how close they are from export products where it does not. The space represents potential paths for export expansion by understanding how capabilities are shared across products. Thus, products can be understood by the number of links they share with other products and the complexity of those products. A product with more links offers greater potential for diversification across shared capabilities. Thus the number of links that existing products share to complex products that a location does not currently produce determines the complexity outlook of its exports.
The shape of the space is based on international trade data for 192 countries over 50 years. See The International Atlas of Economic Complexity.
Measures how much a location could benefit by developing a particular industry (or export). Also known also as \u201copportunity gain,\u201d the measure accounts for the distance to all other industries (or exports) that a location does not currently produce and their respective complexity. Strategic gain quantifies how a new industry (or export) can open up links to more, and more complex, products. Thus, the measure calculates the strategic value of an industry (or export) based on the paths it opens to industrial expansion into more complex sectors.
Measures the relative size of an industry or an export product in a location. RCA is not a measure of productive efficiency or competitiveness, but just a \u201clocation quotient\u201d, as is often referred to. RCA is computed as the ratio between an industry\u2019s share of total formal employment in a location and the share of that industry\u2019s total formal employment in the country. For exports, RCA is the ratio between the share of the export in the export basket of the location and its share in total world trade. If this ratio is larger than 1, the location is said to have revealed comparative advantage in the industry or export.
", "about.glossary_name": "Glossary", "about.project_description.cid.header": "CID and the Growth Lab", "about.project_description.cid.p1": "The Center for International Development (CID) works to advance the understanding of development challenges and offer viable, inclusive solutions to problems of global poverty. CID is Harvard\u2019s leading research hub focusing on resolving the dilemmas of public policy associated with generating stable, shared, and sustainable prosperity in developing countries. The Growth Lab is one of CID\u2019s core research programs. Faculty and fellows work to understand the dynamics of growth and to translate those insights into more effective policymaking in developing countries. The Lab places economic complexity and diversification at the center of the development story and uncovers how countries and cities can move into industries with potential to increase productivity.", @@ -212,6 +212,7 @@ export default { "graph_builder.explanation.product.partners.import_value": "Shows where Mexico imports this product from, nested by world regions. Source: SAT, IMSS and own calculations by CID.", "graph_builder.explanation.show": "Show", "graph_builder.multiples.show_all": "Show All", + "graph_builder.types": "Available graphics", "graph_builder.page_title.industry.cities.employment": "What cities in Mexico account for a larger share of employment in this industry?", "graph_builder.page_title.industry.cities.wages": "What cities in Mexico acoount for a larger share of wages paid in this industry?", "graph_builder.page_title.industry.departments.employment": "Where in Mexico does this industry employ the most people?", @@ -287,7 +288,7 @@ export default { "graph_builder.settings.rca.greater": "> 1", "graph_builder.settings.rca.less": "< 1", "graph_builder.settings.to": "to", - "graph_builder.settings.year": "Years", + "graph_builder.settings.year": "Years selector", "graph_builder.settings.year.next": "Next", "graph_builder.settings.year.previous": "Previous", "graph_builder.table.average_wages": "Avg. wage, MX$ (in thousands)", @@ -358,6 +359,8 @@ export default { "index.complexity_head": "The complexity advantage", "index.complexity_subhead": "Countries that export complex products, which require a lot of knowledge, grow faster than those that export raw materials. Researchers at Harvard University have pioneered a way to measure and visualize the complexity of every export and industry in Mexico.", "index.country_profile": "Read the profile for Mexico", + "index.country_profile_p1": "Read the profile", + "index.country_profile_p2": "Of colombia", "index.dropdown.industries": "294,359", "index.dropdown.locations": "2533,2501,2511,2539", "index.dropdown.products": "1143,87", @@ -365,8 +368,13 @@ export default { "index.future_subhead": "Find the untapped markets best suited to your location", "index.graphbuilder.id": "87", "index.header_h1": "The Mexican Atlas of Economic Complexity", + "index.header_h1_add": "You want to know", + "index.header_h1_p1": "The colombian atlas of", + "index.header_h1_p2": "Economic complexity", "index.header_head": "You haven\u2019t seen Mexico like this before", "index.header_subhead": "Visualize the possibilities for industries, exports and locations across Mexico.", + "index.header_subhead_add": "Which sectors employ more people in Bogota?", + "index.button_more_information": "More information", "index.industry_head": "Learn about an industry", "index.industry_q1": "Where in Mexico does the insurance industry employ the most people?", "index.industry_q1.id": "294", @@ -390,8 +398,11 @@ export default { "index.profiles_head": "Start with our profiles", "index.profiles_subhead": "Just the essentials, presented as a one-page summary", "index.questions_head": "We\u2019re not a crystal ball, but we can answer a lot of questions", + "index.questions_head_p1": "Updates", + "index.questions_head_p2": "External trade modules and sectors", "index.questions_subhead": "But we can answer a lot of questions.", "index.research_head": "Research featured in", + "index.sophistication_route": "Product sophistication and diversification route", "industry.show.avg_wages": "Average wages ({{year}})", "industry.show.employment": "Employment ({{year}})", "industry.show.employment_and_wages": "Employment and wages", @@ -439,9 +450,11 @@ export default { "pageheader.rankings": "Rankings", "pageheader.search_link": "Search", "pageheader.search_placeholder": "Search for a location, product or industry", - "pageheader.search_placeholder.industry": "Search for a industry", + "pageheader.search_placeholder.header": "Make a search by", + "pageheader.search_placeholder.industry": "Find by name or by CIIU code", "pageheader.search_placeholder.location": "Search for a location", "pageheader.search_placeholder.product": "Search for a product", + "pageheader.search_placeholder.rural": "Search by agricultural product, land use, agricultural activity or livestock species", "rankings.explanation.body": "", "rankings.explanation.title": "Explanation", "rankings.intro.p": "Compare states and cities across Mexico.", @@ -466,6 +479,35 @@ export default { "search.results_industries": "Industries", "search.results_locations": "Locations", "search.results_products": "Products", + "search.sophistication_path_place": "Path of sophistication and diversification of location", + "search.sophistication_path_product": "Path of sophistication and diversification of product", + "search.message.p1": "In the next field you can fill out your query, you can also carry out this same search by CIIU code.", + "search.message.p2": "Use the question mark to expand the information.", + "search.modal.title": "CIIU Code", + "search.placeholder.select2": "Search by Name or CIIU Code", + "search.modal.close": "Close", + "search.modal.title.industry": "CIIU Code", + "search.modal.p1.industry": "Numerical classification that identifies economic activities. Although it belongs to the United Nations, in Colombia, DANE performs the last 4-digit classification.", + "search.modal.link.industry": "https://clasificaciones.dane.gov.co/ciiu4-0/ciiu4_dispone", + + "search.modal.title.rural": "Search", + "search.modal.p1.rural": "In this option you can search for an agricultural product, land use, non-agricultural activity or livestock species by name.Economic complexity is important because both productivity and economic growth in any place depend on having firms able to successfully produce goods and services that require more \"complex\", i.e. more diverse and less ubiquitous, skills and knowledge. Complexity can be measured by location, by product, or by industry.
Ranks the potential for a location to increase its economic complexity. The ranking accounts for the level of complexity of all the products that are not exported with comparative advantage (or not exported at all), and for the \"distance\" between the productive capabilities already in place and the ones required by these products. Based on this information, it measures the likelihood of new export products appearing and the value of their added complexity. Higher outlook values indicate a higher likelihood of developing new, more complex products.
Measures how much a location could benefit by developing a particular export product. Also known also as \"Complexity Outlook Gain\" or \u201cOpportunity Gain,\u201d the measure accounts for the increase in the Complexity Outlook Index (COI). It calculates how adding a new product to the export basket opens to expansion into more complex export products.
A measure of a location\u2019s ability to conquer a specific export product, as determined by its current productive capabilities. It accounts for the similarity between the capabilities required by an export product and the capabilities already present in a location. Where a new export requires many of the same capabilities already present in a location, the product is considered \u201ccloser\u201d or \"at a shorter distance\u201d. Thus, there is a higher probabilty that the location will successfully be able to start exporting that product. Seen otherwise, distance reflects the proportion of the productive knowledge required by an export product that a location does not have.
A measure of how many different types of products a place is able to produce. The production of a good requires a specific set of know-how; therefore, a country\u2019s total diversity is another way of expressing the amount of collective know-how that a place has.
A measure of the sophistication of the productive capabilities of a location based on its diversity and ubiquity of its exports. A location with high complexity is able to export goods that few other locations can produce. Highly complex locations tend to be more productive and generate higher wages and incomes. Countries with export baskets more sophisticated than what is expected for their income level (as China) tend to grow faster than those in which the opposite is the case (as Greece).
INEI is the National Statistical and Informatics Office of Peru. It is the source of all data on GDP and population used in the Atlas.
The classification system of export products used in Atlas is the NANDINA, which coincides until the six digits level with the international classification of the Harmonized System (HS) tariff nomenclature. The Atlas presents informationon export products at the two and four digit levels. All information was originally recorded by SUNAT and provided by Promperu.
The PCI is used to rank export products by the diversity and ubiquity of the productive skills and capabilities each one requires. A product such as toothpaste is much more than paste in a tube, as it embeds the tacit productive knowledge (or knowhow) of the chemicals that kill the germs that cause cavities and gum disease. Complex exports, which include many chemical and machinery products, require a sophisticated level, and diverse base, of productive knowledge, with many individuals with distinct specialized knowledge interacting in a large organization. This contrasts with low complexity exports, like coffee, which require a more basic level of productive knowledge, which can be found even in a family-run business. UN Comtrade data are used to compute the complexity of export products.
The Product Space is a visualization that depicts how similar are the knowledge and skills required by different export products. Each color represents a different sector, dots represent export products within that sector, and each link between a pair of products indicates that both require similar capabilities and skills. One can highlight in the space the products where a location exhibits relative comparative advantage (RCA), and how close they are from export products where it does not. The space represents potential paths for export expansion by understanding how capabilities are shared across products. A product with more links to products that are not exported yet offers greater potential for diversification across shared capabilities. And if the additional capabilities are more complex, the new product has a high potential to increase the location's complexity.
The shape of the space is based on international trade data for 192 countries over 50 years. See The International Atlas of Economic Complexity.
Promperu is the Commission for the Promotion of Exports and Tourism of Peru, an specialized technical autonomous office under the Ministry of Foreign Trade and Tourism. It has provided all the information on exports used in the Atlas.
It measures the relative size of an export product in a location. The RCA is the ratio between the share of the export in the export basket of the location and its share in total world trade. If this ratio is larger than 1, the location is said to have revealed comparative advantage in the industry or export. For example, if copper accounts for 30% of exports of a department, but represents just 0.3% of world trade, then the RCA copper department is 100.
In addition, to minimize error measurement, it was decided to consider only those products in place that reach at least US$ 50,000.
SUNAT is the National Customs and Tax Administration of Peru, an specialized, technical, and autonomous agency under the Ministry of Economy and Finance. It is the institution that originally recorded the information on exports used in the Atlas.
It is a measure of the number of places that are able to export a product. The production of any good requires a specific set of capabilities; therefore ubiquity is another way of expressing the amount of productive knowledge that their production and export needs.", + "about.glossary": "
Economic complexity is important because both productivity and economic growth in any place depend on having firms able to successfully produce goods and services that require more \"complex\", i.e. more diverse and less ubiquitous, skills and knowledge. Complexity can be measured by location, by product, or by industry.
Ranks the potential for a location to increase its economic complexity. The ranking accounts for the level of complexity of all the products that are not exported with comparative advantage (or not exported at all), and for the \"distance\" between the productive capabilities already in place and the ones required by these products. Based on this information, it measures the likelihood of new export products appearing and the value of their added complexity. Higher outlook values indicate a higher likelihood of developing new, more complex products.
Measures how much a location could benefit by developing a particular export product. Also known also as \"Complexity Outlook Gain\" or \u201cOpportunity Gain,\u201d the measure accounts for the increase in the Complexity Outlook Index (COI). It calculates how adding a new product to the export basket opens to expansion into more complex export products.
A measure of a location\u2019s ability to conquer a specific export product, as determined by its current productive capabilities. It accounts for the similarity between the capabilities required by an export product and the capabilities already present in a location. Where a new export requires many of the same capabilities already present in a location, the product is considered \u201ccloser\u201d or \"at a shorter distance\u201d. Thus, there is a higher probabilty that the location will successfully be able to start exporting that product. Seen otherwise, distance reflects the proportion of the productive knowledge required by an export product that a location does not have.
A measure of how many different types of products a place is able to produce. The production of a good requires a specific set of know-how; therefore, a country\u2019s total diversity is another way of expressing the amount of collective know-how that a place has.
A measure of the sophistication of the productive capabilities of a location based on its diversity and ubiquity of its exports. A location with high complexity is able to export goods that few other locations can produce. Highly complex locations tend to be more productive and generate higher wages and incomes. Countries with export baskets more sophisticated than what is expected for their income level (as China) tend to grow faster than those in which the opposite is the case (as Greece).
INEI is the National Statistical and Informatics Office of Peru. It is the source of all data on GDP and population used in the Atlas.
The classification system of export products used in Atlas is the NANDINA, which coincides until the six digits level with the international classification of the Harmonized System (HS) tariff nomenclature. The Atlas presents informationon export products at the two and four digit levels. All information was originally recorded by SUNAT and provided by Promperu.
The PCI is used to rank export products by the diversity and ubiquity of the productive skills and capabilities each one requires. A product such as toothpaste is much more than paste in a tube, as it embeds the tacit productive knowledge (or knowhow) of the chemicals that kill the germs that cause cavities and gum disease. Complex exports, which include many chemical and machinery products, require a sophisticated level, and diverse base, of productive knowledge, with many individuals with distinct specialized knowledge interacting in a large organization. This contrasts with low complexity exports, like coffee, which require a more basic level of productive knowledge, which can be found even in a family-run business. UN Comtrade data are used to compute the complexity of export products.
The Product Space is a visualization that depicts how similar are the knowledge and skills required by different export products. Each color represents a different sector, dots represent export products within that sector, and each link between a pair of products indicates that both require similar capabilities and skills. One can highlight in the space the products where a location exhibits relative comparative advantage (RCA), and how close they are from export products where it does not. The space represents potential paths for export expansion by understanding how capabilities are shared across products. A product with more links to products that are not exported yet offers greater potential for diversification across shared capabilities. And if the additional capabilities are more complex, the new product has a high potential to increase the location's complexity.
The shape of the space is based on international trade data for 192 countries over 50 years. See The International Atlas of Economic Complexity.
Promperu is the Commission for the Promotion of Exports and Tourism of Peru, an specialized technical autonomous office under the Ministry of Foreign Trade and Tourism. It has provided all the information on exports used in the Atlas.
It measures the relative size of an export product in a location. The RCA is the ratio between the share of the export in the export basket of the location and its share in total world trade. If this ratio is larger than 1, the location is said to have revealed comparative advantage in the industry or export. For example, if copper accounts for 30% of exports of a department, but represents just 0.3% of world trade, then the RCA copper department is 100.
In addition, to minimize error measurement, it was decided to consider only those products in place that reach at least US$ 50,000.
SUNAT is the National Customs and Tax Administration of Peru, an specialized, technical, and autonomous agency under the Ministry of Economy and Finance. It is the institution that originally recorded the information on exports used in the Atlas.
It is a measure of the number of places that are able to export a product. The production of any good requires a specific set of capabilities; therefore ubiquity is another way of expressing the amount of productive knowledge that their production and export needs.",
"about.glossary_name": "Glossary",
"about.project_description.cid.header": "CID and the Growth Lab",
"about.project_description.cid.p1": "This project was developed by the Center for International Development at Harvard University (CID), under the leadership of Professor Ricardo Hausmann.",
@@ -208,6 +208,7 @@ export default {
"graph_builder.explanation.product.partners.import_value": "Shows where Peru imports this product from, nested by world regions. Source: DIAN.",
"graph_builder.explanation.show": "Show",
"graph_builder.multiples.show_all": "Show All",
+ "graph_builder.types": "Available graphics",
"graph_builder.page_title.industry.cities.employment": "What cities in Mexico does this industry employ the most people?",
"graph_builder.page_title.industry.cities.wages": "What cities in Peru does this industry pay the highest total wages?",
"graph_builder.page_title.industry.departments.employment": "",
@@ -283,7 +284,7 @@ export default {
"graph_builder.settings.rca.greater": "RCA greater than or equal 1",
"graph_builder.settings.rca.less": "RCA less than 1",
"graph_builder.settings.to": "to",
- "graph_builder.settings.year": "Years",
+ "graph_builder.settings.year": "Years selector",
"graph_builder.settings.year.next": "Next",
"graph_builder.settings.year.previous": "Previous",
"graph_builder.table.average_wages": "Avg. wage, MX$ (in thousands)",
@@ -353,6 +354,8 @@ export default {
"index.complexity_head": "The complexity advantage",
"index.complexity_subhead": "Economies that export more complex products, which require a lot of knowledge, grow faster. By using the methods to measure and visualize the complexity pioneered at Harvard University, the Atlas of Economic Complexity allows to understand the complexity, and the productive and export possibilities of the departments and provinces in Peru.",
"index.country_profile": "Read the profile for Peru",
+ "index.country_profile_p1": "Read the profile",
+ "index.country_profile_p2": "Of colombia",
"index.dropdown.industries": "294,359",
"index.dropdown.locations": "206,2501,87,2539",
"index.dropdown.products": "1143,87",
@@ -360,8 +363,13 @@ export default {
"index.future_subhead": "Find the untapped export products best suited to your department or province.",
"index.graphbuilder.id": "87",
"index.header_h1": "The Peruvian Atlas of Economic Complexity",
+ "index.header_h1_add": "You want to know",
+ "index.header_h1_p1": "The colombian atlas of",
+ "index.header_h1_p2": "Economic complexity",
"index.header_head": "You haven\u2019t seen Peru like this before",
"index.header_subhead": "Visualize the possibilities for exports and locations across Peru.",
+ "index.header_subhead_add": "Which sectors employ more people in Bogota?",
+ "index.button_more_information": "More information",
"index.industry_head": "",
"index.industry_q1": "",
"index.industry_q1.id": "294",
@@ -385,8 +393,11 @@ export default {
"index.profiles_head": "Start with our profiles",
"index.profiles_subhead": "Just the essentials, presented as a one-page summary",
"index.questions_head": "We\u2019re not a crystal ball, but we can answer a lot of questions.",
+ "index.questions_head_p1": "Updates",
+ "index.questions_head_p2": "External trade modules and sectors",
"index.questions_subhead": "But we can answer a lot of questions.",
"index.research_head": "Research featured in",
+ "index.sophistication_route": "Product sophistication and diversification route",
"industry.show.avg_wages": "Average wages ({{year}})",
"industry.show.employment": "Employment ({{year}})",
"industry.show.employment_and_wages": "Employment and wages",
@@ -433,9 +444,11 @@ export default {
"pageheader.rankings": "Rankings",
"pageheader.search_link": "Search",
"pageheader.search_placeholder": "Search for location or export product",
- "pageheader.search_placeholder.industry": "Search for a industry",
+ "pageheader.search_placeholder.header": "Make a search by",
+ "pageheader.search_placeholder.industry": "Find by name or by CIIU code",
"pageheader.search_placeholder.location": "Search for location",
"pageheader.search_placeholder.product": "Search for an export product",
+ "pageheader.search_placeholder.rural": "Search by agricultural product, land use, agricultural activity or livestock species",
"rankings.explanation.body": "",
"rankings.explanation.title": "Explanation",
"rankings.intro.p": "Compare departments and provinces across Peru.",
@@ -460,6 +473,36 @@ export default {
"search.results_industries": "Industries",
"search.results_locations": "Locations",
"search.results_products": "Export products",
+ "search.sophistication_path_place": "Path of sophistication and diversification of location",
+ "search.sophistication_path_product": "Path of sophistication and diversification of product",
+ "search.message.p1": "In the next field you can fill out your query, you can also carry out this same search by CIIU code.",
+ "search.message.p2": "Use the question mark to expand the information.",
+ "search.modal.title": "CIIU Code",
+ "search.placeholder.select2": "Search by Name or CIIU Code",
+ "search.modal.close": "Close",
+
+ "search.modal.title.industry": "CIIU Code",
+ "search.modal.p1.industry": "Numerical classification that identifies economic activities. Although it belongs to the United Nations, in Colombia, DANE performs the last 4-digit classification.",
+ "search.modal.link.industry": "https://clasificaciones.dane.gov.co/ciiu4-0/ciiu4_dispone",
+
+ "search.modal.title.rural": "Search",
+ "search.modal.p1.rural": "In this option you can search for an agricultural product, land use, non-agricultural activity or livestock species by name.
In case you do not find what you want, at the bottom you can find each of the agricultural activities and select them directly.",
+ "search.modal.link.rural": "",
+
+ "search.rural.agproduct": "Agricultural Product",
+ "search.rural.land-use": "Land Use",
+ "search.rural.nonag": "Agricultural Activities",
+ "search.rural.livestock": "Live Stock",
+
+ "search.industry.title": "Search for",
+ "search.industry.subtitle": "Sector or by CIIU code",
+ "search.industry.body": "In the next field you can fill out your query, you can also carry out this same search by CIIU code.
Use the question mark to expand the information.",
+
+ "search.rural.title": "Search for",
+ "search.rural.subtitle": "Rural activity",
+ "search.rural.body": "In the next field you can search by agricultural product, land use, agricultural activity or livestock species.
Use the question mark to expand the information.",
+
"table.export_data": "Export data",
- "thousands_delimiter": ","
-};
\ No newline at end of file
+ "thousands_delimiter": ",",
+ "header_nav.search": "Search by"
+};
diff --git a/app/locales/es-col/translations.js b/app/locales/es-col/translations.js
index 6f4a721d..3ebc3342 100644
--- a/app/locales/es-col/translations.js
+++ b/app/locales/es-col/translations.js
@@ -6,7 +6,7 @@ export default {
"about.downloads.explanation.p1": "Descarque el documento que explica c\u00f3mo se calcula cada una de las variables de complejidad que utiliza Datlas.",
"about.downloads.explanation.title": "M\u00e9todos de c\u00e1lculo de las variables de complejidad",
"about.downloads.locations": "Listas de departmentos, ciudades (incluyendo \u00e1reas metropolitanas) y municipios",
- "about.glossary": "
V\u00e9ase la p\u00e1gina \"Acerca de los datos\" para m\u00e1s informaci\u00f3n sobre fuentes, m\u00e9todos de c\u00e1lculo de las variables de complejidad y bases de datos descargables.
Un \u00e1rea metropolitana es la combinaci\u00f3n de dos o m\u00e1s municipios que est\u00e1n conectados a trav\u00e9s de flujos relativamente grandes de trabajadores (con independencia de su tama\u00f1o o contig\u00fcidad). Un municipio debe enviar al menos un 10% de sus trabajadores como viajeros diarios al resto de los municipios del \u00e1rea metropolitana para considerarse como parte de dicha \u00e1rea.
Con base en esta definici\u00f3n hay 19 \u00e1reas metropolitanas en Colombia, que comprenden 115 municipios. Las \u00e1reas metropolitanas resultantes son distintas de las oficiales. Se sigue la metodolog\u00eda de G. Duranton ( 2013): \"Delineating metropolitan areas: Measuring spatial labour market networks through commuting patterns.\" Wharton School, University of Pennsylvania.
Son las \u00e1reas metropolitanas y los municipios de m\u00e1s de 50.000 habitantes con al menos 75% de poblaci\u00f3n en la cabecera municipal. En total hay 62 ciudades (19 \u00e1reas metropolitanas que comprenden 115 municipios, m\u00e1s 43 ciudades de un solo municipio). El concepto de ciudad es relevante porque Datlas presenta indicadores de complejidad por departamento y por ciudad, pero no por municipio.
Complejidad es la diversidad y sofisticaci\u00f3n del \"know-how\" que se requiere para producir algo. El concepto de complejidad es central en Datlas porque la productividad y el crecimiento de cualquier lugar dependen de que las empresas puedan producir y exportar con \u00e9xito bienes y servicios que requieren capacidades y conocimientos m\u00e1s complejos, es decir m\u00e1s diversos y exclusivos. La complejidad puede medirse para un lugar, para un producto de exportaci\u00f3n, o para un sector.
Mide el potencial de aumento de la complejidad de un lugar. Tiene en cuenta el nivel de complejidad de todos los sectores productivos (o productos de exportaci\u00f3n), junto con la \"distancia\" a los dem\u00e1s sectores (o productos). Con esta informaci\u00f3n mide la probabilidad de que aparezcan nuevos sectores (o exportaciones) y qu\u00e9 tanto elevar\u00edan la complejidad del lugar. Valores m\u00e1s altos indican que es m\u00e1s probable desarrollar nuevos sectores (o productos) m\u00e1s complejos que los que ya se tienen.
La complejidad potencial basada en sectores se calcula para los departamentos y ciudades, no para los dem\u00e1s municipios. La complejidad potencial basada en las exportaciones se calcula solamente por departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
DANE es el Departamento Administrativo Nacional de Estad\u00edstica de Colombia, fuente de todos los datos sobre el PIB y la poblaci\u00f3n que utiliza Datlas.
DIAN es la Direcci\u00f3n de Impuestos y Aduanas Nacionales, fuente de toda la informaci\u00f3n sobre exportaciones e importaciones de Datlas.
La \"distancia\" es una medida de la capacidad de un lugar para desarrollar un sector o una exportaci\u00f3n espec\u00edfica, teniendo en cuenta las capacidades productivas existentes. La \"distancia\" es menor en la medida en que las capacidades requeridas por un sector o exportaci\u00f3n son m\u00e1s similares a las ya existentes. En esa medida ser\u00e1n mayores las posibilidades de que desarrolle con \u00e9xito el sector o exportaci\u00f3n. Visto de otra forma, la distancia refleja la proporci\u00f3n del conocimiento productivo que se necesita para que aparezca un sector o exportaci\u00f3n que a\u00fan no existe en el lugar.
Las distancias por sectores productivos se calculan solamente para los departamentos y ciudades, no para los dem\u00e1s municipios. Las distancias para las exportaciones se calculan solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
Es una medida de cu\u00e1ntos productos diferentes puede hacer un lugar. La producci\u00f3n de un bien cualquiera requiere un conjunto espec\u00edfico de capacidades; por consiguiente la diversidad es otra forma de expresar la cantidad de conocimiento productivo de un lugar.
El empleo formal es aquel que est\u00e1 cubierto por el sistema de seguridad social en salud y/o por el sistema de pensiones. No incluye trabajadores independientes. El empleo formal reportado es el n\u00famero de empleados formales en un mes promedio. La tasa de formalidad es el empleo formal dividido por la poblaci\u00f3n mayor de 15 a\u00f1os. Los datos de empleo y salarios provienen de la PILA del Ministerio de Salud. Los datos de poblaci\u00f3n son del DANE.
El conteo de empresas con actividad productiva por lugar (municipio, departamento, nacional) se hizo teniendo en cuenta todas aquellas empresas registradas en la PILA que hicieron alg\u00fan aporte a la seguridad social para sus empleados en el a\u00f1o de referencia (aunque no hayan estado en operaci\u00f3n todo el a\u00f1o).
El conteo de empresas exportadoras o importadoras se hizo por municipio y producto teniendo en cuenta cualquier empresa que seg\u00fan la DIAN hubiera realizado alguna operaci\u00f3n en el a\u00f1o de referencia (por consiguiente, el conteo de empresas exportadoras o importadoras de un producto por departamento o para todo el pa\u00eds puede tener duplicaciones).
Ordena los productos de exportaci\u00f3n seg\u00fan qu\u00e9 tantas capacidades productivas se requieren para su fabricaci\u00f3n. Productos complejos de exportaci\u00f3n, tales como qu\u00edmicos y maquinaria, requieren un nivel sofisticado y diverso de conocimientos que s\u00f3lo se consigue con la interacci\u00f3n en empresas de muchos individuos con conocimientos especializados. Esto contrasta con las exportaciones de baja complejidad, como el caf\u00e9, que requieren apenas conocimientos productivos b\u00e1sicos que se pueden reunir en una empresa familiar. Para calcular la complejidad de los productos de exportaci\u00f3n se utilizan datos de Comtrade de las Naciones Unidas para cerca de 200 pa\u00edses.
Una medida de la sofisticaci\u00f3n de las capacidades productivas de un lugar basada en la diversidad y la ubicuidad de sus sectores productivos o sus exportaciones. Un lugar con alta complejidad produce o exporta bienes y servicios que pocos otros lugares producen. Lugares altamente complejos tienden a ser m\u00e1s productivos y a generar mayores salarios e ingresos. Los pa\u00edses con canastas de exportaci\u00f3n m\u00e1s sofisticadas de lo que se espera para su nivel de ingresos (como China) tienden a crecer m\u00e1s r\u00e1pido que aquellos en los que es todo lo contrario (como Grecia).
El ICE basado en los sectores productivos (o \u00edndice de complejidad productiva) se calcula solamente para departamentos y ciudades, no para los dem\u00e1s municipios. La ICE basado en las exportaciones se calcula solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la estructura de las exportaciones es inestable y/o poco representativa).
Es una medida de qu\u00e9 tantas capacidades productivas requieren un sector para operar. El ICS y el \u00cdndice de Complejidad del Producto (ICP) son medidas estrechamente relacionadas, pero se calculan en forma separada con datos y sistemas de clasificaci\u00f3n independientes, ya que la complejidad del producto se calcula solo para mercanc\u00edas comercializables internacionalmente, mientras que los sectores productivos comprenden todos los sectores que generan empleo, incluidos todos los servicios y el sector p\u00fablico. Un sector es complejo si requiere un nivel sofisticado de conocimientos productivos, como los servicios financieros y los sectores farmac\u00e9uticos, en donde trabajan en grandes empresas muchos individuos con conocimientos especializados distintos. La complejidad de un sector se mide calculando la diversidad promedio de los lugares donde existe el sector y la ubicuidad promedio de los sectores de esos lugares. Los datos de empleo formal necesarios para estos c\u00e1lculos provienen de la PILA del Ministerio de Salud.
Un \u00edndice de rendimiento (para cualquier producto y ubicaci\u00f3n) es el rendimiento dividido por el rendimiento a nivel nacional. Los \u00edndices de rendimiento para m\u00e1s de un producto (por ubicaci\u00f3n) se calculan como el promedio ponderado de los \u00edndices de rendimiento de los productos, donde las ponderaciones son el \u00e1rea cosechada por cada producto.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos para la exportaci\u00f3n de unos productos y otros. Cada punto representa un producto de exportaci\u00f3n y cada enlace entre un par de productos indica que requieren capacidades productivas similares. Aparecen con color los productos de exportaci\u00f3n que se exportan con ventaja comparativa revelada mayor que uno. Cuando se selecciona un producto, el gr\u00e1fico destaca los productos que requieren capacidades productivas semejantes. Un producto con m\u00e1s enlaces con otros que no se exportan ofrece mayor potencial para la diversificaci\u00f3n exportadora a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el producto tiene un alto potencial para elevar la complejidad del lugar.
El mapa de similitud de los productos se basa en los datos de comercio internacional de 192 pa\u00edses en m\u00e1s de 50 a\u00f1os compilados por Comtrade. Ver http://atlas.cid.harvard.edu/.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos por unos sectores u otros. Cada punto representa un sector y cada enlace entre un par de sectores indica que requieren capacidades productivas similares. Aparecen con color los sectores con ventaja comparativa revelada mayor que uno. Cuando se selecciona un lugar, el gr\u00e1fico destaca los sectores que requieren capacidades productivas semejantes. Un sector con m\u00e1s enlaces con sectores que no existen ofrece mayor potencial para la diversificaci\u00f3n productiva a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el sector tiene un alto potencial para elevar la complejidad del lugar. El mapa de los sectores productivos de Colombia fue construido a partir de la informaci\u00f3n de empleo formal por municipio de la PILA del Ministerio de Salud.
Las ocupaciones se clasifican de acuerdo con el \u00cdndice Num\u00e9rico de la Red Ocupacional (ONET). Los datos sobre las ocupaciones (salarios ofrecidos, estructura ocupacional por sector y nivel educativo por ocupaci\u00f3n) provienen de los anuncios de vacantes de empleo colocados por las empresas en los sitios de empleo de Internet p\u00fablicos y privados. Los datos fueron procesados por Jeisson Arley Rubio C\u00e1rdenas (Universidad del Rosario, Bogot\u00e1) y Jaime Mauricio Monta\u00f1a Doncel (Escuela de Econom\u00eda de Par\u00eds).
PILA es la Planilla Integrada de Aportes Laborales del Ministerio de Salud. Es la fuente principal de los datos por sector. Contiene informaci\u00f3n de empleo formal, salarios y n\u00famero de empresas por municipio y sector.
El sistema de clasificaci\u00f3n de los productos de exportaci\u00f3n e importaci\u00f3n de Datlas es la nomenclatura arancelaria NABANDINA, la cual calza a seis d\u00edgitos con la clasificaci\u00f3n internacional del Sistema Armonizado (SA). Datlas presenta informaci\u00f3n de productos (de exportaci\u00f3n e importaci\u00f3n) a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n proviene de la DIAN.
Para cualquier producto y ubicaci\u00f3n, la productividad del suelo es el rendimiento en toneladas por hect\u00e1rea de tierra cosechada. Para los cultivos transitorios el c\u00e1lculo de producci\u00f3n anual se obtiene a partir de la suma de la producci\u00f3n del \u00faltimo semestre del a\u00f1o anterior y el primer semestre del a\u00f1o de an\u00e1lisis; en contraste, para los cultivos permanentes (perennes) el c\u00e1lculo se realiza con la informaci\u00f3n de ambos semestres del a\u00f1o de an\u00e1lisis. La informaci\u00f3n de \u00e1rea cosechada y producci\u00f3n se obtiene de las Evaluaciones Agropecuarias Municipales -EVA- publicadas en Agronet por el Ministerio de Agricultura y Desarrollo Rural.
La clasificaci\u00f3n sectorial de Colombia es una versi\u00f3n modificada de la Clasificaci\u00f3n Sectorial Internacional Uniforme de todas las Actividades Econ\u00f3micas (CIIU). Datlas presenta informaci\u00f3n sectorial a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n proviene de la PILA. Siguiendo las convenciones de la contabilidad nacional, los trabajadores contratados por agencias de empleo temporal se clasifican en el sector de suministro de personal (7491), no en el sector de la empresa donde prestan servicios.
Una medida del n\u00famero de lugares que pueden producir un producto.
Las unidades de producci\u00f3n rural se clasifican seg\u00fan el Censo Nacional Agropecuario del DANE (2014) en \"unidades de producci\u00f3n agropecuaria\", o UPAs, y \"unidades de producci\u00f3n no agropecuarias\", o UPNAs. Mientras que la producci\u00f3n agropecuaria (que incluye actividades agr\u00edcolas, forestales, pecuarias, acu\u00edcolas y/o pesqueras) s\u00f3lo puede tener lugar en UPAs, tanto UPAs como UPNAs pueden tener actividades de producci\u00f3n no agropecuarias.
Capta en qu\u00e9 medida un lugar podr\u00eda beneficiarse mediante el desarrollo de un sector en particular (o un producto de exportaci\u00f3n). Tambi\u00e9n conocida como \"ganancia de oportunidad\", esta medida representa la distancia a todos los otros sectores (o exportaciones) que un lugar no produce actualmente con ventaja comparativa revelada mayor que uno y su respectiva complejidad. Refleja c\u00f3mo un nuevo sector (o exportaci\u00f3n) puede abrir paso a otros sectores o productos m\u00e1s complejos. El valor estrat\u00e9gico de los sectores productivos se calcula solamente para departamentos y ciudades, no para los dem\u00e1s municipios. El valor estrat\u00e9gico de las exportaciones se calcula solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
Mide el tama\u00f1o relativo de un sector o un producto de exportaci\u00f3n en un lugar. La VCR, que no debe interpretarse como un indicador de eficiencia productiva o de competitividad, se conoce tambi\u00e9n por el nombre de \"cociente de localizaci\u00f3n\". Se calcula como el cociente entre la participaci\u00f3n del empleo formal de un sector en el lugar y la participaci\u00f3n del empleo formal total del mismo sector en todo el pa\u00eds. Por ejemplo, si la industria qu\u00edmica en una ciudad genera el 10% del empleo, mientras que en todo el pa\u00eds genera el 1% del empleo, la VCR de la industria qu\u00edmica en dicha ciudad es 10. Para una exportaci\u00f3n es la relaci\u00f3n entre la participaci\u00f3n que tiene el producto en la canasta de exportaci\u00f3n del lugar y la participaci\u00f3n que tiene en el comercio mundial. Si esta relaci\u00f3n es mayor que 1, se dice que el lugar tiene ventaja comparativa revelada en el sector o en la exportaci\u00f3n. Por ejemplo, si el caf\u00e9 representa el 30% de las exportaciones de un departamento colombiano, pero da cuenta apenas del 0.3% del comercio mundial, entonces la VCR del departamento en caf\u00e9 es 100.
", + "about.glossary": "V\u00e9ase la p\u00e1gina \"Acerca de los datos\" para m\u00e1s informaci\u00f3n sobre fuentes, m\u00e9todos de c\u00e1lculo de las variables de complejidad y bases de datos descargables.
Un \u00e1rea metropolitana es la combinaci\u00f3n de dos o m\u00e1s municipios que est\u00e1n conectados a trav\u00e9s de flujos relativamente grandes de trabajadores (con independencia de su tama\u00f1o o contig\u00fcidad). Un municipio debe enviar al menos un 10% de sus trabajadores como viajeros diarios al resto de los municipios del \u00e1rea metropolitana para considerarse como parte de dicha \u00e1rea.
Con base en esta definici\u00f3n hay 19 \u00e1reas metropolitanas en Colombia, que comprenden 115 municipios. Las \u00e1reas metropolitanas resultantes son distintas de las oficiales. Se sigue la metodolog\u00eda de G. Duranton ( 2013): \"Delineating metropolitan areas: Measuring spatial labour market networks through commuting patterns.\" Wharton School, University of Pennsylvania.
Son las \u00e1reas metropolitanas y los municipios de m\u00e1s de 50.000 habitantes con al menos 75% de poblaci\u00f3n en la cabecera municipal. En total hay 62 ciudades (19 \u00e1reas metropolitanas que comprenden 115 municipios, m\u00e1s 43 ciudades de un solo municipio). El concepto de ciudad es relevante porque Datlas presenta indicadores de complejidad por departamento y por ciudad, pero no por municipio.
Complejidad es la diversidad y sofisticaci\u00f3n del \"know-how\" que se requiere para producir algo. El concepto de complejidad es central en Datlas porque la productividad y el crecimiento de cualquier lugar dependen de que las empresas puedan producir y exportar con \u00e9xito bienes y servicios que requieren capacidades y conocimientos m\u00e1s complejos, es decir m\u00e1s diversos y exclusivos. La complejidad puede medirse para un lugar, para un producto de exportaci\u00f3n, o para un sector.
Mide el potencial de aumento de la complejidad de un lugar. Tiene en cuenta el nivel de complejidad de todos los sectores productivos (o productos de exportaci\u00f3n), junto con la \"distancia\" a los dem\u00e1s sectores (o productos). Con esta informaci\u00f3n mide la probabilidad de que aparezcan nuevos sectores (o exportaciones) y qu\u00e9 tanto elevar\u00edan la complejidad del lugar. Valores m\u00e1s altos indican que es m\u00e1s probable desarrollar nuevos sectores (o productos) m\u00e1s complejos que los que ya se tienen.
La complejidad potencial basada en sectores se calcula para los departamentos y ciudades, no para los dem\u00e1s municipios. La complejidad potencial basada en las exportaciones se calcula solamente por departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
DANE es el Departamento Administrativo Nacional de Estad\u00edstica de Colombia, fuente de todos los datos sobre el PIB y la poblaci\u00f3n que utiliza Datlas.
DIAN es la Direcci\u00f3n de Impuestos y Aduanas Nacionales, fuente de toda la informaci\u00f3n sobre exportaciones e importaciones de Datlas.
La \"distancia\" es una medida de la capacidad de un lugar para desarrollar un sector o una exportaci\u00f3n espec\u00edfica, teniendo en cuenta las capacidades productivas existentes. La \"distancia\" es menor en la medida en que las capacidades requeridas por un sector o exportaci\u00f3n son m\u00e1s similares a las ya existentes. En esa medida ser\u00e1n mayores las posibilidades de que desarrolle con \u00e9xito el sector o exportaci\u00f3n. Visto de otra forma, la distancia refleja la proporci\u00f3n del conocimiento productivo que se necesita para que aparezca un sector o exportaci\u00f3n que a\u00fan no existe en el lugar.
Las distancias por sectores productivos se calculan solamente para los departamentos y ciudades, no para los dem\u00e1s municipios. Las distancias para las exportaciones se calculan solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
Es una medida de cu\u00e1ntos productos diferentes puede hacer un lugar. La producci\u00f3n de un bien cualquiera requiere un conjunto espec\u00edfico de capacidades; por consiguiente la diversidad es otra forma de expresar la cantidad de conocimiento productivo de un lugar.
El empleo formal es aquel que est\u00e1 cubierto por el sistema de seguridad social en salud y/o por el sistema de pensiones. No incluye trabajadores independientes. El empleo formal reportado es el n\u00famero de empleados formales en un mes promedio. La tasa de formalidad es el empleo formal dividido por la poblaci\u00f3n mayor de 15 a\u00f1os. Los datos de empleo y salarios provienen de la PILA del Ministerio de Salud. Los datos de poblaci\u00f3n son del DANE.
El conteo de empresas con actividad productiva por lugar (municipio, departamento, nacional) se hizo teniendo en cuenta todas aquellas empresas registradas en la PILA que hicieron alg\u00fan aporte a la seguridad social para sus empleados en el a\u00f1o de referencia (aunque no hayan estado en operaci\u00f3n todo el a\u00f1o).
El conteo de empresas exportadoras o importadoras se hizo por municipio y producto teniendo en cuenta cualquier empresa que seg\u00fan la DIAN hubiera realizado alguna operaci\u00f3n en el a\u00f1o de referencia (por consiguiente, el conteo de empresas exportadoras o importadoras de un producto por departamento o para todo el pa\u00eds puede tener duplicaciones).
Ordena los productos de exportaci\u00f3n seg\u00fan qu\u00e9 tantas capacidades productivas se requieren para su fabricaci\u00f3n. Productos complejos de exportaci\u00f3n, tales como qu\u00edmicos y maquinaria, requieren un nivel sofisticado y diverso de conocimientos que s\u00f3lo se consigue con la interacci\u00f3n en empresas de muchos individuos con conocimientos especializados. Esto contrasta con las exportaciones de baja complejidad, como el caf\u00e9, que requieren apenas conocimientos productivos b\u00e1sicos que se pueden reunir en una empresa familiar. Para calcular la complejidad de los productos de exportaci\u00f3n se utilizan datos de Comtrade de las Naciones Unidas para cerca de 200 pa\u00edses.
Una medida de la sofisticaci\u00f3n de las capacidades productivas de un lugar basada en la diversidad y la ubicuidad de sus sectores productivos o sus exportaciones. Un lugar con alta complejidad produce o exporta bienes y servicios que pocos otros lugares producen. Lugares altamente complejos tienden a ser m\u00e1s productivos y a generar mayores salarios e ingresos. Los pa\u00edses con canastas de exportaci\u00f3n m\u00e1s sofisticadas de lo que se espera para su nivel de ingresos (como China) tienden a crecer m\u00e1s r\u00e1pido que aquellos en los que es todo lo contrario (como Grecia).
El ICE basado en los sectores productivos (o \u00edndice de complejidad productiva) se calcula solamente para departamentos y ciudades, no para los dem\u00e1s municipios. La ICE basado en las exportaciones se calcula solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la estructura de las exportaciones es inestable y/o poco representativa).
Es una medida de qu\u00e9 tantas capacidades productivas requieren un sector para operar. El ICS y el \u00cdndice de Complejidad del Producto (ICP) son medidas estrechamente relacionadas, pero se calculan en forma separada con datos y sistemas de clasificaci\u00f3n independientes, ya que la complejidad del producto se calcula solo para mercanc\u00edas comercializables internacionalmente, mientras que los sectores productivos comprenden todos los sectores que generan empleo, incluidos todos los servicios y el sector p\u00fablico. Un sector es complejo si requiere un nivel sofisticado de conocimientos productivos, como los servicios financieros y los sectores farmac\u00e9uticos, en donde trabajan en grandes empresas muchos individuos con conocimientos especializados distintos. La complejidad de un sector se mide calculando la diversidad promedio de los lugares donde existe el sector y la ubicuidad promedio de los sectores de esos lugares. Los datos de empleo formal necesarios para estos c\u00e1lculos provienen de la PILA del Ministerio de Salud.
Un \u00edndice de rendimiento (para cualquier producto y ubicaci\u00f3n) es el rendimiento dividido por el rendimiento a nivel nacional. Los \u00edndices de rendimiento para m\u00e1s de un producto (por ubicaci\u00f3n) se calculan como el promedio ponderado de los \u00edndices de rendimiento de los productos, donde las ponderaciones son el \u00e1rea cosechada por cada producto.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos para la exportaci\u00f3n de unos productos y otros. Cada punto representa un producto de exportaci\u00f3n y cada enlace entre un par de productos indica que requieren capacidades productivas similares. Aparecen con color los productos de exportaci\u00f3n que se exportan con ventaja comparativa revelada mayor que uno. Cuando se selecciona un producto, el gr\u00e1fico destaca los productos que requieren capacidades productivas semejantes. Un producto con m\u00e1s enlaces con otros que no se exportan ofrece mayor potencial para la diversificaci\u00f3n exportadora a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el producto tiene un alto potencial para elevar la complejidad del lugar.
El mapa de similitud de los productos se basa en los datos de comercio internacional de 192 pa\u00edses en m\u00e1s de 50 a\u00f1os compilados por Comtrade. Ver http://atlas.cid.harvard.edu/.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos por unos sectores u otros. Cada punto representa un sector y cada enlace entre un par de sectores indica que requieren capacidades productivas similares. Aparecen con color los sectores con ventaja comparativa revelada mayor que uno. Cuando se selecciona un lugar, el gr\u00e1fico destaca los sectores que requieren capacidades productivas semejantes. Un sector con m\u00e1s enlaces con sectores que no existen ofrece mayor potencial para la diversificaci\u00f3n productiva a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el sector tiene un alto potencial para elevar la complejidad del lugar. El mapa de los sectores productivos de Colombia fue construido a partir de la informaci\u00f3n de empleo formal por municipio de la PILA del Ministerio de Salud.
Las ocupaciones se clasifican de acuerdo con el \u00cdndice Num\u00e9rico de la Red Ocupacional (ONET). Los datos sobre las ocupaciones (salarios ofrecidos, estructura ocupacional por sector y nivel educativo por ocupaci\u00f3n) provienen de los anuncios de vacantes de empleo colocados por las empresas en los sitios de empleo de Internet p\u00fablicos y privados. Los datos fueron procesados por Jeisson Arley Rubio C\u00e1rdenas (Universidad del Rosario, Bogot\u00e1) y Jaime Mauricio Monta\u00f1a Doncel (Escuela de Econom\u00eda de Par\u00eds).
PILA es la Planilla Integrada de Aportes Laborales del Ministerio de Salud. Es la fuente principal de los datos por sector. Contiene informaci\u00f3n de empleo formal, salarios y n\u00famero de empresas por municipio y sector.
El sistema de clasificaci\u00f3n de los productos de exportaci\u00f3n e importaci\u00f3n de Datlas es la nomenclatura arancelaria NABANDINA, la cual calza a seis d\u00edgitos con la clasificaci\u00f3n internacional del Sistema Armonizado (SA). Datlas presenta informaci\u00f3n de productos (de exportaci\u00f3n e importaci\u00f3n) a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n proviene de la DIAN.
Para cualquier producto y ubicaci\u00f3n, la productividad del suelo es el rendimiento en toneladas por hect\u00e1rea de tierra cosechada. Para los cultivos transitorios el c\u00e1lculo de producci\u00f3n anual se obtiene a partir de la suma de la producci\u00f3n del \u00faltimo semestre del a\u00f1o anterior y el primer semestre del a\u00f1o de an\u00e1lisis; en contraste, para los cultivos permanentes (perennes) el c\u00e1lculo se realiza con la informaci\u00f3n de ambos semestres del a\u00f1o de an\u00e1lisis. La informaci\u00f3n de \u00e1rea cosechada y producci\u00f3n se obtiene de las Evaluaciones Agropecuarias Municipales -EVA- publicadas en Agronet por el Ministerio de Agricultura y Desarrollo Rural.
La clasificaci\u00f3n sectorial de Colombia es una versi\u00f3n modificada de la Clasificaci\u00f3n Sectorial Internacional Uniforme de todas las Actividades Econ\u00f3micas (CIIU). Datlas presenta informaci\u00f3n sectorial a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n proviene de la PILA. Siguiendo las convenciones de la contabilidad nacional, los trabajadores contratados por agencias de empleo temporal se clasifican en el sector de suministro de personal (7491), no en el sector de la empresa donde prestan servicios.
Una medida del n\u00famero de lugares que pueden producir un producto.
Las unidades de producci\u00f3n rural se clasifican seg\u00fan el Censo Nacional Agropecuario del DANE (2014) en \"unidades de producci\u00f3n agropecuaria\", o UPAs, y \"unidades de producci\u00f3n no agropecuarias\", o UPNAs. Mientras que la producci\u00f3n agropecuaria (que incluye actividades agr\u00edcolas, forestales, pecuarias, acu\u00edcolas y/o pesqueras) s\u00f3lo puede tener lugar en UPAs, tanto UPAs como UPNAs pueden tener actividades de producci\u00f3n no agropecuarias.
Capta en qu\u00e9 medida un lugar podr\u00eda beneficiarse mediante el desarrollo de un sector en particular (o un producto de exportaci\u00f3n). Tambi\u00e9n conocida como \"ganancia de oportunidad\", esta medida representa la distancia a todos los otros sectores (o exportaciones) que un lugar no produce actualmente con ventaja comparativa revelada mayor que uno y su respectiva complejidad. Refleja c\u00f3mo un nuevo sector (o exportaci\u00f3n) puede abrir paso a otros sectores o productos m\u00e1s complejos. El valor estrat\u00e9gico de los sectores productivos se calcula solamente para departamentos y ciudades, no para los dem\u00e1s municipios. El valor estrat\u00e9gico de las exportaciones se calcula solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
Mide el tama\u00f1o relativo de un sector o un producto de exportaci\u00f3n en un lugar. La VCR, que no debe interpretarse como un indicador de eficiencia productiva o de competitividad, se conoce tambi\u00e9n por el nombre de \"cociente de localizaci\u00f3n\". Se calcula como el cociente entre la participaci\u00f3n del empleo formal de un sector en el lugar y la participaci\u00f3n del empleo formal total del mismo sector en todo el pa\u00eds. Por ejemplo, si la industria qu\u00edmica en una ciudad genera el 10% del empleo, mientras que en todo el pa\u00eds genera el 1% del empleo, la VCR de la industria qu\u00edmica en dicha ciudad es 10. Para una exportaci\u00f3n es la relaci\u00f3n entre la participaci\u00f3n que tiene el producto en la canasta de exportaci\u00f3n del lugar y la participaci\u00f3n que tiene en el comercio mundial. Si esta relaci\u00f3n es mayor que 1, se dice que el lugar tiene ventaja comparativa revelada en el sector o en la exportaci\u00f3n. Por ejemplo, si el caf\u00e9 representa el 30% de las exportaciones de un departamento colombiano, pero da cuenta apenas del 0.3% del comercio mundial, entonces la VCR del departamento en caf\u00e9 es 100.
", "about.glossary_name": "Glosario", "about.project_description.cid.header": "El CID y el Laboratorio de Crecimiento ", "about.project_description.cid.p1": "Este proyecto ha sido desarrollado por el Centro para el Desarrollo Internacional de la Universidad de Harvard (CID), bajo la direcci\u00f3n del profesor Ricardo Hausmann", @@ -37,33 +37,33 @@ export default { "country.show.agproducts.production_tons": "Producci\u00f3n (toneladas)", "country.show.average_livestock_load": "628", "country.show.dotplot-column": "Departamentos de Colombia", - "country.show.eci": "0,037", + "country.show.eci": "0,35", "country.show.economic_structure": "Estructura econ\u00f3mica", - "country.show.economic_structure.copy.p1": "Con una poblaci\u00f3n de 49,5 millones (a diciembre 2017), Colombia es el tercer pa\u00eds m\u00e1s grande de Am\u00e9rica Latina. Su PIB total en 2016 fue Col $772,4 billones, o US$253,2 miles de millones a la tasa de cambio promedio de 2016 (1 US d\u00f3lar = 3.050 pesos colombianos). En 2016, se alcanz\u00f3 un nivel de ingreso per c\u00e1pita de Col $17.798.353 o US$5.806. Durante el a\u00f1o 2016 la econom\u00eda colombiana creci\u00f3 2%.", - "country.show.economic_structure.copy.p2": "Los servicios empresariales y financieros son el sector m\u00e1s grande, con una contribuci\u00f3n al PIB de 20,9%, seguidos por los servicios de gobierno, sociales y personales (15,4%) y las actividades manufactureras (11,2%). Bogot\u00e1 D.C., Antioquia y el Valle del Cauca concentran aproximadamente la mitad de la actividad productiva, con participaciones en el PIB de 25,7, 13,9 y 9,7%, respectivamente. Sin embargo, los departamentos con m\u00e1s alto PIB per c\u00e1pita son Casanare y Meta, ambos importantes productores de petr\u00f3leo. Los gr\u00e1ficos siguientes presentan m\u00e1s detalles.", + "country.show.economic_structure.copy.p1": "Con una poblaci\u00f3n de 49,5 millones (a diciembre 2017), Colombia es el tercer pa\u00eds m\u00e1s grande de Am\u00e9rica Latina. Su PIB total en 2017 fue Col $835,1 billones, o US$283 miles de millones a la tasa de cambio promedio de 2017 (1 US d\u00f3lar = 2.951 pesos colombianos). En 2017, se alcanz\u00f3 un nivel de ingreso per c\u00e1pita de Col $18.828.100 o US$6.380,24. Durante el a\u00f1o 2017 la econom\u00eda colombiana creci\u00f3 1.8%.", + "country.show.economic_structure.copy.p2": "Bogot\u00e1 D.C., Antioquia y el Valle del Cauca concentran aproximadamente la mitad de la actividad productiva, con participaciones en el PIB de 26,4%, 15% y 9%, respectivamente. Sin embargo, los departamentos con m\u00e1s alto PIB per c\u00e1pita son Casanare y Meta, ambos importantes productores de petr\u00f3leo. Los gr\u00e1ficos siguientes presentan m\u00e1s detalles.", "country.show.employment_wage_occupation": "Empleo formal, ocupaciones y salarios", - "country.show.employment_wage_occupation.copy.p1": "Los registros de la PILA, que cubren el universo de los trabajadores que hacen contribuciones al sistema de seguridad social, indican que el n\u00famero efectivo de trabajadores-a\u00f1o en el sector formal en 2016 fue 8,2 millones. Bogot\u00e1 DC, Antioquia y el Valle del Cauca generan, respectivamente 31,7%, 17,1%, and 10,8% del empleo formal (efectivo).", - "country.show.employment_wage_occupation.copy.p2": "Los siguientes gr\u00e1ficos ofrecen informaci\u00f3n m\u00e1s detallada de los patrones de empleo formal y los salarios pagados seg\u00fan los registros de PILA. Tambi\u00e9n se incluye informaci\u00f3n de vacantes anunciadas y salarios ofrecidos por ocupaci\u00f3n, calculados a partir de los anuncios colocados por empresas en sitios de Internet durante 2014.", + "country.show.employment_wage_occupation.copy.p1": "Los registros de la PILA, que cubren el universo de los trabajadores que hacen contribuciones al sistema de seguridad social, indican que el n\u00famero efectivo de trabajadores-a\u00f1o en el sector formal en 2016 fue 8,2 millones. Bogot\u00e1 DC, Antioquia y el Valle del Cauca generan, respectivamente 31,7%, 17,1%, y 10,8% del empleo formal (efectivo).", + "country.show.employment_wage_occupation.copy.p2": "Los siguientes gr\u00e1ficos ofrecen informaci\u00f3n m\u00e1s detallada de los patrones de empleo formal y los salarios pagados seg\u00fan los registros de PILA. Tambi\u00e9n se incluye informaci\u00f3n de vacantes anunciadas y salarios ofrecidos por ocupaci\u00f3n, calculados a partir de los anuncios colocados por empresas en sitios de Internet durante 2017.", "country.show.export_complexity_possibilities": "Complejidad de las exportaciones y posibilidades de exportaci\u00f3n", "country.show.export_complexity_possibilities.copy.p1": "El concepto de complejidad de las exportaciones es an\u00e1logo al de complejidad de los sectores sectorial presentado arriba, pero referido ahora a las exportaciones. Se mide mediante el \u00cdndice de Complejidad del Producto. Se ha comprobado que los pa\u00edses que exportan productos que son relativamente complejos con respecto a su nivel de desarrollo tienden a crecer m\u00e1s r\u00e1pido que los pa\u00edses que exportan bienes relativamente simples. Seg\u00fan la complejidad de su canasta exportadora en 2013, Colombia ocupa el puesto 53 entre 124 pa\u00edses. La tasa de crecimiento proyectada para Colombia con base en su complejidad y su nivel de desarrollo es 3,3% por a\u00f1o en el per\u00edodo 2013-2023.", "country.show.export_complexity_possibilities.copy.p2": "El \"mapa de similitud tecnol\u00f3gica de los productos de exportaci\u00f3n\" (o mapa de los productos) que se presenta enseguida es una representaci\u00f3n gr\u00e1fica de la similitud tecnol\u00f3gica entre todos los productos de exportaci\u00f3n, seg\u00fan los patrones de exportaci\u00f3n de todos los pa\u00edses. Cada punto o nodo representa un producto; los nodos conectados entre s\u00ed requieren capacidades productivas semejantes. Los productos que est\u00e1n m\u00e1s conectados tienden a agruparse en el centro de la red, lo cual implica que las capacidades que ellos usan pueden ser utilizadas en la producci\u00f3n de muchos otros productos.", "country.show.export_complexity_possibilities.copy.p3": "Los puntos que aparecen destacados representan productos que Colombia exporta en cantidades relativamente importantes (m\u00e1s exactamente, con ventaja comparativa revelada mayor de uno, v\u00e9ase el Glosario). Los colores representan grupos de productos (son los mismos colores usados para los sectores correspondientes en el mapa de similitud tecnol\u00f3gica presentado arriba). El gr\u00e1fico que aparece m\u00e1s abajo, junto con el cuadro que lo acompa\u00f1a, indica qu\u00e9 productos ofrecen las mejores posibilidades para Colombia, dadas las capacidades productivas que ya tiene el pa\u00eds y que tan \u2018distantes\u2019 son esas capacidades de las que requieren para exportar otras cosas. ", "country.show.exports": "Exportaciones", - "country.show.exports.copy.p1": "Colombia export\u00f3 US$32,5 miles de millones en 2016. Sus principales destinos de exportaci\u00f3n son los Estados Unidos, Panam\u00e1, China y Espa\u00f1a. En 2016, los productos minerales (entre los cuales, petr\u00f3leo, carb\u00f3n y ferron\u00edquel son los m\u00e1s importantes) representaron 51,7% de las exportaciones totales de bienes; los productos vegetales, alimentos y maderas 22,57%, y los quimicos y pl\u00e1sticos 9,78%. Los siguientes gr\u00e1ficos presentan m\u00e1s detalles.", + "country.show.exports.copy.p1": "Colombia export\u00f3 US$38,2 miles de millones en 2017. Sus principales destinos de exportaci\u00f3n son los Estados Unidos, Panam\u00e1, China y Holanda. En 2017, los productos minerales (entre los cuales, petr\u00f3leo, carb\u00f3n y ferron\u00edquel son los m\u00e1s importantes) representaron 56,2% de las exportaciones totales de bienes; los productos vegetales, alimentos y maderas 20,78%, y los quimicos y pl\u00e1sticos 8,43%. Los siguientes gr\u00e1ficos presentan m\u00e1s detalles.", "country.show.exports_composition_by_department": "Composici\u00f3n de las exportaciones por departamento ({{year}})", "country.show.exports_composition_by_products": "Composici\u00f3n de las exportaciones ({{year}})", "country.show.gdp": "Col $756,152 bill", - "country.show.gdp_per_capita": "Col $15.864.953", + "country.show.gdp_per_capita": "Col $18.828.100", "country.show.industry_complex": "Complejidad de los sectores productivos", "country.show.industry_complex.copy.p1": "La complejidad de los sectores productivos, que se cuantifica mediante el \u00cdndice de Complejidad del Sector, es una media de la amplitud de las capacidades y habilidades \u2013know-how\u2013 que se requiere en un sector productivo. Se dice que sectores tales como qu\u00edmicos o maquinaria son altamente complejos porque requieren un nivel sofisticado de conocimientos productivos que solo es factible encontrar en grandes empresas donde interact\u00faa un n\u00famero de individuos altamente capacitados. En contraste, sectores como el comercio minorista o restaurantes requieren solo niveles b\u00e1sicos de capacitaci\u00f3n que pueden encontrarse incluso en una peque\u00f1a empresa familiar. Los sectores m\u00e1s complejos son m\u00e1s productivos y contribuyen m\u00e1s a elevar el ingreso per c\u00e1pita. Los departamentos y ciudades con sectores m\u00e1s complejos tienen una base productiva m\u00e1s diversificada y tienden a crear m\u00e1s empleo formal.", "country.show.industry_complex.copy.p2": "El \"mapa de similitud tecnol\u00f3gica de los sectores\" (o mapa de los sectores) que se presenta enseguida es una representaci\u00f3n gr\u00e1fica de la similitud de las capacidades y habilidades entre pares de sectores. Cada punto (o nodo) representa un sector; los nodos conectados por l\u00edneas requieren capacidades semejantes. Los sectores con m\u00e1s conexiones usan capacidades que pueden ser utilizadas en muchos otros sectores. Los colores representan grupos de sectores.", - "country.show.industry_space": "Mapa de los sectores", + "country.show.industry_space": "Mapa de los sectores ({{lastYear}})", "country.show.landuses": "Uso del Suelo en Colombia", "country.show.landuses.area": "\u00c1rea Total (ha)", "country.show.nonag_farmsize": "4.53 ha", - "country.show.occupation.num_vac": "Vacantes anunciadas", - "country.show.population": "48,1 mill", - "country.show.product_space": "Mapa de los productos", + "country.show.occupation.num_vac": "Vacantes anunciadas (2017)", + "country.show.population": "49,5 mill", + "country.show.product_space": "Mapa de los productos ({{lastYear}})", "country.show.total": "Totales", "ctas.csv": "CSV", "ctas.download": "Descargue estos datos", @@ -80,7 +80,7 @@ export default { "downloads.cta_download": "Descargar", "downloads.cta_na": "No disponible", "downloads.head": "Acerca de los datos", - "downloads.industry_copy": "La Planilla Integrada de Aportes Laborales, PILA, del Ministerio de Salud, es la fuente principal de los datos por sector. Contiene informaci\u00f3n de empleo formal, salarios y n\u00famero de empresas por municipio y sector. La clasificaci\u00f3n sectorial de Colombia es una versi\u00f3n modificada de la Clasificaci\u00f3n Sectorial Internacional Uniforme de todas las Actividades Econ\u00f3micas (CIIU). La lista de los sectores productivos puede verse en las bases de datos descargables de sectores. Puede descargarse aqu\u00ed un archivo con la lista de los sectores productivos del CIIU los cu\u00e1les no aparecen representados en el mapa de los sectores (por razones que se explican en los M\u00e9todos de C\u00e1lculo).", + "downloads.industry_copy": "La Planilla Integrada de Aportes Laborales, PILA, del Ministerio de Salud, es la fuente principal de los datos por sector. Contiene informaci\u00f3n de empleo formal, salarios y n\u00famero de empresas por municipio y sector. La clasificaci\u00f3n sectorial de Colombia es una versi\u00f3n modificada de la Clasificaci\u00f3n Sectorial Internacional Uniforme de todas las Actividades Econ\u00f3micas (CIIU). La lista de los sectores productivos puede verse en las bases de datos descargables de sectores. Puede descargarse aqu\u00ed un archivo con la lista de los sectores productivos del CIIU los cu\u00e1les no aparecen representados en el mapa de los sectores (por razones que se explican en los M\u00e9todos de C\u00e1lculo).", "downloads.industry_head": "Datos de sectores productivos (PILA)", "downloads.industry_row_1": "Empleo, salarios, n\u00famero de empresas e indicadores de complejidad productiva ({{yearRange}})", "downloads.list_of_cities.header": "Listas de departamentos, ciudades y municipios", @@ -88,12 +88,12 @@ export default { "downloads.map.header": "Mapa", "downloads.occupations_copy": "Todos los datos sobre las ocupaciones (salarios ofrecidos por ocupaci\u00f3n y sector, y estructura ocupacional por sector) provienen de los anuncios de vacantes de empleo colocados por las empresas en los sitios de empleo de Internet p\u00fablicos y privados. Las ocupaciones se clasifican de acuerdo con el \u00cdndice Num\u00e9rico de la Red Ocupacional (ONET). Los datos fueron procesados \u200b\u200bpor Jeisson Arley Rubio C\u00e1rdenas, investigador de la Universidad del Rosario, Bogot\u00e1, y Jaime Mauricio Monta\u00f1a Doncel, estudiante de maestr\u00eda en la Escuela de Econom\u00eda de Par\u00eds.", "downloads.occupations_head": "Datos de ocupaciones", - "downloads.occupations_row_1": "Vacantes laborales y salarios ofrecidos (2014)", + "downloads.occupations_row_1": "Vacantes laborales y salarios ofrecidos (2017)", "downloads.other_copy": "El Departamento Administrativo Nacional de Estad\u00edstica, DANE, es la fuente de todos los datos sobre el PIB y la poblaci\u00f3n.", "downloads.other_head": "Otros datos (DANE)", "downloads.other_row_1": "PIB y variables demogr\u00e1ficas", "downloads.rural_agproduct": "Productos Agropecuarios", - "downloads.rural_copy": "Se utilizan dos fuentes de datos: el Censo Nacional Agropecuario del DANE (2014) y la informaci\u00f3n publicada en la plataforma Agronet del Ministerio de Agricultura y Desarrollo Rural (2017).
La clasificaci\u00f3n del uso del suelo y la informaci\u00f3n de hect\u00e1reas (1 hect\u00e1rea = 10.000 metros cuadrados) provienen del Censo Nacional Agropecuario (CNA). Las unidades de producci\u00f3n agropecuaria se clasifican seg\u00fan el CNA en \"Unidades de Producci\u00f3n Agropecuaria\", o UPAs, y \"Unidades de Producci\u00f3n No Agropecuaria\", o UPNAs. Mientras que la producci\u00f3n agropecuaria (que incluye cultivos y ganado) s\u00f3lo puede tener lugar en las UPAs, tanto las UPAs como las UPNAs pueden tener actividades de producci\u00f3n no agropecuaria. La clasificaci\u00f3n de las actividades de producci\u00f3n no agropecuaria proviene del Censo y no coincide con la clasificaci\u00f3n CIIU utilizada para los sectores productivos. UPAs y UPNAs pueden ser informales (no registradas como empresas).
La informaci\u00f3n de los cultivos, que proviene del Ministerio de Agricultura y Desarrollo Rural, es para los a\u00f1os agr\u00edcolas 2008-2015 (un a\u00f1o agr\u00edcola, para un cultivo transitorio, corresponde al segundo semestre del a\u00f1o anterior y el primer semestre del a\u00f1o correspondiente). El \u00e1rea sembrada y el \u00e1rea cosechada se miden en t\u00e9rminos de hect\u00e1reas y la producci\u00f3n se mide t\u00e9rminos de toneladas m\u00e9tricas (en todos los casos, sumando los dos semestres del a\u00f1o agr\u00edcola). La productividad de la tierra (para cualquier producto y lugar) es el rendimiento en t\u00e9rminos de toneladas por hect\u00e1rea cosechada. Un \u00edndice de rendimiento (para cualquier producto y lugar) es el rendimiento dividido por el rendimiento a nivel nacional. Los \u00edndices de rendimiento para m\u00e1s de un producto (por lugar) se calculan como el promedio ponderado de los \u00edndices de rendimiento de los productos, donde los pesos son el \u00e1rea cosechada que corresponde a cada producto.
Es importante tener en cuenta que la informaci\u00f3n presentada en esta secci\u00f3n para ca\u00f1a azucarera corresponde al rendimiento (ton/ha) de material verde y no al de az\u00facar. Esto resulta debido a que existe una relaci\u00f3n de aproximadamente 10 toneladas de material verde por cada tonelada de az\u00facar.
", + "downloads.rural_copy": "Se utilizan dos fuentes de datos: el Censo Nacional Agropecuario del DANE (2014) y la informaci\u00f3n publicada en la plataforma Agronet del Ministerio de Agricultura y Desarrollo Rural (2017).
La clasificaci\u00f3n del uso del suelo y la informaci\u00f3n de hect\u00e1reas (1 hect\u00e1rea = 10.000 metros cuadrados) provienen del Censo Nacional Agropecuario (CNA). Las unidades de producci\u00f3n agropecuaria se clasifican seg\u00fan el CNA en \"Unidades de Producci\u00f3n Agropecuaria\", o UPAs, y \"Unidades de Producci\u00f3n No Agropecuaria\", o UPNAs. Mientras que la producci\u00f3n agropecuaria (que incluye cultivos y ganado) s\u00f3lo puede tener lugar en las UPAs, tanto las UPAs como las UPNAs pueden tener actividades de producci\u00f3n no agropecuaria. La clasificaci\u00f3n de las actividades de producci\u00f3n no agropecuaria proviene del Censo y no coincide con la clasificaci\u00f3n CIIU utilizada para los sectores productivos. UPAs y UPNAs pueden ser informales (no registradas como empresas).
La informaci\u00f3n de los cultivos, que proviene del Ministerio de Agricultura y Desarrollo Rural, es para los a\u00f1os agr\u00edcolas 2008-2015 (un a\u00f1o agr\u00edcola, para un cultivo transitorio, corresponde al segundo semestre del a\u00f1o anterior y el primer semestre del a\u00f1o correspondiente). El \u00e1rea sembrada y el \u00e1rea cosechada se miden en t\u00e9rminos de hect\u00e1reas y la producci\u00f3n se mide t\u00e9rminos de toneladas m\u00e9tricas (en todos los casos, sumando los dos semestres del a\u00f1o agr\u00edcola). La productividad de la tierra (para cualquier producto y lugar) es el rendimiento en t\u00e9rminos de toneladas por hect\u00e1rea cosechada. Un \u00edndice de rendimiento (para cualquier producto y lugar) es el rendimiento dividido por el rendimiento a nivel nacional. Los \u00edndices de rendimiento para m\u00e1s de un producto (por lugar) se calculan como el promedio ponderado de los \u00edndices de rendimiento de los productos, donde los pesos son el \u00e1rea cosechada que corresponde a cada producto.
Es importante tener en cuenta que la informaci\u00f3n presentada en esta secci\u00f3n para ca\u00f1a azucarera corresponde al rendimiento (ton/ha) de material verde y no al de az\u00facar. Esto resulta debido a que existe una relaci\u00f3n de aproximadamente 10 toneladas de material verde por cada tonelada de az\u00facar.
", "downloads.rural_farmsize": "Tama\u00f1o de UPA ", "downloads.rural_farmtype": "Tipo de UPA", "downloads.rural_head": "Datos rurales", @@ -104,7 +104,7 @@ export default { "downloads.thead_met": "Ciudades", "downloads.thead_muni": "Municipios", "downloads.thead_national": "Nacional", - "downloads.trade_copy": "La fuente de todos los datos sobre las exportaciones e importaciones por departamento y municipio es la Direcci\u00f3n de Impuestos y Aduanas Nacionales, DIAN. Colombia utiliza la nomenclatura arancelaria NANDINA, la cual calza a los seis d\u00edgitos con el Sistema Armonizado (SA) de clasificaci\u00f3n internacional de productos. Eso lo estandarizamos despu\u00e9s a SA (HS) 1992 para resolver cualquier inconsistencia entre las versiones a trav\u00e9s de los a\u00f1os, de manera tal que los datos se puedan visualizar en el tiempo. La lista de partidas arancelarias puede verse en las bases de datos descargables de exportaci\u00f3n e importaci\u00f3n.El origen de las exportaciones se establece en dos etapas. Primero, se define el departamento de origen como es el \u00faltimo lugar donde tuvieron alg\u00fan procesamiento, ensamblaje o empaque, seg\u00fan la DIAN. Luego, se distribuyen los valores entre municipios seg\u00fan la composici\u00f3n del empleo de la firma correspondiente con base en la PILA (para las firmas sin esta informaci\u00f3n se asign\u00f3 el valor total a la capital del departamento). En el caso de las exportaciones de petr\u00f3leo (2709) y gas (2711), los valores totales se distribuyeron por origen seg\u00fan la producci\u00f3n por municipios (Agencia Nacional de Hidrocarburos y Asociaci\u00f3n Colombiana de Petr\u00f3leo) y en el caso de las exportaciones de refinados de petr\u00f3leo (2710) seg\u00fan el valor agregado por municipio (sectores 2231, 2322 y 2320 CIIU revisi\u00f3n 3, Encuesta Anual Manufacturera, DANE).
Los totales de exportaci\u00f3n por partida arancelaria pueden no corresponder a los datos oficiales porque quedan excluidas: (a) las exportaciones sin informaci\u00f3n sobre el sector del exportador y/o el departamento o municipio de origen, y (b) las exportaciones que en los datos de la DIAN tienen como destino las zonas francas; mientras que quedan incluidas: (c) las exportaciones de las zonas francas, que la DIAN no incluye en dichos totales.
De forma semejante, los totales de importaci\u00f3n por partida arancelaria pueden no corresponder a los datos oficiales porque quedan excluidas: (a) las importaciones sin informaci\u00f3n sobre el departamento o municipio de destino, y (b) las importaciones que en los datos de la DIAN tienen como origen las zonas francas; mientras que quedan incluidas: (c) las importaciones realizadas por las zonas francas, que la DIAN no incluye en dichos totales.
El archivo que describe la correspondencia entre la versi\u00f3n del Sistema Armonizado (HS) utilizado por la DIAN y su revisi\u00f3n de 1992 puede encontrarse aqu\u00ed.
Tambi\u00e9n puede descargarse aqu\u00ed un archivo con la lista de los productos del Sistema Armonizado los cu\u00e1les no aparecen representados en el mapa del producto (por razones que se explican en los M\u00e9todos de C\u00e1lculo).", + "downloads.trade_copy": "La fuente de todos los datos sobre las exportaciones e importaciones por departamento y municipio es la Direcci\u00f3n de Impuestos y Aduanas Nacionales, DIAN. Colombia utiliza la nomenclatura arancelaria NANDINA, la cual calza a los seis d\u00edgitos con el Sistema Armonizado (SA) de clasificaci\u00f3n internacional de productos. Eso lo estandarizamos despu\u00e9s a SA (HS) 1992 para resolver cualquier inconsistencia entre las versiones a trav\u00e9s de los a\u00f1os, de manera tal que los datos se puedan visualizar en el tiempo. La lista de partidas arancelarias puede verse en las bases de datos descargables de exportaci\u00f3n e importaci\u00f3n.El origen de las exportaciones se establece en dos etapas. Primero, se define el departamento de origen como es el \u00faltimo lugar donde tuvieron alg\u00fan procesamiento, ensamblaje o empaque, seg\u00fan la DIAN. Luego, se distribuyen los valores entre municipios seg\u00fan la composici\u00f3n del empleo de la firma correspondiente con base en la PILA (para las firmas sin esta informaci\u00f3n se asign\u00f3 el valor total a la capital del departamento). En el caso de las exportaciones de petr\u00f3leo (2709) y gas (2711), los valores totales se distribuyeron por origen seg\u00fan la producci\u00f3n por municipios (Agencia Nacional de Hidrocarburos y Asociaci\u00f3n Colombiana de Petr\u00f3leo) y en el caso de las exportaciones de refinados de petr\u00f3leo (2710) seg\u00fan el valor agregado por municipio (sectores 2231, 2322 y 2320 CIIU revisi\u00f3n 3, Encuesta Anual Manufacturera, DANE).
Los totales de exportaci\u00f3n por partida arancelaria pueden no corresponder a los datos oficiales porque quedan excluidas: (a) las exportaciones sin informaci\u00f3n sobre el sector del exportador y/o el departamento o municipio de origen, y (b) las exportaciones que en los datos de la DIAN tienen como destino las zonas francas; mientras que quedan incluidas: (c) las exportaciones de las zonas francas, que la DIAN no incluye en dichos totales.
De forma semejante, los totales de importaci\u00f3n por partida arancelaria pueden no corresponder a los datos oficiales porque quedan excluidas: (a) las importaciones sin informaci\u00f3n sobre el departamento o municipio de destino, y (b) las importaciones que en los datos de la DIAN tienen como origen las zonas francas; mientras que quedan incluidas: (c) las importaciones realizadas por las zonas francas, que la DIAN no incluye en dichos totales.
El archivo que describe la correspondencia entre la versi\u00f3n del Sistema Armonizado (HS) utilizado por la DIAN y su revisi\u00f3n de 1992 puede encontrarse aqu\u00ed.
Tambi\u00e9n puede descargarse aqu\u00ed un archivo con la lista de los productos del Sistema Armonizado los cu\u00e1les no aparecen representados en el mapa del producto (por razones que se explican en los M\u00e9todos de C\u00e1lculo).", "downloads.trade_head": "Datos de exportaciones e importaciones (DIAN)", "downloads.trade_row_1": "Exportaciones, importaciones e indicadores de complejidad ({{yearRange}})", "downloads.trade_row_2": "Exportaciones e importaciones con origen y destino ({{yearRange}})", @@ -155,7 +155,7 @@ export default { "graph_builder.builder_mod_header.location.farmtypes.num_farms": "UPAs y UPNAs", "graph_builder.builder_mod_header.location.industries.employment": "Empleo total", "graph_builder.builder_mod_header.location.industries.scatter": "Complejidad, distancia y valor estrat\u00e9gico de sectores potenciales ", - "graph_builder.builder_mod_header.location.industries.similarity": "Sectores con ventaja comparativa revelada >1 (con color) y <1 (gris)", + "graph_builder.builder_mod_header.location.industries.similarity": "Sectores con ventaja comparativa revelada en el rango seleccionado", "graph_builder.builder_mod_header.location.industries.wages": "Salarios totales", "graph_builder.builder_mod_header.location.landUses.area": "\u00c1rea total", "graph_builder.builder_mod_header.location.livestock.num_farms": "N\u00famero de UPAs ganaderas", @@ -166,9 +166,9 @@ export default { "graph_builder.builder_mod_header.location.products.export_value": "Exportaciones totales", "graph_builder.builder_mod_header.location.products.import_value": "Importaciones totales", "graph_builder.builder_mod_header.location.products.scatter": "Complejidad, distancia y valor estrat\u00e9gico de exportaciones potenciales", - "graph_builder.builder_mod_header.location.products.similarity": "Exportaciones con ventaja comparativa revelada >1 (con color) y <1 (gris)", - "graph_builder.builder_mod_header.nonag.departments.num_farms": "N\u00famero de UPNAs", - "graph_builder.builder_mod_header.nonag.municipalities.num_farms": "N\u00famero de UPNAs", + "graph_builder.builder_mod_header.location.products.similarity": "Exportaciones con ventaja comparativa revelada en el rango seleccionado", + "graph_builder.builder_mod_header.nonag.departments.num_farms": "N\u00famero de Unidades de Producción", + "graph_builder.builder_mod_header.nonag.municipalities.num_farms": "N\u00famero de Unidades de Producción", "graph_builder.builder_mod_header.product.cities.export_value": "Exportaciones totales", "graph_builder.builder_mod_header.product.cities.import_value": "Importaciones totales", "graph_builder.builder_mod_header.product.departments.export_value": "Exportaciones totales", @@ -179,23 +179,23 @@ export default { "graph_builder.builder_nav.intro": "Seleccione una pregunta para ver el gr\u00e1fico correspondiente. Si en la pregunta faltan par\u00e1metros ({{icon}}), los podr\u00e1 llenar cuando haga click.", "graph_builder.builder_questions.city": "Preguntas: Ciudades", "graph_builder.builder_questions.department": "Preguntas: Departamentos", - "graph_builder.builder_questions.employment": "Preguntas: Empleo", - "graph_builder.builder_questions.export": "Preguntas: Exportaciones", - "graph_builder.builder_questions.import": "Preguntas: Importaciones", - "graph_builder.builder_questions.industry": "Preguntas: Sectores", - "graph_builder.builder_questions.landUse": "Preguntas: Usos del suelo", - "graph_builder.builder_questions.land_harvested": "Preguntas: \u00c1rea cosechada", - "graph_builder.builder_questions.land_sown": "Preguntas: \u00c1rea sembrada", - "graph_builder.builder_questions.livestock_num_farms": "Preguntas: N\u00famero de UPAs", - "graph_builder.builder_questions.livestock_num_livestock": "Preguntas: N\u00famero de cabezas de ganado", + "graph_builder.builder_questions.employment": "Empleo", + "graph_builder.builder_questions.export": "Exportaciones", + "graph_builder.builder_questions.import": "Importaciones", + "graph_builder.builder_questions.industry": "Sectores", + "graph_builder.builder_questions.landUse": "Usos del suelo", + "graph_builder.builder_questions.land_harvested": "\u00c1rea cosechada", + "graph_builder.builder_questions.land_sown": "\u00c1rea sembrada", + "graph_builder.builder_questions.livestock_num_farms": "N\u00famero de UPAs", + "graph_builder.builder_questions.livestock_num_livestock": "N\u00famero de cabezas de ganado", "graph_builder.builder_questions.location": "Preguntas: Lugares", - "graph_builder.builder_questions.nonag": "Preguntas: Actividades no agropecuarias", + "graph_builder.builder_questions.nonag": "Actividades no agropecuarias", "graph_builder.builder_questions.occupation": "Preguntas: Ocupaciones", "graph_builder.builder_questions.partner": "Preguntas: Socios Comerciales", "graph_builder.builder_questions.product": "Preguntas: Productos de Exportaci\u00f3n", - "graph_builder.builder_questions.production_tons": "Preguntas: Producci\u00f3n", - "graph_builder.builder_questions.rural": "Preguntas: Actividades Rurales", - "graph_builder.builder_questions.wage": "Preguntas: N\u00f3mina Salarial", + "graph_builder.builder_questions.production_tons": "Producci\u00f3n", + "graph_builder.builder_questions.rural": "Actividades Rurales", + "graph_builder.builder_questions.wage": "N\u00f3mina Salarial", "graph_builder.change_graph.geo_description": "Mapea los datos", "graph_builder.change_graph.label": "Cambie el gr\u00e1fico", "graph_builder.change_graph.multiples_description": "Muestra la evoluci\u00f3n en varios per\u00edodos", @@ -257,7 +257,7 @@ export default { "graph_builder.explanation.agproduct.municipalities.land_sown": "Muestra la composici\u00f3n de lugares que siembran este producto agropecuario, por \u00e1rea sembrada. Fuente: Agronet (2017), Ministerio de Agricultura. Link", "graph_builder.explanation.agproduct.municipalities.production_tons": "Muestra la composici\u00f3n de lugares que producen este producto agropecuario, por toneladas producidas. Fuente: Agronet (2017), Ministerio de Agricultura. Link", "graph_builder.explanation.hide": "Oculte", - "graph_builder.explanation.industry.cities.employment": "Muestra la composici\u00f3n por departamentos del empleo formal del sector. Fuente: PILA.", + "graph_builder.explanation.industry.cities.employment": "Muestra la composici\u00f3n por ciudades del empleo formal del sector. Fuente: PILA.", "graph_builder.explanation.industry.cities.wages": "Muestra la composici\u00f3n por departamentos de la n\u00f3mina salarial del sector. Fuente: PILA.", "graph_builder.explanation.industry.departments.employment": "Muestra la composici\u00f3n por departamentos del empleo formal del sector. Fuente: PILA.", "graph_builder.explanation.industry.departments.wages": "Muestra la composici\u00f3n por departamentos de la n\u00f3mina salarial del sector. Fuente: PILA.", @@ -297,6 +297,7 @@ export default { "graph_builder.explanation.product.partners.import_value": "Muestra el origen de las importaciones de este producto, por pa\u00eds y regi\u00f3n del mundo. Fuente: DIAN.", "graph_builder.explanation.show": "Muestre m\u00e1s", "graph_builder.multiples.show_all": "Mostrar todo", + "graph_builder.types": "Gráficas disponibles", "graph_builder.page_title.agproduct.departments.land_harvested": "\u00bfQu\u00e9 departamentos cosechan este producto agropecuario?", "graph_builder.page_title.agproduct.departments.land_sown": "\u00bfQu\u00e9 departamentos siembran este producto agropecuario?", "graph_builder.page_title.agproduct.departments.production_tons": "\u00bfQu\u00e9 departamentos producen este producto agropecuario?", @@ -309,7 +310,7 @@ export default { "graph_builder.page_title.industry.departments.wages": "\u00bfQu\u00e9 departamentos en Colombia tienen las mayores n\u00f3minas salariales en este sector?", "graph_builder.page_title.industry.occupations.num_vacancies": "\u00bfQu\u00e9 ocupaciones demanda este sector?", "graph_builder.page_title.landUse.departments.area": "\u00bfQu\u00e9 departamentos tienen este uso del suelo?", - "graph_builder.page_title.landUse.municipalities.area": "\u00bfQu\u00e9 departamentos tienen este uso del suelo?", + "graph_builder.page_title.landUse.municipalities.area": "\u00bfQu\u00e9 municipios tienen este uso del suelo?", "graph_builder.page_title.livestock.departments.num_farms": "\u00bfCu\u00e1ntas UPAs cr\u00edan esta especie pecuaria en cada departamento?", "graph_builder.page_title.livestock.departments.num_livestock": "\u00bfCu\u00e1ntos animales de esta especie pecuaria se cr\u00edan en cada departamento?", "graph_builder.page_title.livestock.municipalities.num_farms": "\u00bfCu\u00e1ntas UPAs cr\u00edan esta especie pecuaria en cada municipio?", @@ -390,6 +391,7 @@ export default { "graph_builder.page_title.product.departments.export_value": "\u00bfQu\u00e9 departamentos en Colombia exportan este producto?", "graph_builder.page_title.product.departments.import_value": "\u00bfQu\u00e9 departamentos en Colombia importan este producto?", "graph_builder.page_title.product.partners.export_value": "\u00bfA d\u00f3nde exporta Colombia este producto?", + "graph_builder.page_title.product.partners.ringchart": "¿Como es el RingChart de este producto?", "graph_builder.page_title.product.partners.export_value.destination": "\u00bfA qu\u00e9 pa\u00edses env\u00eda {{location}} sus exportaciones de {{product}}?", "graph_builder.page_title.product.partners.import_value": "\u00bfDe d\u00f3nde importa Colombia este producto?", "graph_builder.page_title.product.partners.import_value.origin": "\u00bfDe qu\u00e9 pa\u00edses recibe {{location}} sus importaciones de {{product}}?", @@ -419,10 +421,12 @@ export default { "graph_builder.settings.rca.greater": "> 1", "graph_builder.settings.rca.less": "< 1", "graph_builder.settings.to": "a", - "graph_builder.settings.year": "A\u00f1os", + "graph_builder.settings.year": "Selector de A\u00f1os", "graph_builder.settings.year.next": "Siguiente", "graph_builder.settings.year.previous": "Anterior", "graph_builder.table.agproduct": "Producto Agr\u00edcola", + "graph_builder.table.product": "Producto", + "graph_builder.table.product_code": "Código del producto", "graph_builder.table.area": "\u00c1rea (ha)", "graph_builder.table.average_livestock_load": "", "graph_builder.table.average_wages": "Salario mensual promedio, Col$ ", @@ -439,6 +443,7 @@ export default { "graph_builder.table.employment_growth": "Tasa de crecimiento del empleo ({{yearRange}})", "graph_builder.table.export": "Exportaci\u00f3n", "graph_builder.table.export_num_plants": "N\u00famero de empresas", + "graph_builder.table.import_num_plants": "N\u00famero de empresas", "graph_builder.table.export_rca": "Ventaja comparativa revelada", "graph_builder.table.export_value": "Exportaciones, USD", "graph_builder.table.farmtype": "Tipo de UPA", @@ -512,7 +517,7 @@ export default { "header.product_space": "Mapa de los productos", "header.production_tons": "Producci\u00f3n", "header.region": "Por departamento", - "header.rural": "Preguntas: Actividades Rurales", + "header.rural": "Actividades Rurales", "header.subregion": "Por ciudad", "header.subsubregion": "Por municipio", "header.wage": "N\u00f3mina total", @@ -528,6 +533,8 @@ export default { "index.complexity_head": "La ventaja de la complejidad", "index.complexity_subhead": "Los pa\u00edses que exportan productos complejos, que requieren una gran cantidad de conocimientos, crecen m\u00e1s r\u00e1pido que los que exportan materias primas. Usando los m\u00e9todos para medir y visualizar la complejidad desarrollados por la Universidad de Harvard, Datlas permite explorar las posibilidades productivas y de exportaci\u00f3n de los departamentos y ciudades colombianas.", "index.country_profile": "Lea el perfil de Colombia", + "index.country_profile_p1": "Lea el perfil", + "index.country_profile_p2": "De colombia", "index.dropdown.industries": "461,488", "index.dropdown.locations": "41,87,34,40", "index.dropdown.products": "1143,87", @@ -536,8 +543,13 @@ export default { "index.future_subhead": "Los gr\u00e1ficos de dispersi\u00f3n y diagramas de redes permiten encontrar los sectores productivos que tienen las mejores posibilidades en un departamento o ciudad.", "index.graphbuilder.id": "87", "index.header_h1": "El Atlas Colombiano de Complejidad Econ\u00f3mica", + "index.header_h1_add": "Quieres saber", + "index.header_h1_p1": "El atlas colombiano de", + "index.header_h1_p2": "Complejidad econ\u00f3mica", "index.header_head": "Colombia como usted nunca la ha visto", "index.header_subhead": "Visualice las posibilidades de cualquier sector, cualquier producto de exportaci\u00f3n o cualquier lugar en Colombia.", + "index.header_subhead_add": "\u00bfQué sectores emplean m\u00e1s gente en bogot\u00e1?", + "index.button_more_information": "M\u00e1s informaci\u00f3n", "index.industry_head": "Ent\u00e9rese de un sector", "index.industry_q1": "\u00bfEn d\u00f3nde emplea m\u00e1s personas el sector qu\u00edmico de Colombia?", "index.industry_q1.id": "461", @@ -562,9 +574,12 @@ export default { "index.profiles_cta": "Lea el perfil de Antioquia", "index.profiles_head": "Comience por los perfiles", "index.profiles_subhead": "S\u00f3lo lo esencial, en un resumen de una p\u00e1gina", - "index.questions_head": "No somos una bola de cristal, pero podemos responder muchas preguntas", + "index.questions_head": "Nueva actualizaci\u00f3n 2017: m\u00f3dulos comercio exterior y sectores ", + "index.questions_head_p1": "Actualizaciones", + "index.questions_head_p2": "M\u00f3dulos comercio exterior y sectores", "index.questions_subhead": "index.questions_subhead", "index.research_head": "Investigaci\u00f3n mencionada en", + "index.sophistication_route": "Ruta de sofisticación y diversificación de producto", "industry.show.avg_wages": "Salarios promedio ({{year}})", "industry.show.employment": "Empleo ({{year}})", "industry.show.employment_and_wages": "Empleo formal y salarios", @@ -583,9 +598,9 @@ export default { "location.show.all_departments": "Comparaci\u00f3n con otros departamentos", "location.show.all_regions": "En comparaci\u00f3n con los otros lugares", "location.show.average_livestock_load": "", - "location.show.bullet.gdp_grow_rate": "La tasa de crecimiento del PIB en el per\u00edodo {{yearRange}} fue {{gdpGrowth}}, comparada con 5,3% para toda Colombia.", - "location.show.bullet.gdp_pc": "El PIB per capita de {{name}} es {{lastGdpPerCapita}}, comparado con Col$15,1 millones para toda Colombia en 2014.", - "location.show.bullet.last_pop": "La poblaci\u00f3n es {{lastPop}} de personas, frente a 46,3 millones de personas en todo el pa\u00eds en 2014.", + "location.show.bullet.gdp_grow_rate": "Principales variables del departamento:", + "location.show.bullet.gdp_pc": "El PIB per capita de {{name}} es {{lastGdpPerCapita}}, comparado con Col$18,8 millones para toda Colombia en 2017.", + "location.show.bullet.last_pop": "La poblaci\u00f3n es {{lastPop}} de personas, frente a 49,5 millones de personas en todo el pa\u00eds en 2017.", "location.show.eci": "Complejidad exportadora", "location.show.employment": "Empleo total ({{lastYear}})", "location.show.employment_and_wages": "Empleo formal y salarios", @@ -593,13 +608,19 @@ export default { "location.show.export_possiblities.footer": "Los productos indicados pueden no ser viables debido a condiciones del lugar que no se consideran en el an\u00e1lisis de similitud tecnol\u00f3gica.", "location.show.export_possiblities.intro": "Hemos encontrado que los pa\u00edses que exportan productos m\u00e1s complejos crecen m\u00e1s r\u00e1pido. Usando el \"mapa del producto\" presentado arriba, estamos destacando productos de alto potencial para {{name}}, ordenados por las mejores combinaciones de complejidad actual y valor estrat\u00e9gico.", "location.show.exports": "Exportaciones ({{year}})", + "location.show.exports_filtered": "Exportaciones por producto ({{year}})", + "location.show.imports_filtered": "Importaciones por producto ({{year}})", + "location.show.wages_filtered": "Empleo total ({{year}})", + "location.show.exports_country_filtered": "Exportaciones por país de destino ({{year}})", + "location.show.imports_country_filtered": "Importaciones por país de origen ({{year}})", + "location.show.wages_country_filtered": "Nomina salarial ({{year}})", "location.show.exports_and_imports": "Exportaciones e importaciones", "location.show.gdp": "PIB", "location.show.gdp_pc": "PIB per c\u00e1pita", "location.show.growth_annual": "Tasa de crecimiento ({{yearRange}})", "location.show.imports": "Importaciones ({{year}})", "location.show.nonag_farmsize": "Tama\u00f1o promedio de UPNAs (ha)", - "location.show.overview": "Resumen", + "location.show.overview": "La estructura económica es", "location.show.population": "Poblaci\u00f3n", "location.show.subregion.exports": "Composici\u00f3n de exportaciones por municipio ({{year}})", "location.show.subregion.imports": "Composici\u00f3n de importaciones por municipio ({{year}})", @@ -616,10 +637,17 @@ export default { "pageheader.rankings": "Rankings", "pageheader.search_link": "Buscar", "pageheader.search_placeholder": "Busque un lugar, sector, producto o actividad rural", - "pageheader.search_placeholder.industry": "Busque un sector", + "pageheader.search_placeholder.header": "Realice una búsqueda por", + "pageheader.search_placeholder.industry": "Búsqueda por Nombre o c\u00f3digo CIIU", "pageheader.search_placeholder.location": "Busque un lugar", - "pageheader.search_placeholder.product": "Busque un producto", - "pageheader.search_placeholder.rural": "Busque actividades rurales", + "pageheader.search_placeholder.locations_route": "Busque un lugar", + "pageheader.search_placeholder.product": "Búsque por nombre de producto o partida arancelaría", + "pageheader.search_placeholder.products_route": "Búsque por nombre de producto o partida arancelaría", + "pageheader.search_placeholder.rural": "Búsqueda por producto agricola, uso de suelo, actividad agropecuaria o especie pecuaria", + + "pageheader.search_placeholder.first.chained.partners": "Seleccione una región", + "pageheader.search_placeholder.second.chained.partners": "Seleccione un país", + "rankings.explanation.body": "", "rankings.explanation.title": "Explicaci\u00f3n", "rankings.intro.p": "Comparaci\u00f3n entre departamentos o ciudades", @@ -652,6 +680,129 @@ export default { "search.results_nonag": "Actividades no agropecuarias", "search.results_products": "Productos", "search.results_rural": "Actividades rurales", + "search.sophistication_path_place": "Ruta exploración lugar", + "search.sophistication_path_product": "Ruta exploración producto", + "search.message.p1": "En el siguiente campo usted podrá diligenciar su consulta, tambien usted podra realizar esta misma búsqueda por código CIIU.", + "search.message.p2": "Haga uso del interrogante para ampliar la información.", + "search.modal.title": "Código CIIU", + "search.placeholder.select2": "Búsqueda por Nombre o Código CIIU", + "search.modal.close": "Cerrar", + + "search.modal.title.industry": "Código CIIU", + "search.modal.p1.industry": "Clasificación numérica que identifica las actividades económicas. Aunque pertenece a las naciones unidas, en Colombia, el DANE realiza la última clasificación a 4 digitos.", + "search.modal.link.industry": "https://clasificaciones.dane.gov.co/ciiu4-0/ciiu4_dispone", + + "search.modal.title.rural": "Búsqueda", + "search.modal.p1.rural": "En esta opción puede buscar con nombre un producto agrícola, uso de suelo, actividad no agropecuaria o especie pecuaria.V\u00e9ase la p\u00e1gina \"Acerca de los datos\" para m\u00e1s informaci\u00f3n sobre fuentes, m\u00e9todos de c\u00e1lculo de las variables de complejidad y bases de datos descargables.
Un \u00e1rea metropolitana es la combinaci\u00f3n de dos o m\u00e1s municipios que est\u00e1n conectados a trav\u00e9s de flujos relativamente grandes de trabajadores (con independencia de su tama\u00f1o o contig\u00fcidad). Un municipio debe enviar al menos un 10% de sus trabajadores como viajeros diarios al resto de los municipios del \u00e1rea metropolitana para considerarse como parte de dicha \u00e1rea.
Con base en esta definici\u00f3n hay 19 \u00e1reas metropolitanas en Colombia, que comprenden 115 municipios. Las \u00e1reas metropolitanas resultantes son distintas de las oficiales. Se sigue la metodolog\u00eda de G. Duranton ( 2013): \u201cDelineating metropolitan areas: Measuring spatial labour market networks through commuting patterns.\u201d Wharton School, University of Pennsylvania.
Son las \u00e1reas metropolitanas y los municipios de m\u00e1s de 50.000 habitantes con al menos 75% de poblaci\u00f3n en la cabecera municipal. En total hay 62 ciudades (19 \u00e1reas metropolitanas que comprenden 115 municipios, m\u00e1s 43 ciudades de un solo municipio). El concepto de ciudad es relevante porque Datlas presenta indicadores de complejidad por departamento y por ciudad, pero no por municipio.
Complejidad es la diversidad y sofisticaci\u00f3n del \"know-how\" que se requiere para producir algo. El concepto de complejidad es central en Datlas porque la productividad y el crecimiento de cualquier lugar dependen de que las empresas puedan producir y exportar con \u00e9xito bienes y servicios que requieren capacidades y conocimientos m\u00e1s complejos, es decir m\u00e1s diversos y exclusivos. La complejidad puede medirse para un lugar, para un producto de exportaci\u00f3n, o para un sector.
Mide el potencial de aumento de la complejidad de un lugar. Tiene en cuenta el nivel de complejidad de todos los sectores productivos (o productos de exportaci\u00f3n), junto con la \u201cdistancia\u201d a los dem\u00e1s sectores (o productos). Con esta informaci\u00f3n mide la probabilidad de que aparezcan nuevos sectores (o exportaciones) y qu\u00e9 tanto elevar\u00edan la complejidad del lugar. Valores m\u00e1s altos indican que es m\u00e1s probable desarrollar nuevos sectores (o productos) m\u00e1s complejos que los que ya se tienen.
La complejidad potencial basada en sectores se calcula para los departamentos y ciudades, no para los dem\u00e1s municipios. La complejidad potencial basada en las exportaciones se calcula solamente por departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
DANE es el Departamento Administrativo Nacional de Estad\u00edstica de Colombia, fuente de todos los datos sobre el PIB y la poblaci\u00f3n que utiliza Datlas.
DIAN es la Direcci\u00f3n de Impuestos y Aduanas Nacionales, fuente de toda la informaci\u00f3n sobre exportaciones e importaciones de Datlas.
La \u201cdistancia\u201d es una medida de la capacidad de un lugar para desarrollar un sector o una exportaci\u00f3n espec\u00edfica, teniendo en cuenta las capacidades productivas existentes. La \u201cdistancia\u201d es menor en la medida en que las capacidades requeridas por un sector o exportaci\u00f3n son m\u00e1s similares a las ya existentes. En esa medida ser\u00e1n mayores las posibilidades de que desarrolle con \u00e9xito el sector o exportaci\u00f3n. Visto de otra forma, la distancia refleja la proporci\u00f3n del conocimiento productivo que se necesita para que aparezca un sector o exportaci\u00f3n que a\u00fan no existe en el lugar.
Las distancias por sectores productivos se calculan solamente para los departamentos y ciudades, no para los dem\u00e1s municipios. Las distancias para las exportaciones se calculan solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
Es una medida de cu\u00e1ntos productos diferentes puede hacer un lugar. La producci\u00f3n de un bien cualquiera requiere un conjunto espec\u00edfico de capacidades; por consiguiente la diversidad es otra forma de expresar la cantidad de conocimiento productivo de un lugar.
El empleo formal es aquel que est\u00e1 cubierto por el sistema de seguridad social en salud y/o por el sistema de pensiones. No incluye trabajadores independientes. El empleo formal reportado es el n\u00famero de empleados formales en un mes promedio. La tasa de formalidad es el empleo formal dividido por la poblaci\u00f3n mayor de 15 a\u00f1os. Los datos de empleo y salarios provienen de la PILA del Ministerio de Salud. Los datos de poblaci\u00f3n son del DANE.
El conteo de empresas con actividad productiva por lugar (municipio, departamento, nacional) se hizo teniendo en cuenta todas aquellas empresas registradas en la PILA que hicieron alg\u00fan aporte a la seguridad social para sus empleados en el a\u00f1o de referencia (aunque no hayan estado en operaci\u00f3n todo el a\u00f1o).
El conteo de empresas exportadoras o importadoras se hizo por municipio y producto teniendo en cuenta cualquier empresa que seg\u00fan la DIAN hubiera realizado alguna operaci\u00f3n en el a\u00f1o de referencia (por consiguiente, el conteo de empresas exportadoras o importadoras de un producto por departamento o para todo el pa\u00eds puede tener duplicaciones).
Ordena los productos de exportaci\u00f3n seg\u00fan qu\u00e9 tantas capacidades productivas se requieren para su fabricaci\u00f3n. Productos complejos de exportaci\u00f3n, tales como qu\u00edmicos y maquinaria, requieren un nivel sofisticado y diverso de conocimientos que s\u00f3lo se consigue con la interacci\u00f3n en empresas de muchos individuos con conocimientos especializados. Esto contrasta con las exportaciones de baja complejidad, como el caf\u00e9, que requieren apenas conocimientos productivos b\u00e1sicos que se pueden reunir en una empresa familiar. Para calcular la complejidad de los productos de exportaci\u00f3n se utilizan datos de Comtrade de las Naciones Unidas para cerca de 200 pa\u00edses.
Una medida de la sofisticaci\u00f3n de las capacidades productivas de un lugar basada en la diversidad y la ubicuidad de sus sectores productivos o sus exportaciones. Un lugar con alta complejidad produce o exporta bienes y servicios que pocos otros lugares producen. Lugares altamente complejos tienden a ser m\u00e1s productivos y a generar mayores salarios e ingresos. Los pa\u00edses con canastas de exportaci\u00f3n m\u00e1s sofisticadas de lo que se espera para su nivel de ingresos (como China) tienden a crecer m\u00e1s r\u00e1pido que aquellos en los que es todo lo contrario (como Grecia).
El ICE basado en los sectores productivos (o \u00edndice de complejidad productiva) se calcula solamente para departamentos y ciudades, no para los dem\u00e1s municipios. La ICE basado en las exportaciones se calcula solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la estructura de las exportaciones es inestable y/o poco representativa).
Es una medida de qu\u00e9 tantas capacidades productivas requieren un sector para operar. El ICS y el \u00cdndice de Complejidad del Producto (ICP) son medidas estrechamente relacionadas, pero se calculan en forma separada con datos y sistemas de clasificaci\u00f3n independientes, ya que la complejidad del producto se calcula solo para mercanc\u00edas comercializables internacionalmente, mientras que los sectores productivos comprenden todos los sectores que generan empleo, incluidos todos los servicios y el sector p\u00fablico. Un sector es complejo si requiere un nivel sofisticado de conocimientos productivos, como los servicios financieros y los sectores farmac\u00e9uticos, en donde trabajan en grandes empresas muchos individuos con conocimientos especializados distintos. La complejidad de un sector se mide calculando la diversidad promedio de los lugares donde existe el sector y la ubicuidad promedio de los sectores de esos lugares. Los datos de empleo formal necesarios para estos c\u00e1lculos provienen de la PILA del Ministerio de Salud.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos para la exportaci\u00f3n de unos productos y otros. Cada punto representa un producto de exportaci\u00f3n y cada enlace entre un par de productos indica que requieren capacidades productivas similares. Aparecen con color los productos de exportaci\u00f3n que se exportan con ventaja comparativa revelada mayor que uno. Cuando se selecciona un producto, el gr\u00e1fico destaca los productos que requieren capacidades productivas semejantes. Un producto con m\u00e1s enlaces con otros que no se exportan ofrece mayor potencial para la diversificaci\u00f3n exportadora a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el producto tiene un alto potencial para elevar la complejidad del lugar.
El mapa de similitud de los productos se basa en los datos de comercio internacional de 192 pa\u00edses en m\u00e1s de 50 a\u00f1os compilados por Comtrade. Ver http://atlas.cid.harvard.edu/.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos por unos sectores u otros. Cada punto representa un sector y cada enlace entre un par de sectores indica que requieren capacidades productivas similares. Aparecen con color los sectores con ventaja comparativa revelada mayor que uno. Cuando se selecciona un lugar, el gr\u00e1fico destaca los sectores que requieren capacidades productivas semejantes. Un sector con m\u00e1s enlaces con sectores que no existen ofrece mayor potencial para la diversificaci\u00f3n productiva a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el sector tiene un alto potencial para elevar la complejidad del lugar. El mapa de los sectores productivos de Colombia fue construido a partir de la informaci\u00f3n de empleo formal por municipio de la PILA del Ministerio de Salud.
Las ocupaciones se clasifican de acuerdo con el \u00cdndice Num\u00e9rico de la Red Ocupacional (ONET). Los datos sobre las ocupaciones (salarios ofrecidos, estructura ocupacional por sector y nivel educativo por ocupaci\u00f3n) provienen de los anuncios de vacantes de empleo colocados por las empresas en los sitios de empleo de Internet p\u00fablicos y privados. Los datos fueron procesados por Jeisson Arley Rubio C\u00e1rdenas (Universidad del Rosario, Bogot\u00e1) y Jaime Mauricio Monta\u00f1a Doncel (Escuela de Econom\u00eda de Par\u00eds).
PILA es la Planilla Integrada de Aportes Laborales del Ministerio de Salud. Es la fuente principal de los datos por sector. Contiene informaci\u00f3n de empleo formal, salarios y n\u00famero de empresas por municipio y sector.
El sistema de clasificaci\u00f3n de los productos de exportaci\u00f3n e importaci\u00f3n de Datlas es la nomenclatura arancelaria NABANDINA, la cual calza a seis d\u00edgitos con la clasificaci\u00f3n internacional del Sistema Armonizado (SA). Datlas presenta informaci\u00f3n de productos (de exportaci\u00f3n e importaci\u00f3n) a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n proviene de la DIAN.
La clasificaci\u00f3n sectorial de Colombia es una versi\u00f3n modificada de la Clasificaci\u00f3n Sectorial Internacional Uniforme de todas las Actividades Econ\u00f3micas (CIIU). Datlas presenta informaci\u00f3n sectorial a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n proviene de la PILA. Siguiendo las convenciones de la contabilidad nacional, los trabajadores contratados por agencias de empleo temporal se clasifican en el sector de suministro de personal (7491), no en el sector de la empresa donde prestan servicios.
Una medida del n\u00famero de lugares que pueden producir un producto.
Capta en qu\u00e9 medida un lugar podr\u00eda beneficiarse mediante el desarrollo de un sector en particular (o un producto de exportaci\u00f3n). Tambi\u00e9n conocida como \"ganancia de oportunidad\", esta medida representa la distancia a todos los otros sectores (o exportaciones) que un lugar no produce actualmente con ventaja comparativa revelada mayor que uno y su respectiva complejidad. Refleja c\u00f3mo un nuevo sector (o exportaci\u00f3n) puede abrir paso a otros sectores o productos m\u00e1s complejos. El valor estrat\u00e9gico de los sectores productivos se calcula solamente para departamentos y ciudades, no para los dem\u00e1s municipios. El valor estrat\u00e9gico de las exportaciones se calcula solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
Mide el tama\u00f1o relativo de un sector o un producto de exportaci\u00f3n en un lugar. La VCR, que no debe interpretarse como un indicador de eficiencia productiva o de competitividad, se conoce tambi\u00e9n por el nombre de \"cociente de localizaci\u00f3n\u201d. Se calcula como el cociente entre la participaci\u00f3n del empleo formal de un sector en el lugar y la participaci\u00f3n del empleo formal total del mismo sector en todo el pa\u00eds. Por ejemplo, si la industria qu\u00edmica en una ciudad genera el 10% del empleo, mientras que en todo el pa\u00eds genera el 1% del empleo, la VCR de la industria qu\u00edmica en dicha ciudad es 10. Para una exportaci\u00f3n es la relaci\u00f3n entre la participaci\u00f3n que tiene el producto en la canasta de exportaci\u00f3n del lugar y la participaci\u00f3n que tiene en el comercio mundial. Si esta relaci\u00f3n es mayor que 1, se dice que el lugar tiene ventaja comparativa revelada en el sector o en la exportaci\u00f3n. Por ejemplo, si el caf\u00e9 representa el 30% de las exportaciones de un departamento colombiano, pero da cuenta apenas del 0.3% del comercio mundial, entonces la VCR del departamento en caf\u00e9 es 100.
", + "about.glossary_name": "Glosario", + "about.project_description.cid.header": "El CID y el Laboratorio de Crecimiento ", + "about.project_description.cid.p1": "Este proyecto ha sido desarrollado por el Centro para el Desarrollo Internacional de la Universidad de Harvard (CID), bajo la direcci\u00f3n del profesor Ricardo Hausmann", + "about.project_description.cid.p2": "El CID tiene por objetivos avanzar en la comprensi\u00f3n de los desaf\u00edos del desarrollo y ofrecer soluciones viables para reducir la pobreza mundial. El Laboratorio de Crecimiento es uno de los principales programas de investigaci\u00f3n del CID.", + "about.project_description.contact.header": "Informaci\u00f3n de contacto", + "about.project_description.contact.link": "Datlascolombia@bancoldex.com", + "about.project_description.founder1.header": "Banc\u00f3ldex", + "about.project_description.founder1.p": "Banc\u00f3ldex, el banco de desarrollo empresarial de Colombia, est\u00e1 comprometido con el desarrollo de instrumentos financieros y no financieros orientados a mejorar la competitividad, la productividad, el crecimiento y la internacionalizaci\u00f3n de las empresas colombianas. Aprovechando su posici\u00f3n de mercado y su capacidad para establecer relaciones empresariales, Banc\u00f3ldex gestiona activos financieros, desarrolla soluciones de acceso a la financiaci\u00f3n y ofrece soluciones de capital innovadoras que fomentan y aceleran el crecimiento empresarial. Adem\u00e1s de ofrecer pr\u00e9stamos tradicionales, Banc\u00f3ldex ha sido designado para ejecutar varios programas de desarrollo tales como el Programa de Transformaci\u00f3n Productiva, iNNpulsa Colombia, iNNpulsa Mipyme y la Banca de las Oportunidades. Todos ellos conforman una oferta integrada de servicios para promover el entorno empresarial colombiano y la competitividad. Datlas es parte del Programa de Transformaci\u00f3n Productiva y la iniciativas INNpulsa Colombia.", + "about.project_description.founder2.header": "Fundaci\u00f3n Mario Santo Domingo", + "about.project_description.founder2.p": "Creada en 1953, la Fundaci\u00f3n Mario Santo Domingo (FMSD) es una organizaci\u00f3n sin fines de lucro dedicada a la implementaci\u00f3n de programas de desarrollo comunitario en Colombia. FMSD concentra sus principales esfuerzos en la construcci\u00f3n de viviendas asequibles dentro de un modelo de desarrollo comunitario llamado Desarrollo Integral de Comunidades Sustentables, dise\u00f1ado por el FMSD como respuesta al gran d\u00e9ficit de vivienda en Colombia. A trav\u00e9s de este programa, el FMSD proporciona apoyo social a las familias, as\u00ed como infraestructura social y urbana para los menos privilegiados. FMSD tambi\u00e9n contribuye al desarrollo empresarial de la regi\u00f3n Norte de Colombia y de Bogot\u00e1 a trav\u00e9s de su Unidad de Microfinanzas, que ofrece capacitaci\u00f3n y servicios financieros como el microcr\u00e9dito. M\u00e1s de 130.000 empresarios han recibido pr\u00e9stamos de la Fundaci\u00f3n desde su lanzamiento en 1984. FMSD tambi\u00e9n trabaja en identificar alianzas y sinergias entre los sectores p\u00fablico y privado en las \u00e1reas de desarrollo social cr\u00edticos, como la primera infancia, la sostenibilidad ambiental, la atenci\u00f3n de desastres, la educaci\u00f3n y la salud.", + "about.project_description.founders.header": "Entidades Patrocinadoras", + "about.project_description.founders.p": "Este proyecto es financiado por Banc\u00f3ldex y la Fundaci\u00f3n Mario Santo Domingo", + "about.project_description.github": "Revise nuestro c\u00f3digo", + "about.project_description.intro.p1": "En Colombia, las diferencias de ingresos entre regiones son enormes y han ido creciendo: las nuevas oportunidades de empleo se concentran cada vez m\u00e1s en las \u00e1reas metropolitanas de Bogot\u00e1, Medell\u00edn y Cali, aparte de los lugares donde se extraen petr\u00f3leo y otros minerales. El ingreso promedio de los residentes de Bogot\u00e1 es cuatro veces el de los colombianos que viven en los 12 departamentos m\u00e1s pobres.", + "about.project_description.intro.p2": "Datlas es una herramienta de diagn\u00f3stico para que las empresas, los inversionistas y las autoridades de gobierno puedan tomar decisiones que ayuden a elevar la productividad. Contiene informaci\u00f3n por departamento, \u00e1rea metropolitana y municipio sobre actividad productiva, empleo, salarios y exportaciones. Ofrece criterios para identificar los sectores y las exportaciones con potencial de crecimiento con base en la complejidad econ\u00f3mica.", + "about.project_description.intro.p3": "La complejidad econ\u00f3mica es una medida de las capacidades y conocimientos de los sectores productivos de un pa\u00eds o una ciudad. Para hacer una camisa, hay que dise\u00f1arla, producir la tela, cortar, coser, empacar el producto, comercializarlo y distribuirlo. Para que un pa\u00eds pueda producir camisas, necesita personas que tengan experiencia en cada una de estas \u00e1reas. Cada una de estas tareas implica muchas m\u00e1s capacidades de las que cualquier persona sola puede dominar. S\u00f3lo mediante la combinaci\u00f3n de know-how de diferentes personas puede hacerse el producto. El camino hacia el desarrollo econ\u00f3mico consiste en aprender a hacer cosas m\u00e1s sofisticadas. El juego de Scrabble puede servir de analog\u00eda: el jugador que tiene un mayor n\u00famero de letras variadas puede hacer m\u00e1s palabras y conseguir m\u00e1s puntos. Los pa\u00edses con una mayor diversidad de capacidades productivas pueden hacer una mayor diversidad de productos. El desarrollo econ\u00f3mico ocurre en la medida en que el pa\u00eds o la ciudad adquiere m\u00e1s capacidades y conocimientos para producir productos cada vez m\u00e1s complejos.", + "about.project_description.intro.p4": "Este enfoque conceptual que ha sido aplicado a nivel internacional en el Atlas de la Complejidad Econ\u00f3mica se utiliza ahora en esta herramienta en l\u00ednea para identificar las posibilidades de exportaci\u00f3n y de desarrollo sectorial de los departamentos, las \u00e1reas metropolitanas y las ciudades colombianas.", + "about.project_description.letter.header": "Bolet\u00edn de Estudios del CID", + "about.project_description.letter.p": "Inscr\u00edbase al Bolet\u00edn de Estudios del CID para mantenerse al d\u00eda con los avances de la investigaci\u00f3n y las herramientas pr\u00e1cticas en temas relacionados con la complejidad.", + "about.project_description.team.header": "El equipo acad\u00e9mico y t\u00e9cnico", + "about.project_description.team.p": "El equipo acad\u00e9mico de CID de Harvard: Ricardo Hausmann (director), Eduardo Lora (coordinador), Tim Cheston, Andr\u00e9s G\u00f3mez-Li\u00e9vano, Jos\u00e9 Ram\u00f3n Morales, Neave O\u2019Clery y Juan T\u00e9llez. El equipo de programaci\u00f3n y visualizaci\u00f3n de CID de Harvard: Greg Shapiro (coordinador), Mali Akmanalp, Katy Harris, Quinn Lee, Romain Vuillemot y Gus Wezerek. Asesor estad\u00edstico de Colombia: Marcela Eslava (Universidad de los Andes). Recopilaci\u00f3n y procesamiento de los datos de ofertas de empleo de Colombia: Jeisson Arley C\u00e1rdenas Rubio (Universidad del Rosario, Bogot\u00e1) y Jaime Mauricio Monta\u00f1a Doncel (Paris School of Economics).", + "about.project_description_name": "Acerca de Datlas", + "census_year": "2014", + "country.show.ag_farmsize": "", + "country.show.dotplot-column": "Departamentos de Colombia", + "country.show.eci": "0,037", + "country.show.economic_structure": "Estructura econ\u00f3mica", + "country.show.economic_structure.copy.p1": "Con una poblaci\u00f3n de 48,1 millones (a mayo 2015), Colombia es el tercer pa\u00eds m\u00e1s grande de Am\u00e9rica Latina. Su PIB total en 2014 fue Col $756,1 billones, o US$377,9 miles de millones a la tasa de cambio promedio de 2014 (1 US d\u00f3lar = 2000,6 pesos colombianos). En 2014, se alcanz\u00f3 un nivel de ingreso per c\u00e1pita de Col $15.864.953 o US$7.930. La tasa de crecimiento desde 2008 ha sido en promedio 4.3% (o 3.1% por persona). ", + "country.show.economic_structure.copy.p2": "Los servicios empresariales y financieros son el sector m\u00e1s grande, con una contribuci\u00f3n al PIB de 18,8%, seguidos por los servicios de gobierno, sociales y personales (16,5%) y las actividades manufactureras (11,2%). Bogot\u00e1 D.C., Antioquia y el Valle del Cauca concentran aproximadamente la mitad de la actividad productiva, con participaciones en el PIB de 24,7, 13,1 y 9,2%, respectivamente. Sin embargo, los departamentos con m\u00e1s alto PIB per c\u00e1pita son Casanare y Meta, ambos importantes productores de petr\u00f3leo. Los gr\u00e1ficos siguientes presentan m\u00e1s detalles.", + "country.show.employment_wage_occupation": "Empleo formal, ocupaciones y salarios", + "country.show.employment_wage_occupation.copy.p1": "En 2014, aproximadamente 21,6 millones de personas fueron ocupadas en empleos formales o informales, con un leve aumento respecto al a\u00f1o anterior (21,1 millones). Los registros de la PILA, que cubren el universo de los trabajadores que hacen contribuciones al sistema de seguridad social, indican que 13,3 millones de personas estuvieron ocupadas en alg\u00fan momento en empleos formales en 2013. Teniendo en cuenta el n\u00famero de meses empleados, el n\u00famero efectivo de trabajadores-a\u00f1o en el sector formal en 2013 fue 6,7 millones. Bogot\u00e1 DC, Antioquia y el Valle del Cauca generan, respectivamente 32,7, 16,7, and 10,7% del empleo formal (efectivo).", + "country.show.employment_wage_occupation.copy.p2": "Los siguientes gr\u00e1ficos ofrecen informaci\u00f3n m\u00e1s detallada de los patrones de empleo formal y los salarios pagados seg\u00fan los registros de PILA. Tambi\u00e9n se incluye informaci\u00f3n de vacantes anunciadas y salarios ofrecidos por ocupaci\u00f3n, calculados a partir de los anuncios colocados por empresas en sitios de Internet durante 2014.", + "country.show.export_complexity_possibilities": "Complejidad de las exportaciones y posibilidades de exportaci\u00f3n", + "country.show.export_complexity_possibilities.copy.p1": "El concepto de complejidad de las exportaciones es an\u00e1logo al de complejidad de los sectores sectorial presentado arriba, pero referido ahora a las exportaciones. Se mide mediante el \u00cdndice de Complejidad del Producto. Se ha comprobado que los pa\u00edses que exportan productos que son relativamente complejos con respecto a su nivel de desarrollo tienden a crecer m\u00e1s r\u00e1pido que los pa\u00edses que exportan bienes relativamente simples. Seg\u00fan la complejidad de su canasta exportadora en 2013, Colombia ocupa el puesto 53 entre 124 pa\u00edses. La tasa de crecimiento proyectada para Colombia con base en su complejidad y su nivel de desarrollo es 3,3% por a\u00f1o en el per\u00edodo 2013-2023.", + "country.show.export_complexity_possibilities.copy.p2": "El \"mapa de similitud tecnol\u00f3gica de los productos de exportaci\u00f3n\" (o mapa de los productos) que se presenta enseguida es una representaci\u00f3n gr\u00e1fica de la similitud tecnol\u00f3gica entre todos los productos de exportaci\u00f3n, seg\u00fan los patrones de exportaci\u00f3n de todos los pa\u00edses. Cada punto o nodo representa un producto; los nodos conectados entre s\u00ed requieren capacidades productivas semejantes. Los productos que est\u00e1n m\u00e1s conectados tienden a agruparse en el centro de la red, lo cual implica que las capacidades que ellos usan pueden ser utilizadas en la producci\u00f3n de muchos otros productos.", + "country.show.export_complexity_possibilities.copy.p3": "Los puntos que aparecen destacados representan productos que Colombia exporta en cantidades relativamente importantes (m\u00e1s exactamente, con ventaja comparativa revelada mayor de uno, v\u00e9ase el Glosario). Los colores representan grupos de productos (son los mismos colores usados para los sectores correspondientes en el mapa de similitud tecnol\u00f3gica presentado arriba). El gr\u00e1fico que aparece m\u00e1s abajo, junto con el cuadro que lo acompa\u00f1a, indica qu\u00e9 productos ofrecen las mejores posibilidades para Colombia, dadas las capacidades productivas que ya tiene el pa\u00eds y que tan \u2018distantes\u2019 son esas capacidades de las que requieren para exportar otras cosas. ", + "country.show.exports": "Exportaciones", + "country.show.exports.copy.p1": "Colombia export\u00f3 US$54,8 miles de millones en 2014, comparado con $58,8 miles de millones en 2013 y $60,1 miles de millones en 2012. Sus principales destinos de exportaci\u00f3n son los Estados Unidos, Venezuela, Ecuador y Per\u00fa. En 2014, los productos mineros (entre los cuales, petr\u00f3leo, carb\u00f3n y ferron\u00edquel son los m\u00e1s importantes) representaron 59,3% de las exportaciones totales de bienes; los productos manufacturados 35,6%, y los productos agr\u00edcolas 4,6%. Los siguientes gr\u00e1ficos presentan m\u00e1s detalles.", + "country.show.exports_composition_by_department": "Composici\u00f3n de las exportaciones por departamento ({{year}})", + "country.show.exports_composition_by_products": "Composici\u00f3n de las exportaciones ({{year}})", + "country.show.gdp": "Col $756,152 bill", + "country.show.gdp_per_capita": "Col $15.864.953", + "country.show.industry_complex": "Complejidad de los sectores productivos", + "country.show.industry_complex.copy.p1": "La complejidad de los sectores productivos, que se cuantifica mediante el \u00cdndice de Complejidad del Sector, es una media de la amplitud de las capacidades y habilidades \u2013know-how\u2013 que se requiere en un sector productivo. Se dice que sectores tales como qu\u00edmicos o maquinaria son altamente complejos porque requieren un nivel sofisticado de conocimientos productivos que solo es factible encontrar en grandes empresas donde interact\u00faa un n\u00famero de individuos altamente capacitados. En contraste, sectores como el comercio minorista o restaurantes requieren solo niveles b\u00e1sicos de capacitaci\u00f3n que pueden encontrarse incluso en una peque\u00f1a empresa familiar. Los sectores m\u00e1s complejos son m\u00e1s productivos y contribuyen m\u00e1s a elevar el ingreso per c\u00e1pita. Los departamentos y ciudades con sectores m\u00e1s complejos tienen una base productiva m\u00e1s diversificada y tienden a crear m\u00e1s empleo formal.", + "country.show.industry_complex.copy.p2": "El \"mapa de similitud tecnol\u00f3gica de los sectores\" (o mapa de los sectores) que se presenta enseguida es una representaci\u00f3n gr\u00e1fica de la similitud de las capacidades y habilidades entre pares de sectores. Cada punto (o nodo) representa un sector; los nodos conectados por l\u00edneas requieren capacidades semejantes. Los sectores con m\u00e1s conexiones usan capacidades que pueden ser utilizadas en muchos otros sectores. Los colores representan grupos de sectores.", + "country.show.industry_space": "Mapa de los sectores", + "country.show.nonag_farmsize": "", + "country.show.occupation.num_vac": "Vacantes anunciadas (2014)", + "country.show.population": "48,1 millones", + "country.show.product_space": "Mapa de los productos", + "country.show.total": "Totales", + "ctas.csv": "CSV", + "ctas.download": "Descargue estos datos", + "ctas.embed": "Insertar", + "ctas.excel": "Excel", + "ctas.export": "Exportar", + "ctas.facebook": "Facebook", + "ctas.pdf": "PDF", + "ctas.png": "PNG", + "ctas.share": "Compartir", + "ctas.twitter": "Twitter", + "currency": "Col$", + "decimal_delmiter": ",", + "downloads.cta_download": "Descargar", + "downloads.cta_na": "No disponible", + "downloads.head": "Acerca de los datos", + "downloads.industry_copy": "La Planilla Integrada de Aportes Laborales, PILA, del Ministerio de Salud, es la fuente principal de los datos por sector. Contiene informaci\u00f3n de empleo formal, salarios y n\u00famero de empresas por municipio y sector. La clasificaci\u00f3n sectorial de Colombia es una versi\u00f3n modificada de la Clasificaci\u00f3n Sectorial Internacional Uniforme de todas las Actividades Econ\u00f3micas (CIIU). La lista de los sectores productivos puede verse en las bases de datos descargables de sectores. Puede descargarse aqu\u00ed un archivo con la lista de los sectores productivos del CIIU los cu\u00e1les no aparecen representados en el mapa de los sectores (por razones que se explican en los M\u00e9todos de C\u00e1lculo).", + "downloads.industry_head": "Datos de sectores productivos (PILA)", + "downloads.industry_row_1": "Empleo, salarios, n\u00famero de empresas e indicadores de complejidad productiva ({{yearRange}})", + "downloads.list_of_cities.header": "Listas de departamentos, ciudades y municipios", + "downloads.map.cell": "Datos del mapa", + "downloads.map.header": "Mapa", + "downloads.occupations_copy": "Todos los datos sobre las ocupaciones (salarios ofrecidos por ocupaci\u00f3n y sector, y estructura ocupacional por sector) provienen de los anuncios de vacantes de empleo colocados por las empresas en los sitios de empleo de Internet p\u00fablicos y privados. Las ocupaciones se clasifican de acuerdo con el \u00cdndice Num\u00e9rico de la Red Ocupacional (ONET). Los datos fueron procesados \u200b\u200bpor Jeisson Arley Rubio C\u00e1rdenas, investigador de la Universidad del Rosario, Bogot\u00e1, y Jaime Mauricio Monta\u00f1a Doncel, estudiante de maestr\u00eda en la Escuela de Econom\u00eda de Par\u00eds.", + "downloads.occupations_head": "Datos de ocupaciones", + "downloads.occupations_row_1": "Vacantes laborales y salarios ofrecidos (2014)", + "downloads.other_copy": "El Departamento Administrativo Nacional de Estad\u00edstica, DANE, es la fuente de todos los datos sobre el PIB y la poblaci\u00f3n.", + "downloads.other_head": "Otros datos (DANE)", + "downloads.other_row_1": "PIB y variables demogr\u00e1ficas", + "downloads.thead_departments": "Departamentos", + "downloads.thead_met": "Ciudades", + "downloads.thead_muni": "Municipios", + "downloads.thead_national": "Nacional", + "downloads.trade_copy": "La fuente de todos los datos sobre las exportaciones e importaciones por departamento y municipio es la Direcci\u00f3n de Impuestos y Aduanas Nacionales, DIAN. Colombia utiliza la nomenclatura arancelaria NANDINA, la cual calza a los seis d\u00edgitos con el Sistema Armonizado (SA) de clasificaci\u00f3n internacional de productos. Eso lo estandarizamos despu\u00e9s a SA (HS) 1992 para resolver cualquier inconsistencia entre las versiones a trav\u00e9s de los a\u00f1os, de manera tal que los datos se puedan visualizar en el tiempo. La lista de partidas arancelarias puede verse en las bases de datos descargables de exportaci\u00f3n e importaci\u00f3n.El origen de las exportaciones se establece en dos etapas. Primero, se define el departamento de origen como es el \u00faltimo lugar donde tuvieron alg\u00fan procesamiento, ensamblaje o empaque, seg\u00fan la DIAN. Luego, se distribuyen los valores entre municipios seg\u00fan la composici\u00f3n del empleo de la firma correspondiente con base en la PILA (para las firmas sin esta informaci\u00f3n se asign\u00f3 el valor total a la capital del departamento). En el caso de las exportaciones de petr\u00f3leo (2709) y gas (2711), los valores totales se distribuyeron por origen seg\u00fan la producci\u00f3n por municipios (Agencia Nacional de Hidrocarburos y Asociaci\u00f3n Colombiana de Petr\u00f3leo) y en el caso de las exportaciones de refinados de petr\u00f3leo (2710) seg\u00fan el valor agregado por municipio (sectores 2231, 2322 y 2320 CIIU revisi\u00f3n 3, Encuesta Anual Manufacturera, DANE).
Los totales de exportaci\u00f3n por partida arancelaria pueden no corresponder a los datos oficiales porque quedan excluidas: (a) las exportaciones sin informaci\u00f3n sobre el sector del exportador y/o el departamento o municipio de origen, y (b) las exportaciones que en los datos de la DIAN tienen como destino las zonas francas; mientras que quedan incluidas: (c) las exportaciones de las zonas francas, que la DIAN no incluye en dichos totales.
De forma semejante, los totales de importaci\u00f3n por partida arancelaria pueden no corresponder a los datos oficiales porque quedan excluidas: (a) las importaciones sin informaci\u00f3n sobre el departamento o municipio de destino, y (b) las importaciones que en los datos de la DIAN tienen como origen las zonas francas; mientras que quedan incluidas: (c) las importaciones realizadas por las zonas francas, que la DIAN no incluye en dichos totales.
El archivo que describe la correspondencia entre la versi\u00f3n del Sistema Armonizado (HS) utilizado por la DIAN y su revisi\u00f3n de 1992 puede encontrarse aqu\u00ed.
Tambi\u00e9n puede descargarse aqu\u00ed un archivo con la lista de los productos del Sistema Armonizado los cu\u00e1les no aparecen representados en el mapa del producto (por razones que se explican en los M\u00e9todos de C\u00e1lculo).", + "downloads.trade_head": "Datos de exportaciones e importaciones (DIAN)", + "downloads.trade_row_1": "Exportaciones, importaciones e indicadores de complejidad ({{yearRange}})", + "downloads.trade_row_2": "Exportaciones e importaciones con origen y destino ({{yearRange}})", + "first_year": "2008", + "general.export_and_import": "Productos", + "general.geo": "Mapa geogr\u00e1fico", + "general.glossary": "Glosario", + "general.industries": "Sectores", + "general.industry": "sector", + "general.location": "lugar", + "general.locations": "Lugares", + "general.multiples": "Gr\u00e1ficos de \u00e1reas", + "general.occupation": "ocupaci\u00f3n", + "general.occupations": "Ocupaciones", + "general.product": "producto", + "general.scatter": "Gr\u00e1fico de dispersi\u00f3n", + "general.similarity": "mapa de los sectores", + "general.total": "Totales", + "general.treemap": "Gr\u00e1fico de composici\u00f3n", + "geomap.center": "4.6,-74.06", + "glossary.head": "Glosario", + "graph_builder.builder_mod_header.agproduct.departments.land_harvested": "", + "graph_builder.builder_mod_header.agproduct.departments.land_sown": "", + "graph_builder.builder_mod_header.agproduct.departments.production_tons": "", + "graph_builder.builder_mod_header.agproduct.municipalities.land_harvested": "", + "graph_builder.builder_mod_header.agproduct.municipalities.land_sown": "", + "graph_builder.builder_mod_header.agproduct.municipalities.production_tons": "", + "graph_builder.builder_mod_header.industry.cities.employment": "Empleo total", + "graph_builder.builder_mod_header.industry.cities.wage_avg": "Salarios mensuales promedio, Col$", + "graph_builder.builder_mod_header.industry.cities.wages": "N\u00f3mina salarial, Col$", + "graph_builder.builder_mod_header.industry.departments.employment": "Empleo total", + "graph_builder.builder_mod_header.industry.departments.wage_avg": "Salarios mensuales promedio, Col$", + "graph_builder.builder_mod_header.industry.departments.wages": "N\u00f3mina salarial, Col$", + "graph_builder.builder_mod_header.industry.locations.employment": "Empleo total", + "graph_builder.builder_mod_header.industry.locations.wage_avg": "Salarios mensuales promedio, Col$", + "graph_builder.builder_mod_header.industry.locations.wages": "N\u00f3mina salarial, Col$", + "graph_builder.builder_mod_header.industry.occupations.num_vacancies": "Total de vacantes", + "graph_builder.builder_mod_header.landUse.departments.area": "", + "graph_builder.builder_mod_header.landUse.municipalities.area": "", + "graph_builder.builder_mod_header.location.agproducts.land_harvested": "", + "graph_builder.builder_mod_header.location.agproducts.land_sown": "", + "graph_builder.builder_mod_header.location.agproducts.production_tons": "", + "graph_builder.builder_mod_header.location.farmtypes.num_farms": "", + "graph_builder.builder_mod_header.location.industries.employment": "Empleo total", + "graph_builder.builder_mod_header.location.industries.scatter": "Complejidad, distancia y valor estrat\u00e9gico de sectores potenciales ", + "graph_builder.builder_mod_header.location.industries.similarity": "Sectores con ventaja comparativa revelada >1 (con color) y <1 (gris)", + "graph_builder.builder_mod_header.location.industries.wages": "Salarios totales", + "graph_builder.builder_mod_header.location.landUses.area": "", + "graph_builder.builder_mod_header.location.livestock.num_farms": "", + "graph_builder.builder_mod_header.location.livestock.num_livestock": "", + "graph_builder.builder_mod_header.location.partners.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.location.partners.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.location.products.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.location.products.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.location.products.scatter": "Complejidad, distancia y valor estrat\u00e9gico de exportaciones potenciales", + "graph_builder.builder_mod_header.location.products.similarity": "Exportaciones con ventaja comparativa revelada >1 (con color) y <1 (gris)", + "graph_builder.builder_mod_header.product.cities.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.product.cities.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.product.departments.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.product.departments.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.product.partners.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.product.partners.import_value": "Importaciones totales", + "graph_builder.builder_nav.header": "M\u00e1s gr\u00e1ficos para este {{entity}}", + "graph_builder.builder_nav.intro": "Seleccione una pregunta para ver el gr\u00e1fico correspondiente. Si en la pregunta faltan par\u00e1metros ({{icon}}), los podr\u00e1 llenar cuando haga click.", + "graph_builder.builder_questions.city": "Preguntas: ciudades", + "graph_builder.builder_questions.department": "Preguntas: departamentos", + "graph_builder.builder_questions.employment": "Preguntas: empleo", + "graph_builder.builder_questions.export": "Preguntas: exportaciones", + "graph_builder.builder_questions.import": "Preguntas: importaciones", + "graph_builder.builder_questions.industry": "Preguntas: sectores", + "graph_builder.builder_questions.landUse": "", + "graph_builder.builder_questions.location": "Preguntas: lugares", + "graph_builder.builder_questions.occupation": "Preguntas: ocupaciones", + "graph_builder.builder_questions.partner": "Preguntas: socios comerciales", + "graph_builder.builder_questions.product": "Preguntas: productos de exportaci\u00f3n", + "graph_builder.builder_questions.wage": "Preguntas: n\u00f3mina salarial", + "graph_builder.change_graph.geo_description": "Mapea los datos", + "graph_builder.change_graph.label": "Cambie el gr\u00e1fico", + "graph_builder.change_graph.multiples_description": "Muestra el crecimiento en varios per\u00edodos", + "graph_builder.change_graph.scatter_description": "Muestra la complejidad y la distancia", + "graph_builder.change_graph.similarity_description": "Presenta las ventajas comparativas reveladas", + "graph_builder.change_graph.treemap_description": "Muestra la descomposici\u00f3n en varios niveles", + "graph_builder.change_graph.unavailable": "Este gr\u00e1fico no est\u00e1 disponible para esta pregunta", + "graph_builder.download.agproduct": "", + "graph_builder.download.area": "", + "graph_builder.download.average_wages": "Salario mensual promedio, Col$ ", + "graph_builder.download.avg_wage": "Salario mensual promedio, Col$ ", + "graph_builder.download.code": "C\u00f3digo", + "graph_builder.download.cog": "Valor estrat\u00e9gico", + "graph_builder.download.complexity": "Complejidad", + "graph_builder.download.distance": "Distancia", + "graph_builder.download.eci": "Complejidad exportadora", + "graph_builder.download.employment": "Empleo", + "graph_builder.download.employment_growth": "Tasa de crecimiento del empleo ({{yearRange}})", + "graph_builder.download.export": "Exportaci\u00f3n", + "graph_builder.download.export_num_plants": "N\u00famero de empresas", + "graph_builder.download.export_rca": "Ventaja comparativa revelada", + "graph_builder.download.export_value": "Exportaciones, USD", + "graph_builder.download.farmtype": "", + "graph_builder.download.gdp_pc_real": "PIB per c\u00e1pita, Col $", + "graph_builder.download.gdp_real": "PIB, Col $", + "graph_builder.download.import_value": "Importaciones, USD", + "graph_builder.download.industry": "Sector", + "graph_builder.download.industry_eci": "Complejidad sectorial", + "graph_builder.download.land_harvested": "", + "graph_builder.download.land_sown": "", + "graph_builder.download.land_use": "", + "graph_builder.download.less_than_5": "Menos de 5", + "graph_builder.download.livestock": "", + "graph_builder.download.location": "Lugar", + "graph_builder.download.monthly_wages": "Salario mensual promedio, Col$", + "graph_builder.download.name": "Nombre", + "graph_builder.download.num_establishments": "N\u00famero de empresas", + "graph_builder.download.num_farms": "", + "graph_builder.download.num_livestock": "", + "graph_builder.download.num_vacancies": "Vacantes", + "graph_builder.download.occupation": "Ocupaci\u00f3n", + "graph_builder.download.parent": "Grupo", + "graph_builder.download.population": "Poblaci\u00f3n", + "graph_builder.download.production_tons": "", + "graph_builder.download.rca": "Ventaja comparativa revelada", + "graph_builder.download.read_more": "\u00bfNo entiende alguno de estos t\u00e9rminos? Consulte el", + "graph_builder.download.wages": "N\u00f3mina salarial total, Col$ ", + "graph_builder.download.year": "A\u00f1o", + "graph_builder.download.yield_index": "", + "graph_builder.download.yield_ratio": "", + "graph_builder.explanation": "Explicaci\u00f3n", + "graph_builder.explanation.agproduct.departments.land_harvested": "", + "graph_builder.explanation.agproduct.departments.land_sown": "", + "graph_builder.explanation.agproduct.departments.production_tons": "", + "graph_builder.explanation.agproduct.municipalities.land_harvested": "", + "graph_builder.explanation.agproduct.municipalities.land_sown": "", + "graph_builder.explanation.agproduct.municipalities.production_tons": "", + "graph_builder.explanation.hide": "Oculte", + "graph_builder.explanation.industry.cities.employment": "Muestra la composici\u00f3n por departamentos del empleo formal del sector. Fuente: PILA.", + "graph_builder.explanation.industry.cities.wages": "Muestra la composici\u00f3n por departamentos de la n\u00f3mina salarial del sector. Fuente: PILA.", + "graph_builder.explanation.industry.departments.employment": "Muestra la composici\u00f3n por departamentos del empleo formal del sector. Fuente: PILA.", + "graph_builder.explanation.industry.departments.wages": "Muestra la composici\u00f3n por departamentos de la n\u00f3mina salarial del sector. Fuente: PILA.", + "graph_builder.explanation.industry.occupations.num_vacancies": "Muestra la composici\u00f3n de las vacantes anunciadas en sitios de Internet y los salarios ofrecidos.", + "graph_builder.explanation.landUse.departments.area": "", + "graph_builder.explanation.landUse.municipalities.area": "", + "graph_builder.explanation.location.agproducts.land_harvested": "", + "graph_builder.explanation.location.agproducts.land_sown": "", + "graph_builder.explanation.location.agproducts.production_tons": "", + "graph_builder.explanation.location.farmtypes.num_farms": "", + "graph_builder.explanation.location.industries.employment": "Muestra la composici\u00f3n sectorial del empleo formal del departamento. Fuente: PILA.", + "graph_builder.explanation.location.industries.scatter": "Cada punto representa un sector productivo. Cuando se selecciona un punto aparece el nombre y la ventaja comparativa revelada del lugar en ese sector. Los colores de los puntos representan grupos de sectores (v\u00e9ase el c\u00f3digo de colores en la tabla que sigue). El eje vertical es el \u00edndice de complejidad sectorial y el eje horizontal es la distancia tecnol\u00f3gica para que el sector se desarrolle, dadas las capacidades que ya existen en el lugar. El tama\u00f1o de los puntos es proporcional al valor estrat\u00e9gico del sector para el lugar, es decir qu\u00e9 tanto puede contribuir el sector al aumento del \u00edndice de complejidad del lugar a trav\u00e9s de nuevas capacidades productivas que pueden ser \u00fatiles en otros sectores. Los sectores m\u00e1s atractivos son los ubicados arriba y a la izquierda, especialmente si los puntos que los representan son grandes. Fuente: c\u00e1lculos del CID con datos de PILA. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los t\u00e9rminos).", + "graph_builder.explanation.location.industries.similarity": "El mapa de similitud tecnol\u00f3gica de los sectores (o mapa de los sectores) muestra qu\u00e9 tan similares son los conocimientos requeridos por unos sectores y otros. Cada punto representa un sector productivo y cada enlace entre un par de sectores indica que requieren capacidades productivas similares. Los puntos coloreados son sectores con ventaja comparativa revelada (VCR) mayor que uno en el departamento o ciudad. Los colores de los puntos representan grupos de sectores (v\u00e9ase el c\u00f3digo de colores en el cuadro que sigue). Cuando se selecciona un punto aparece su nombre, su VCR y sus enlaces a otros sectores. Fuente: c\u00e1lculos del CID con datos de PILA. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los t\u00e9rminos).", + "graph_builder.explanation.location.industries.wages": "Muestra la composici\u00f3n sectorial de la n\u00f3mina salarial del departamento o ciudad. Fuente: PILA.", + "graph_builder.explanation.location.landUses.area": "", + "graph_builder.explanation.location.livestock.num_farms": "", + "graph_builder.explanation.location.livestock.num_livestock": "", + "graph_builder.explanation.location.partners.export_value": "Muestra la composici\u00f3n de las exportaciones de este lugar por pa\u00eds de destino, agrupados por regiones del mundo. Fuente: DIAN.", + "graph_builder.explanation.location.partners.import_value": "Muestra la composici\u00f3n de las importaciones de este lugar por pa\u00eds de origen, agrupados por regiones del mundo. Fuente: DIAN.", + "graph_builder.explanation.location.products.export_value": "Muestra la composici\u00f3n de las exportaciones del departamento o ciudad. Los colores representan grupos de productos (v\u00e9ase el cuadro). Fuente: DIAN.", + "graph_builder.explanation.location.products.import_value": "Muestra la composici\u00f3n de las importaciones del departamento o ciudad. Los colores representan grupos de productos (v\u00e9ase el cuadro). Fuente: DIAN.", + "graph_builder.explanation.location.products.scatter": "Cada punto representa un producto de exportaci\u00f3n. Cuando se selecciona un punto aparece el nombre y la ventaja comparativa revelada del departamento o ciudad en ese producto. Los colores de los puntos representan grupos de sectores (v\u00e9ase el c\u00f3digo de colores en la tabla que sigue). El eje vertical es el \u00edndice de complejidad del producto y el eje horizontal es la distancia tecnol\u00f3gica para poder exportar un producto, dadas las capacidades que ya existen en el lugar. La l\u00ednea discontinua es el \u00edndice de complejidad sectorial promedio del lugar. El tama\u00f1o de los puntos es proporcional al valor estrat\u00e9gico del producto para el departamento o ciudad, es decir qu\u00e9 tanto puede contribuir el producto al aumento del \u00edndice de complejidad del lugar a trav\u00e9s de nuevas capacidades productivas que pueden ser \u00fatiles para otras exportaciones. Las exportaciones m\u00e1s atractivas de desarrollar son las ubicadas arriba y a la izquierda, especialmente si los puntos que las representan son grandes. Fuente: c\u00e1lculos del CID con datos de la DIAN. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los conceptos).", + "graph_builder.explanation.location.products.similarity": "El mapa de similitud tecnol\u00f3gica de los productos (o mapa de los productos) muestra que tan similares son los conocimientos requeridos por unos productos y otros. Cada punto representa un producto de exportaci\u00f3n y cada enlace entre un par de productos indica que requieren capacidades productivas similares. Los puntos coloreados son exportaciones con ventaja comparativa revelada (VCR) mayor que uno en el departamento o ciudad. Los colores de los puntos representan grupos de productos (v\u00e9ase el cuadro). Cuando se selecciona un punto aparece su nombre, su VCR y sus enlaces a otros productos. Fuente: c\u00e1lculos del CID con datos de DIAN. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los conceptos).", + "graph_builder.explanation.product.cities.export_value": "Muestra la composici\u00f3n por ciudades de las exportaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.cities.import_value": "Muestra la composici\u00f3n por ciudades de las importaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.departments.export_value": "Muestra la composici\u00f3n por departamentos de las exportaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.departments.import_value": "Muestra la composici\u00f3n por departamentos de las importaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.partners.export_value": "Muestra el destino de las exportaciones de este producto, por pa\u00eds y regi\u00f3n del mundo. Fuente: DIAN.", + "graph_builder.explanation.product.partners.import_value": "Muestra el origen de las importaciones de este producto, por pa\u00eds y regi\u00f3n del mundo. Fuente: DIAN.", + "graph_builder.explanation.show": "Muestre m\u00e1s", + "graph_builder.multiples.show_all": "Mostrar todo", + "graph_builder.page_title.agproduct.departments.land_harvested": "", + "graph_builder.page_title.agproduct.departments.land_sown": "", + "graph_builder.page_title.agproduct.departments.production_tons": "", + "graph_builder.page_title.agproduct.municipalities.land_harvested": "", + "graph_builder.page_title.agproduct.municipalities.land_sown": "", + "graph_builder.page_title.agproduct.municipalities.production_tons": "", + "graph_builder.page_title.industry.cities.employment": "\u00bfQu\u00e9 ciudades en Colombia ocupan m\u00e1s gente en este sector?", + "graph_builder.page_title.industry.cities.wages": "\u00bfQu\u00e9 ciudades en Colombia tienen las mayores n\u00f3minas salariales en este sector?", + "graph_builder.page_title.industry.departments.employment": "\u00bfQu\u00e9 departamentos en Colombia ocupan m\u00e1s gente en este sector?", + "graph_builder.page_title.industry.departments.wages": "\u00bfQu\u00e9 departamentos en Colombia tienen las mayores n\u00f3minas salariales en este sector?", + "graph_builder.page_title.industry.occupations.num_vacancies": "\u00bfQu\u00e9 ocupaciones demanda este sector?", + "graph_builder.page_title.landUse.departments.area": "", + "graph_builder.page_title.landUse.municipalities.area": "", + "graph_builder.page_title.location.agproducts.land_harvested.country": "", + "graph_builder.page_title.location.agproducts.land_harvested.department": "", + "graph_builder.page_title.location.agproducts.land_harvested.municipality": "", + "graph_builder.page_title.location.agproducts.land_sown.country": "", + "graph_builder.page_title.location.agproducts.land_sown.department": "", + "graph_builder.page_title.location.agproducts.land_sown.municipality": "", + "graph_builder.page_title.location.agproducts.production_tons.country": "", + "graph_builder.page_title.location.agproducts.production_tons.department": "", + "graph_builder.page_title.location.agproducts.production_tons.municipality": "", + "graph_builder.page_title.location.destination_by_product.export_value.department": "\u00bfA qu\u00e9 pa\u00edses env\u00eda este departamento sus exportaciones de petr\u00f3leo?", + "graph_builder.page_title.location.destination_by_product.import_value.department": "\u00bfDe qu\u00e9 pa\u00edses recibe este departamento sus importaciones de veh\u00edculos?", + "graph_builder.page_title.location.farmtypes.num_farms.country": "", + "graph_builder.page_title.location.farmtypes.num_farms.department": "", + "graph_builder.page_title.location.farmtypes.num_farms.municipality": "", + "graph_builder.page_title.location.industries.employment.country": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en Colombia?", + "graph_builder.page_title.location.industries.employment.department": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en este departamento?", + "graph_builder.page_title.location.industries.employment.msa": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en esta ciudad?", + "graph_builder.page_title.location.industries.employment.municipality": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en este municipio?", + "graph_builder.page_title.location.industries.scatter.country": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en Colombia?", + "graph_builder.page_title.location.industries.scatter.department": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en este departamento?", + "graph_builder.page_title.location.industries.scatter.msa": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en esta ciudad?", + "graph_builder.page_title.location.industries.scatter.municipality": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en este municipio?", + "graph_builder.page_title.location.industries.similarity.country": "\u00bfC\u00f3mo es el mapa de los sectores de Colombia?", + "graph_builder.page_title.location.industries.similarity.department": "\u00bfC\u00f3mo es el mapa de los sectores de este departamento?", + "graph_builder.page_title.location.industries.similarity.msa": "\u00bfC\u00f3mo es el mapa de los sectores de esta ciudad?", + "graph_builder.page_title.location.industries.similarity.municipality": "\u00bfC\u00f3mo es el mapa de los sectores de este municipio?", + "graph_builder.page_title.location.industries.wages.country": "\u00bfQu\u00e9 sectores en Colombia tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.industries.wages.department": "\u00bfQu\u00e9 sectores en este departamento tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.industries.wages.msa": "\u00bfQu\u00e9 sectores en esta ciudad tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.industries.wages.municipality": "\u00bfQu\u00e9 sectores en este municipio tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.landUses.area.country": "", + "graph_builder.page_title.location.landUses.area.department": "", + "graph_builder.page_title.location.landUses.area.municipality": "", + "graph_builder.page_title.location.livestock.num_farms.country": "", + "graph_builder.page_title.location.livestock.num_farms.department": "", + "graph_builder.page_title.location.livestock.num_farms.municipality": "", + "graph_builder.page_title.location.livestock.num_livestock.country": "", + "graph_builder.page_title.location.livestock.num_livestock.department": "", + "graph_builder.page_title.location.livestock.num_livestock.municipality": "", + "graph_builder.page_title.location.partners.export_value.country": "\u00bfA qu\u00e9 pa\u00edses exporta Colombia?", + "graph_builder.page_title.location.partners.export_value.department": "\u00bfA qu\u00e9 pa\u00edses exporta este departamento?", + "graph_builder.page_title.location.partners.export_value.msa": "\u00bfA qu\u00e9 pa\u00edses exporta esta ciudad?", + "graph_builder.page_title.location.partners.export_value.municipality": "\u00bfA qu\u00e9 pa\u00edses exporta este municipio?", + "graph_builder.page_title.location.partners.import_value.country": "\u00bfDe d\u00f3nde vienen las importaciones de Colombia?", + "graph_builder.page_title.location.partners.import_value.department": "\u00bfDe d\u00f3nde vienen las importaciones de este departamento?", + "graph_builder.page_title.location.partners.import_value.msa": "\u00bfDe d\u00f3nde vienen las importaciones de esta ciudad?", + "graph_builder.page_title.location.partners.import_value.municipality": "\u00bfDe d\u00f3nde vienen las importaciones de este municipio?", + "graph_builder.page_title.location.products.export_value.country": "\u00bfQu\u00e9 productos exporta Colombia?", + "graph_builder.page_title.location.products.export_value.department": "\u00bfQu\u00e9 productos exporta este departamento?", + "graph_builder.page_title.location.products.export_value.msa": "\u00bfQu\u00e9 productos exporta esta ciudad?", + "graph_builder.page_title.location.products.export_value.municipality": "\u00bfQu\u00e9 productos exporta este municipio?", + "graph_builder.page_title.location.products.import_value.country": "\u00bfQu\u00e9 productos importa Colombia?", + "graph_builder.page_title.location.products.import_value.department": "\u00bfQu\u00e9 productos importa este departamento?", + "graph_builder.page_title.location.products.import_value.msa": "\u00bfQu\u00e9 productos importa esta ciudad?", + "graph_builder.page_title.location.products.import_value.municipality": "\u00bfQu\u00e9 productos importa este municipio?", + "graph_builder.page_title.location.products.scatter.country": "\u00bfQu\u00e9 productos tienen el mayor potencial para Colombia?", + "graph_builder.page_title.location.products.scatter.department": "\u00bfQu\u00e9 productos tienen el mayor potencial para este departamento?", + "graph_builder.page_title.location.products.scatter.msa": "\u00bfQu\u00e9 productos tienen el mayor potencial para esta ciudad?", + "graph_builder.page_title.location.products.scatter.municipality": "\u00bfQu\u00e9 productos tienen el mayor potencial para este municipio?", + "graph_builder.page_title.location.products.similarity.country": "\u00bfC\u00f3mo es el mapa de los productos de Colombia?", + "graph_builder.page_title.location.products.similarity.department": "\u00bfC\u00f3mo es el mapa de los productos de este departamento?", + "graph_builder.page_title.location.products.similarity.msa": "\u00bfC\u00f3mo es el mapa de los productos de esta ciudad?", + "graph_builder.page_title.location.products.similarity.municipality": "\u00bfC\u00f3mo es el mapa de los productos de este municipio?", + "graph_builder.page_title.product.cities.export_value": "\u00bfQu\u00e9 ciudades en Colombia exportan este producto?", + "graph_builder.page_title.product.cities.import_value": "\u00bfQu\u00e9 ciudades en Colombia importan este producto?", + "graph_builder.page_title.product.departments.export_value": "\u00bfQu\u00e9 departamentos en Colombia exportan este producto?", + "graph_builder.page_title.product.departments.import_value": "\u00bfQu\u00e9 departamentos en Colombia importan este producto?", + "graph_builder.page_title.product.partners.export_value": "\u00bfA d\u00f3nde exporta Colombia este producto?", + "graph_builder.page_title.product.partners.export_value.destination": "\u00bfA qu\u00e9 pa\u00edses env\u00eda {{location}} sus exportaciones de {{product}}?", + "graph_builder.page_title.product.partners.import_value": "\u00bfDe d\u00f3nde importa Colombia este producto?", + "graph_builder.page_title.product.partners.import_value.origin": "\u00bfDe qu\u00e9 pa\u00edses recibe {{location}} sus importaciones de {{product}}?", + "graph_builder.questions.label": "Cambiar pregunta", + "graph_builder.recirc.header.industry": "Lea el perfil de este sector", + "graph_builder.recirc.header.location": "Lea el perfil de este lugar", + "graph_builder.recirc.header.product": "Lea el perfil de este producto", + "graph_builder.search.placeholder.agproducts": "", + "graph_builder.search.placeholder.cities": "Destaque una ciudad en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.departments": "Destaque un departamento en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.farmtypes": "", + "graph_builder.search.placeholder.industries": "Destaque un sector en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.landUses": "", + "graph_builder.search.placeholder.livestock": "", + "graph_builder.search.placeholder.locations": "Destaque un lugar en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.municipalities": "", + "graph_builder.search.placeholder.occupations": "Destaque una ocupaci\u00f3n en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.partners": "Resaltar socios comerciales en la gr\u00e1fica inferior", + "graph_builder.search.placeholder.products": "Destaque un producto en el gr\u00e1fico siguiente", + "graph_builder.search.submit": "Destacar", + "graph_builder.settings.change_time": "Cambiar per\u00edodo", + "graph_builder.settings.close_settings": "Archive y cierre", + "graph_builder.settings.label": "Cambiar caracter\u00edsticas", + "graph_builder.settings.rca": "Ventaja comparativa revelada", + "graph_builder.settings.rca.all": "Todo", + "graph_builder.settings.rca.greater": "> 1", + "graph_builder.settings.rca.less": "< 1", + "graph_builder.settings.to": "a", + "graph_builder.settings.year": "Selector de A\u00f1os", + "graph_builder.settings.year.next": "Siguiente", + "graph_builder.settings.year.previous": "Anterior", + "graph_builder.table.agproduct": "", + "graph_builder.table.area": "", + "graph_builder.table.average_wages": "Salario mensual promedio, Col$ ", + "graph_builder.table.avg_wage": "Salario mensual promedio, Col$ ", + "graph_builder.table.code": "C\u00f3digo", + "graph_builder.table.cog": "Valor estrat\u00e9gico", + "graph_builder.table.coi": "Complejidad exportadora potencial", + "graph_builder.table.complexity": "Complejidad", + "graph_builder.table.country": "Pa\u00eds", + "graph_builder.table.distance": "Distancia", + "graph_builder.table.eci": "Complejidad exportadora", + "graph_builder.table.employment": "Empleo", + "graph_builder.table.employment_growth": "Tasa de crecimiento del empleo ({{yearRange}})", + "graph_builder.table.export": "Exportaci\u00f3n", + "graph_builder.table.export_num_plants": "N\u00famero de empresas", + "graph_builder.table.export_rca": "Ventaja comparativa revelada", + "graph_builder.table.export_value": "Exportaciones, USD", + "graph_builder.table.farmtype": "", + "graph_builder.table.gdp_pc_real": "PIB per c\u00e1pita", + "graph_builder.table.gdp_real": "PIB", + "graph_builder.table.import_value": "Importaciones, USD", + "graph_builder.table.industry": "Sector", + "graph_builder.table.industry_coi": "Complejidad sectorial potencial", + "graph_builder.table.industry_eci": "Complejidad sectorial", + "graph_builder.table.land_harvested": "", + "graph_builder.table.land_sown": "", + "graph_builder.table.land_use": "", + "graph_builder.table.less_than_5": "Menos de 5", + "graph_builder.table.livestock": "", + "graph_builder.table.location": "Lugar", + "graph_builder.table.monthly_wages": "Salario mensual promedio, Col$", + "graph_builder.table.name": "Nombre", + "graph_builder.table.num_establishments": "N\u00famero de empresas", + "graph_builder.table.num_farms": "", + "graph_builder.table.num_livestock": "", + "graph_builder.table.num_vacancies": "Vacantes", + "graph_builder.table.occupation": "Ocupaci\u00f3n", + "graph_builder.table.parent": "Grupo", + "graph_builder.table.parent.country": "Regi\u00f3n", + "graph_builder.table.population": "Poblaci\u00f3n", + "graph_builder.table.production_tons": "", + "graph_builder.table.rca": "Ventaja comparativa revelada", + "graph_builder.table.read_more": "\u00bfNo entiende alguno de estos t\u00e9rminos? Consulte el", + "graph_builder.table.share": "Participaci\u00f3n", + "graph_builder.table.wages": "N\u00f3mina salarial total, Col$ (miles)", + "graph_builder.table.year": "A\u00f1o", + "graph_builder.table.yield_index": "", + "graph_builder.table.yield_ratio": "", + "graph_builder.view_more": "Muestre m\u00e1s", + "header.destination": "Destino", + "header.destination_by_products": "Destinos por productos", + "header.employment": "Empleo", + "header.export": "Exportaciones", + "header.import": "Importaciones", + "header.industry": "Sectores", + "header.industry_potential": "Potencial", + "header.industry_space": "Mapa de los sectores ", + "header.landUse": "", + "header.land_harvested": "", + "header.land_sown": "", + "header.occupation": "Ocupaciones", + "header.occupation.available_jobs": "Vacantes anunciadas", + "header.origin": "Origen", + "header.origin_by_products": "Origen por productos", + "header.overview": "Resumen", + "header.partner": "Socios comerciales", + "header.product": "Productos ", + "header.product_potential": "Potencial", + "header.product_space": "Mapa de los productos", + "header.production_tons": "", + "header.region": "Por departamento", + "header.subregion": "Por ciudad", + "header.subsubregion": "", + "header.wage": "N\u00f3mina total", + "index.builder_cta": "Explore las gr\u00e1ficas sobre el caf\u00e9", + "index.builder_head": "Luego vaya al graficador", + "index.builder_subhead": "Haga sus propios gr\u00e1ficos y mapas", + "index.complexity_caption": "\u00bfQu\u00e9 tan bueno es este enfoque? Las predicciones de crecimiento basadas en la complejidad son seis veces m\u00e1s preocsas que las basadas en variables convencionales, como los \u00cdndice de Competitividad Mundial. ", + "index.complexity_cta": "Lea m\u00e1s sobre los conceptos de complejidad", + "index.complexity_figure.WEF_name": "\u00cdndice de Competitividad Mundial", + "index.complexity_figure.complexity_name": "\u00cdndice de complejidad econ\u00f3mica", + "index.complexity_figure.head": "Crecimiento econ\u00f3mico explicado (% de la varianza decenal)", + "index.complexity_head": "La ventaja de la complejidad", + "index.complexity_subhead": "Los pa\u00edses que exportan productos complejos, que requieren una gran cantidad de conocimientos, crecen m\u00e1s r\u00e1pido que los que exportan materias primas. Usando los m\u00e9todos para medir y visualizar la complejidad desarrollados por la Universidad de Harvard, Datlas permite explorar las posibilidades productivas y de exportaci\u00f3n de los departamentos y ciudades colombianas.", + "index.country_profile": "Lea el perfil de Colombia", + "index.dropdown.industries": "461,488", + "index.dropdown.locations": "41,87,34,40", + "index.dropdown.products": "1143,87", + "index.future_head": "Avizorando el futuro", + "index.future_subhead": "Los gr\u00e1ficos de dispersi\u00f3n y diagramas de redes permiten encontrar los sectores productivos que tienen las mejores posibilidades en un departamento o ciudad.", + "index.graphbuilder.id": "87", + "index.header_h1": "El Atlas Colombiano de Complejidad Econ\u00f3mica", + "index.header_head": "Colombia como usted nunca la ha visto", + "index.header_subhead": "Visualice las posibilidades de cualquier sector, cualquier producto de exportaci\u00f3n o cualquier lugar en Colombia.", + "index.industry_head": "Ent\u00e9rese de un sector", + "index.industry_q1": "\u00bfD\u00f3nde emplea m\u00e1s gente la industria qu\u00edmica en Colombia?", + "index.industry_q1.id": "461", + "index.industry_q2": "\u00bfQu\u00e9 ocupaciones demanda la industria qu\u00edmica?", + "index.industry_q2.id": "461", + "index.location_head": "Aprenda sobre un lugar", + "index.location_q1": "\u00bfQu\u00e9 sectores emplean m\u00e1s gente en Bogot\u00e1 Met?", + "index.location_q1.id": "41", + "index.location_q2": "\u00bfQu\u00e9 exportaciones tienen el mayor potencial en Bogot\u00e1 Met?", + "index.location_q2.id": "41", + "index.location_viewall": "Vea todas las preguntas", + "index.present_head": "Mapeando el presente", + "index.present_subhead": "Utilice nuestros diagramas de composici\u00f3n para estudiar las exportaciones o el empleo formal de su departamento, su ciudad o su municipio.", + "index.product_head": "Aprenda sobre un producto de exportaci\u00f3n", + "index.product_q1": "\u00bfQu\u00e9 lugares de Colombia exportan computadores?", + "index.product_q1.id": "1143", + "index.product_q2": "\u00bfQu\u00e9 lugares de Colombia importan computadores?", + "index.product_q2.id": "1143", + "index.profile.id": "1", + "index.profiles_cta": "Lea el perfil de Antioquia", + "index.profiles_head": "Comience por los perfiles", + "index.profiles_subhead": "S\u00f3lo lo esencial, en un resumen de una p\u00e1gina", + "index.questions_head": "No somos una bola de cristal, pero podemos responder muchas preguntas", + "index.questions_subhead": "index.questions_subhead", + "index.research_head": "Investigaci\u00f3n mencionada en", + "industry.show.avg_wages": "Salarios promedio ({{year}})", + "industry.show.employment": "Empleo ({{year}})", + "industry.show.employment_and_wages": "Empleo formal y salarios", + "industry.show.employment_growth": "Tasa de crecimiento del empleo ({{yearRange}})", + "industry.show.industries": "Sectores", + "industry.show.industry_composition": "Composici\u00f3n del sector ({{year}})", + "industry.show.occupation": "Ocupaciones", + "industry.show.occupation_demand": "Ocupaciones m\u00e1s demandadas en este sector, 2014", + "industry.show.value": "Valor", + "last_year": "2014", + "location.model.country": "Colombia", + "location.model.department": "departamento", + "location.model.msa": "ciudad", + "location.model.municipality": "municipio", + "location.show.ag_farmsize": "", + "location.show.all_departments": "Comparaci\u00f3n con otros departamentos", + "location.show.all_regions": "En comparaci\u00f3n con los otros lugares", + "location.show.bullet.gdp_grow_rate": "La tasa de crecimiento del PIB en el per\u00edodo {{yearRange}} fue {{gdpGrowth}}, comparada con 5,3% para toda Colombia.", + "location.show.bullet.gdp_pc": "El PIB per capita de {{name}} es {{lastGdpPerCapita}}, comparado con Col$15,1 millones para toda Colombia en 2014.", + "location.show.bullet.last_pop": "La poblaci\u00f3n es {{lastPop}} de personas, frente a 46,3 millones de personas en todo el pa\u00eds en 2014.", + "location.show.eci": "Complejidad exportadora", + "location.show.employment": "Empleo total ({{lastYear}})", + "location.show.employment_and_wages": "Empleo formal y salarios", + "location.show.export_possiblities": "Posibilidades de exportaci\u00f3n", + "location.show.export_possiblities.footer": "Los productos indicados pueden no ser viables debido a condiciones del lugar que no se consideran en el an\u00e1lisis de similitud tecnol\u00f3gica.", + "location.show.export_possiblities.intro": "Hemos encontrado que los pa\u00edses que exportan productos m\u00e1s complejos crecen m\u00e1s r\u00e1pido. Usando el \"mapa del producto\" presentado arriba, estamos destacando productos de alto potencial para {{name}}, ordenados por las mejores combinaciones de complejidad actual y valor estrat\u00e9gico.", + "location.show.exports": "Exportaciones ({{year}})", + "location.show.exports_and_imports": "Exportaciones e importaciones", + "location.show.gdp": "PIB", + "location.show.gdp_pc": "PIB per c\u00e1pita", + "location.show.growth_annual": "Tasa de crecimiento ({{yearRange}})", + "location.show.imports": "Importaciones ({{year}})", + "location.show.nonag_farmsize": "", + "location.show.overview": "", + "location.show.population": "Poblaci\u00f3n", + "location.show.subregion.exports": "Composici\u00f3n de exportaciones por municipio ({{year}})", + "location.show.subregion.imports": "Composici\u00f3n de importaciones por municipio ({{year}})", + "location.show.subregion.title": "Exportaciones e importaciones por municipio", + "location.show.total_wages": "N\u00f3mina salarial ({{lastYear}})", + "location.show.value": "Valor", + "pageheader.about": "Acerca de Datlas", + "pageheader.alternative_title": "Atlas de complejidad econ\u00f3mica", + "pageheader.brand_slogan": "Colombia como usted nunca la ha visto", + "pageheader.download": "Acerca de los datos", + "pageheader.graph_builder_link": "Graficador", + "pageheader.profile_link": "Perfil", + "pageheader.rankings": "Rankings", + "pageheader.search_link": "Buscar", + "pageheader.search_placeholder": "Busque un lugar, producto o sector", + "pageheader.search_placeholder.industry": "Busque un sector", + "pageheader.search_placeholder.location": "Busque un lugar", + "pageheader.search_placeholder.product": "Busque un producto", + "rankings.explanation.body": "", + "rankings.explanation.title": "Explicaci\u00f3n", + "rankings.intro.p": "Comparaci\u00f3n entre departamentos o ciudades", + "rankings.pagetitle": "Rankings", + "rankings.section.cities": "Ciudades", + "rankings.section.departments": "Departamentos", + "rankings.table-title": "Posici\u00f3n", + "search.didnt_find": "\u00bfEncontr\u00f3 lo que buscaba? Nos interesa saber: Datlascolombia@bancoldex.com", + "search.header": "resultados", + "search.intro": "Busque el lugar, producto, sector u ocupaci\u00f3n que le interese", + "search.level.4digit": "Partida arancelaria (1992) a cuatro d\u00edgitos", + "search.level.class": "CIIU a cuatro d\u00edgitos", + "search.level.country": "Pa\u00eds", + "search.level.department": "Departamento", + "search.level.division": "CIIU a dos d\u00edgitos", + "search.level.msa": "Ciudad", + "search.level.municipality": "Municipio", + "search.level.parent.4digit": "Partida arancelaria (1992) a dos d\u00edgitos", + "search.level.parent.class": "CIIU a dos d\u00edgitos", + "search.level.parent.country": "Regi\u00f3n", + "search.placeholder": "Escriba aqu\u00ed para buscar lo que quiere", + "search.results_industries": "Sectores", + "search.results_locations": "Lugares", + "search.results_products": "Productos", + "table.export_data": "Descargar Datos", + "thousands_delimiter": "." +}; diff --git a/app/locales/es-col/translations_2016.js b/app/locales/es-col/translations_2016.js new file mode 100644 index 00000000..61268008 --- /dev/null +++ b/app/locales/es-col/translations_2016.js @@ -0,0 +1,657 @@ +export default { + "abbr_billion": "mm", + "abbr_million": "millones", + "abbr_thousand": "miles", + "abbr_trillion": "bill", + "about.downloads.explanation.p1": "Descarque el documento que explica c\u00f3mo se calcula cada una de las variables de complejidad que utiliza Datlas.", + "about.downloads.explanation.title": "M\u00e9todos de c\u00e1lculo de las variables de complejidad", + "about.downloads.locations": "Listas de departmentos, ciudades (incluyendo \u00e1reas metropolitanas) y municipios", + "about.glossary": "V\u00e9ase la p\u00e1gina \"Acerca de los datos\" para m\u00e1s informaci\u00f3n sobre fuentes, m\u00e9todos de c\u00e1lculo de las variables de complejidad y bases de datos descargables.
Un \u00e1rea metropolitana es la combinaci\u00f3n de dos o m\u00e1s municipios que est\u00e1n conectados a trav\u00e9s de flujos relativamente grandes de trabajadores (con independencia de su tama\u00f1o o contig\u00fcidad). Un municipio debe enviar al menos un 10% de sus trabajadores como viajeros diarios al resto de los municipios del \u00e1rea metropolitana para considerarse como parte de dicha \u00e1rea.
Con base en esta definici\u00f3n hay 19 \u00e1reas metropolitanas en Colombia, que comprenden 115 municipios. Las \u00e1reas metropolitanas resultantes son distintas de las oficiales. Se sigue la metodolog\u00eda de G. Duranton ( 2013): \"Delineating metropolitan areas: Measuring spatial labour market networks through commuting patterns.\" Wharton School, University of Pennsylvania.
Son las \u00e1reas metropolitanas y los municipios de m\u00e1s de 50.000 habitantes con al menos 75% de poblaci\u00f3n en la cabecera municipal. En total hay 62 ciudades (19 \u00e1reas metropolitanas que comprenden 115 municipios, m\u00e1s 43 ciudades de un solo municipio). El concepto de ciudad es relevante porque Datlas presenta indicadores de complejidad por departamento y por ciudad, pero no por municipio.
Complejidad es la diversidad y sofisticaci\u00f3n del \"know-how\" que se requiere para producir algo. El concepto de complejidad es central en Datlas porque la productividad y el crecimiento de cualquier lugar dependen de que las empresas puedan producir y exportar con \u00e9xito bienes y servicios que requieren capacidades y conocimientos m\u00e1s complejos, es decir m\u00e1s diversos y exclusivos. La complejidad puede medirse para un lugar, para un producto de exportaci\u00f3n, o para un sector.
Mide el potencial de aumento de la complejidad de un lugar. Tiene en cuenta el nivel de complejidad de todos los sectores productivos (o productos de exportaci\u00f3n), junto con la \"distancia\" a los dem\u00e1s sectores (o productos). Con esta informaci\u00f3n mide la probabilidad de que aparezcan nuevos sectores (o exportaciones) y qu\u00e9 tanto elevar\u00edan la complejidad del lugar. Valores m\u00e1s altos indican que es m\u00e1s probable desarrollar nuevos sectores (o productos) m\u00e1s complejos que los que ya se tienen.
La complejidad potencial basada en sectores se calcula para los departamentos y ciudades, no para los dem\u00e1s municipios. La complejidad potencial basada en las exportaciones se calcula solamente por departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
DANE es el Departamento Administrativo Nacional de Estad\u00edstica de Colombia, fuente de todos los datos sobre el PIB y la poblaci\u00f3n que utiliza Datlas.
DIAN es la Direcci\u00f3n de Impuestos y Aduanas Nacionales, fuente de toda la informaci\u00f3n sobre exportaciones e importaciones de Datlas.
La \"distancia\" es una medida de la capacidad de un lugar para desarrollar un sector o una exportaci\u00f3n espec\u00edfica, teniendo en cuenta las capacidades productivas existentes. La \"distancia\" es menor en la medida en que las capacidades requeridas por un sector o exportaci\u00f3n son m\u00e1s similares a las ya existentes. En esa medida ser\u00e1n mayores las posibilidades de que desarrolle con \u00e9xito el sector o exportaci\u00f3n. Visto de otra forma, la distancia refleja la proporci\u00f3n del conocimiento productivo que se necesita para que aparezca un sector o exportaci\u00f3n que a\u00fan no existe en el lugar.
Las distancias por sectores productivos se calculan solamente para los departamentos y ciudades, no para los dem\u00e1s municipios. Las distancias para las exportaciones se calculan solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
Es una medida de cu\u00e1ntos productos diferentes puede hacer un lugar. La producci\u00f3n de un bien cualquiera requiere un conjunto espec\u00edfico de capacidades; por consiguiente la diversidad es otra forma de expresar la cantidad de conocimiento productivo de un lugar.
El empleo formal es aquel que est\u00e1 cubierto por el sistema de seguridad social en salud y/o por el sistema de pensiones. No incluye trabajadores independientes. El empleo formal reportado es el n\u00famero de empleados formales en un mes promedio. La tasa de formalidad es el empleo formal dividido por la poblaci\u00f3n mayor de 15 a\u00f1os. Los datos de empleo y salarios provienen de la PILA del Ministerio de Salud. Los datos de poblaci\u00f3n son del DANE.
El conteo de empresas con actividad productiva por lugar (municipio, departamento, nacional) se hizo teniendo en cuenta todas aquellas empresas registradas en la PILA que hicieron alg\u00fan aporte a la seguridad social para sus empleados en el a\u00f1o de referencia (aunque no hayan estado en operaci\u00f3n todo el a\u00f1o).
El conteo de empresas exportadoras o importadoras se hizo por municipio y producto teniendo en cuenta cualquier empresa que seg\u00fan la DIAN hubiera realizado alguna operaci\u00f3n en el a\u00f1o de referencia (por consiguiente, el conteo de empresas exportadoras o importadoras de un producto por departamento o para todo el pa\u00eds puede tener duplicaciones).
Ordena los productos de exportaci\u00f3n seg\u00fan qu\u00e9 tantas capacidades productivas se requieren para su fabricaci\u00f3n. Productos complejos de exportaci\u00f3n, tales como qu\u00edmicos y maquinaria, requieren un nivel sofisticado y diverso de conocimientos que s\u00f3lo se consigue con la interacci\u00f3n en empresas de muchos individuos con conocimientos especializados. Esto contrasta con las exportaciones de baja complejidad, como el caf\u00e9, que requieren apenas conocimientos productivos b\u00e1sicos que se pueden reunir en una empresa familiar. Para calcular la complejidad de los productos de exportaci\u00f3n se utilizan datos de Comtrade de las Naciones Unidas para cerca de 200 pa\u00edses.
Una medida de la sofisticaci\u00f3n de las capacidades productivas de un lugar basada en la diversidad y la ubicuidad de sus sectores productivos o sus exportaciones. Un lugar con alta complejidad produce o exporta bienes y servicios que pocos otros lugares producen. Lugares altamente complejos tienden a ser m\u00e1s productivos y a generar mayores salarios e ingresos. Los pa\u00edses con canastas de exportaci\u00f3n m\u00e1s sofisticadas de lo que se espera para su nivel de ingresos (como China) tienden a crecer m\u00e1s r\u00e1pido que aquellos en los que es todo lo contrario (como Grecia).
El ICE basado en los sectores productivos (o \u00edndice de complejidad productiva) se calcula solamente para departamentos y ciudades, no para los dem\u00e1s municipios. La ICE basado en las exportaciones se calcula solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la estructura de las exportaciones es inestable y/o poco representativa).
Es una medida de qu\u00e9 tantas capacidades productivas requieren un sector para operar. El ICS y el \u00cdndice de Complejidad del Producto (ICP) son medidas estrechamente relacionadas, pero se calculan en forma separada con datos y sistemas de clasificaci\u00f3n independientes, ya que la complejidad del producto se calcula solo para mercanc\u00edas comercializables internacionalmente, mientras que los sectores productivos comprenden todos los sectores que generan empleo, incluidos todos los servicios y el sector p\u00fablico. Un sector es complejo si requiere un nivel sofisticado de conocimientos productivos, como los servicios financieros y los sectores farmac\u00e9uticos, en donde trabajan en grandes empresas muchos individuos con conocimientos especializados distintos. La complejidad de un sector se mide calculando la diversidad promedio de los lugares donde existe el sector y la ubicuidad promedio de los sectores de esos lugares. Los datos de empleo formal necesarios para estos c\u00e1lculos provienen de la PILA del Ministerio de Salud.
Un \u00edndice de rendimiento (para cualquier producto y ubicaci\u00f3n) es el rendimiento dividido por el rendimiento a nivel nacional. Los \u00edndices de rendimiento para m\u00e1s de un producto (por ubicaci\u00f3n) se calculan como el promedio ponderado de los \u00edndices de rendimiento de los productos, donde las ponderaciones son el \u00e1rea cosechada por cada producto.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos para la exportaci\u00f3n de unos productos y otros. Cada punto representa un producto de exportaci\u00f3n y cada enlace entre un par de productos indica que requieren capacidades productivas similares. Aparecen con color los productos de exportaci\u00f3n que se exportan con ventaja comparativa revelada mayor que uno. Cuando se selecciona un producto, el gr\u00e1fico destaca los productos que requieren capacidades productivas semejantes. Un producto con m\u00e1s enlaces con otros que no se exportan ofrece mayor potencial para la diversificaci\u00f3n exportadora a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el producto tiene un alto potencial para elevar la complejidad del lugar.
El mapa de similitud de los productos se basa en los datos de comercio internacional de 192 pa\u00edses en m\u00e1s de 50 a\u00f1os compilados por Comtrade. Ver http://atlas.cid.harvard.edu/.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos por unos sectores u otros. Cada punto representa un sector y cada enlace entre un par de sectores indica que requieren capacidades productivas similares. Aparecen con color los sectores con ventaja comparativa revelada mayor que uno. Cuando se selecciona un lugar, el gr\u00e1fico destaca los sectores que requieren capacidades productivas semejantes. Un sector con m\u00e1s enlaces con sectores que no existen ofrece mayor potencial para la diversificaci\u00f3n productiva a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el sector tiene un alto potencial para elevar la complejidad del lugar. El mapa de los sectores productivos de Colombia fue construido a partir de la informaci\u00f3n de empleo formal por municipio de la PILA del Ministerio de Salud.
Las ocupaciones se clasifican de acuerdo con el \u00cdndice Num\u00e9rico de la Red Ocupacional (ONET). Los datos sobre las ocupaciones (salarios ofrecidos, estructura ocupacional por sector y nivel educativo por ocupaci\u00f3n) provienen de los anuncios de vacantes de empleo colocados por las empresas en los sitios de empleo de Internet p\u00fablicos y privados. Los datos fueron procesados por Jeisson Arley Rubio C\u00e1rdenas (Universidad del Rosario, Bogot\u00e1) y Jaime Mauricio Monta\u00f1a Doncel (Escuela de Econom\u00eda de Par\u00eds).
PILA es la Planilla Integrada de Aportes Laborales del Ministerio de Salud. Es la fuente principal de los datos por sector. Contiene informaci\u00f3n de empleo formal, salarios y n\u00famero de empresas por municipio y sector.
El sistema de clasificaci\u00f3n de los productos de exportaci\u00f3n e importaci\u00f3n de Datlas es la nomenclatura arancelaria NABANDINA, la cual calza a seis d\u00edgitos con la clasificaci\u00f3n internacional del Sistema Armonizado (SA). Datlas presenta informaci\u00f3n de productos (de exportaci\u00f3n e importaci\u00f3n) a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n proviene de la DIAN.
Para cualquier producto y ubicaci\u00f3n, la productividad del suelo es el rendimiento en toneladas por hect\u00e1rea de tierra cosechada. Para los cultivos transitorios el c\u00e1lculo de producci\u00f3n anual se obtiene a partir de la suma de la producci\u00f3n del \u00faltimo semestre del a\u00f1o anterior y el primer semestre del a\u00f1o de an\u00e1lisis; en contraste, para los cultivos permanentes (perennes) el c\u00e1lculo se realiza con la informaci\u00f3n de ambos semestres del a\u00f1o de an\u00e1lisis. La informaci\u00f3n de \u00e1rea cosechada y producci\u00f3n se obtiene de las Evaluaciones Agropecuarias Municipales -EVA- publicadas en Agronet por el Ministerio de Agricultura y Desarrollo Rural.
La clasificaci\u00f3n sectorial de Colombia es una versi\u00f3n modificada de la Clasificaci\u00f3n Sectorial Internacional Uniforme de todas las Actividades Econ\u00f3micas (CIIU). Datlas presenta informaci\u00f3n sectorial a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n proviene de la PILA. Siguiendo las convenciones de la contabilidad nacional, los trabajadores contratados por agencias de empleo temporal se clasifican en el sector de suministro de personal (7491), no en el sector de la empresa donde prestan servicios.
Una medida del n\u00famero de lugares que pueden producir un producto.
Las unidades de producci\u00f3n rural se clasifican seg\u00fan el Censo Nacional Agropecuario del DANE (2014) en \"unidades de producci\u00f3n agropecuaria\", o UPAs, y \"unidades de producci\u00f3n no agropecuarias\", o UPNAs. Mientras que la producci\u00f3n agropecuaria (que incluye actividades agr\u00edcolas, forestales, pecuarias, acu\u00edcolas y/o pesqueras) s\u00f3lo puede tener lugar en UPAs, tanto UPAs como UPNAs pueden tener actividades de producci\u00f3n no agropecuarias.
Capta en qu\u00e9 medida un lugar podr\u00eda beneficiarse mediante el desarrollo de un sector en particular (o un producto de exportaci\u00f3n). Tambi\u00e9n conocida como \"ganancia de oportunidad\", esta medida representa la distancia a todos los otros sectores (o exportaciones) que un lugar no produce actualmente con ventaja comparativa revelada mayor que uno y su respectiva complejidad. Refleja c\u00f3mo un nuevo sector (o exportaci\u00f3n) puede abrir paso a otros sectores o productos m\u00e1s complejos. El valor estrat\u00e9gico de los sectores productivos se calcula solamente para departamentos y ciudades, no para los dem\u00e1s municipios. El valor estrat\u00e9gico de las exportaciones se calcula solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
Mide el tama\u00f1o relativo de un sector o un producto de exportaci\u00f3n en un lugar. La VCR, que no debe interpretarse como un indicador de eficiencia productiva o de competitividad, se conoce tambi\u00e9n por el nombre de \"cociente de localizaci\u00f3n\". Se calcula como el cociente entre la participaci\u00f3n del empleo formal de un sector en el lugar y la participaci\u00f3n del empleo formal total del mismo sector en todo el pa\u00eds. Por ejemplo, si la industria qu\u00edmica en una ciudad genera el 10% del empleo, mientras que en todo el pa\u00eds genera el 1% del empleo, la VCR de la industria qu\u00edmica en dicha ciudad es 10. Para una exportaci\u00f3n es la relaci\u00f3n entre la participaci\u00f3n que tiene el producto en la canasta de exportaci\u00f3n del lugar y la participaci\u00f3n que tiene en el comercio mundial. Si esta relaci\u00f3n es mayor que 1, se dice que el lugar tiene ventaja comparativa revelada en el sector o en la exportaci\u00f3n. Por ejemplo, si el caf\u00e9 representa el 30% de las exportaciones de un departamento colombiano, pero da cuenta apenas del 0.3% del comercio mundial, entonces la VCR del departamento en caf\u00e9 es 100.
", + "about.glossary_name": "Glosario", + "about.project_description.cid.header": "El CID y el Laboratorio de Crecimiento ", + "about.project_description.cid.p1": "Este proyecto ha sido desarrollado por el Centro para el Desarrollo Internacional de la Universidad de Harvard (CID), bajo la direcci\u00f3n del profesor Ricardo Hausmann", + "about.project_description.cid.p2": "El CID tiene por objetivos avanzar en la comprensi\u00f3n de los desaf\u00edos del desarrollo y ofrecer soluciones viables para reducir la pobreza mundial. El Laboratorio de Crecimiento es uno de los principales programas de investigaci\u00f3n del CID.", + "about.project_description.contact.header": "Informaci\u00f3n de contacto", + "about.project_description.contact.link": "Datlascolombia@bancoldex.com", + "about.project_description.founder1.header": "Banc\u00f3ldex", + "about.project_description.founder1.p": "Banc\u00f3ldex, el banco de desarrollo empresarial de Colombia, est\u00e1 comprometido con el desarrollo de instrumentos financieros y no financieros orientados a mejorar la competitividad, la productividad, el crecimiento y la internacionalizaci\u00f3n de las empresas colombianas. Aprovechando su posici\u00f3n de mercado y su capacidad para establecer relaciones empresariales, Banc\u00f3ldex gestiona activos financieros, desarrolla soluciones de acceso a la financiaci\u00f3n y ofrece soluciones de capital innovadoras que fomentan y aceleran el crecimiento empresarial. Adem\u00e1s de ofrecer pr\u00e9stamos tradicionales, Banc\u00f3ldex ha sido designado para ejecutar varios programas de desarrollo tales como el Programa de Transformaci\u00f3n Productiva, iNNpulsa Colombia, iNNpulsa Mipyme y la Banca de las Oportunidades. Todos ellos conforman una oferta integrada de servicios para promover el entorno empresarial colombiano y la competitividad. Datlas es parte del Programa de Transformaci\u00f3n Productiva y la iniciativas INNpulsa Colombia.", + "about.project_description.founder2.header": "Departamento Nacional de Planeaci\u00f3n", + "about.project_description.founder2.p": "Departamento Nacional de Planeaci\u00f3n - DNP es un Departamento Administrativo que pertenece a la Rama Ejecutiva del poder p\u00fablico y depende directamente de la Presidencia de la Rep\u00fablica. Es una entidad eminentemente t\u00e9cnica que impulsa la implantaci\u00f3n de una visi\u00f3n estrat\u00e9gica del pa\u00eds en los campos social, econ\u00f3mico y ambiental, a trav\u00e9s del dise\u00f1o, la orientaci\u00f3n y evaluaci\u00f3n de las pol\u00edticas p\u00fablicas colombianas, el manejo y asignaci\u00f3n de la inversi\u00f3n p\u00fablica y la concreci\u00f3n de las mismas en planes, programas y proyectos del Gobierno.", + "about.project_description.founder3.header": "Fundaci\u00f3n Mario Santo Domingo", + "about.project_description.founder3.p": "Creada en 1953, la Fundaci\u00f3n Mario Santo Domingo (FMSD) es una organizaci\u00f3n sin fines de lucro dedicada a la implementaci\u00f3n de programas de desarrollo comunitario en Colombia. FMSD concentra sus principales esfuerzos en la construcci\u00f3n de viviendas asequibles dentro de un modelo de desarrollo comunitario llamado Desarrollo Integral de Comunidades Sustentables, dise\u00f1ado por el FMSD como respuesta al gran d\u00e9ficit de vivienda en Colombia. A trav\u00e9s de este programa, el FMSD proporciona apoyo social a las familias, as\u00ed como infraestructura social y urbana para los menos privilegiados. FMSD tambi\u00e9n contribuye al desarrollo empresarial de la regi\u00f3n Norte de Colombia y de Bogot\u00e1 a trav\u00e9s de su Unidad de Microfinanzas, que ofrece capacitaci\u00f3n y servicios financieros como el microcr\u00e9dito. M\u00e1s de 130.000 empresarios han recibido pr\u00e9stamos de la Fundaci\u00f3n desde su lanzamiento en 1984. FMSD tambi\u00e9n trabaja en identificar alianzas y sinergias entre los sectores p\u00fablico y privado en las \u00e1reas de desarrollo social cr\u00edticos, como la primera infancia, la sostenibilidad ambiental, la atenci\u00f3n de desastres, la educaci\u00f3n y la salud.", + "about.project_description.founders.header": "Entidades Patrocinadoras", + "about.project_description.founders.p": "Este proyecto es financiado por Banc\u00f3ldex y la Fundaci\u00f3n Mario Santo Domingo", + "about.project_description.github": "Revise nuestro c\u00f3digo", + "about.project_description.intro.p1": "En Colombia, las diferencias de ingresos entre regiones son enormes y han ido creciendo: las nuevas oportunidades de empleo se concentran cada vez m\u00e1s en las \u00e1reas metropolitanas de Bogot\u00e1, Medell\u00edn y Cali, aparte de los lugares donde se extraen petr\u00f3leo y otros minerales. El ingreso promedio de los residentes de Bogot\u00e1 es cuatro veces el de los colombianos que viven en los 12 departamentos m\u00e1s pobres.", + "about.project_description.intro.p2": "Datlas es una herramienta de diagn\u00f3stico para que las empresas, los inversionistas y las autoridades de gobierno puedan tomar decisiones que ayuden a elevar la productividad. Contiene informaci\u00f3n por departamento, \u00e1rea metropolitana y municipio sobre actividad productiva, empleo, salarios y exportaciones. Ofrece criterios para identificar los sectores y las exportaciones con potencial de crecimiento con base en la complejidad econ\u00f3mica.", + "about.project_description.intro.p3": "La complejidad econ\u00f3mica es una medida de las capacidades y conocimientos de los sectores productivos de un pa\u00eds o una ciudad. Para hacer una camisa, hay que dise\u00f1arla, producir la tela, cortar, coser, empacar el producto, comercializarlo y distribuirlo. Para que un pa\u00eds pueda producir camisas, necesita personas que tengan experiencia en cada una de estas \u00e1reas. Cada una de estas tareas implica muchas m\u00e1s capacidades de las que cualquier persona sola puede dominar. S\u00f3lo mediante la combinaci\u00f3n de know-how de diferentes personas puede hacerse el producto. El camino hacia el desarrollo econ\u00f3mico consiste en aprender a hacer cosas m\u00e1s sofisticadas. El juego de Scrabble puede servir de analog\u00eda: el jugador que tiene un mayor n\u00famero de letras variadas puede hacer m\u00e1s palabras y conseguir m\u00e1s puntos. Los pa\u00edses con una mayor diversidad de capacidades productivas pueden hacer una mayor diversidad de productos. El desarrollo econ\u00f3mico ocurre en la medida en que el pa\u00eds o la ciudad adquiere m\u00e1s capacidades y conocimientos para producir productos cada vez m\u00e1s complejos.", + "about.project_description.intro.p4": "Este enfoque conceptual que ha sido aplicado a nivel internacional en el Atlas de la Complejidad Econ\u00f3mica se utiliza ahora en esta herramienta en l\u00ednea para identificar las posibilidades de exportaci\u00f3n y de desarrollo sectorial de los departamentos, las \u00e1reas metropolitanas y las ciudades colombianas.", + "about.project_description.letter.header": "Bolet\u00edn de Estudios del CID", + "about.project_description.letter.p": "Inscr\u00edbase al Bolet\u00edn de Estudios del CID para mantenerse al d\u00eda con los avances de la investigaci\u00f3n y las herramientas pr\u00e1cticas en temas relacionados con la complejidad.", + "about.project_description.team.header": "El equipo acad\u00e9mico y t\u00e9cnico", + "about.project_description.team.p": "El equipo acad\u00e9mico de CID de Harvard estuvo compuesto por Ricardo Hausmann (director), Andr\u00e9s G\u00f3mez-Li\u00e9vano, Eduardo Lora y Sid Ravinutala. En fases anteriores fueron parte del equipo acad\u00e9mico Tim Cheston, Jos\u00e9 Ram\u00f3n Morales, Neave O\u2019Clery y Juan T\u00e9llez. El equipo de programaci\u00f3n y visualizaci\u00f3n de CID de Harvard: Annie White (coordinator) and Mali Akmanalp. En fases anteriores fueron parte del equipo de programaci\u00f3n y visualizaci\u00f3n Katy Harris, Quinn Lee, Greg Shapiro, Romain Vuillemot and Gus Wezerek. La recopilaci\u00f3n y procesamiento de los datos de vacantes laborales estuvo a cargo de Jeisson Arley C\u00e1rdenas Rubio (Institute for Employment Research \u2013IER, University of Warwick) y Jaime Mauricio Monta\u00f1a Doncel (Paris School of Economics). Actualizaciones Gustavo Montes y Oscar Hern\u00e1ndez (Banc\u00f3ldex).", + "about.project_description_name": "Acerca de Datlas", + "census_year": "2014", + "country.show.ag_farmsize": "45.99 ha", + "country.show.agproducts": "Toneladas Producidas Por Cultivo en Colombia", + "country.show.agproducts.production_tons": "Producci\u00f3n (toneladas)", + "country.show.average_livestock_load": "628", + "country.show.dotplot-column": "Departamentos de Colombia", + "country.show.eci": "0,037", + "country.show.economic_structure": "Estructura econ\u00f3mica", + "country.show.economic_structure.copy.p1": "Con una poblaci\u00f3n de 49,5 millones (a diciembre 2017), Colombia es el tercer pa\u00eds m\u00e1s grande de Am\u00e9rica Latina. Su PIB total en 2016 fue Col $772,4 billones, o US$253,2 miles de millones a la tasa de cambio promedio de 2016 (1 US d\u00f3lar = 3.050 pesos colombianos). En 2016, se alcanz\u00f3 un nivel de ingreso per c\u00e1pita de Col $17.798.353 o US$5.806. Durante el a\u00f1o 2016 la econom\u00eda colombiana creci\u00f3 2%.", + "country.show.economic_structure.copy.p2": "Los servicios empresariales y financieros son el sector m\u00e1s grande, con una contribuci\u00f3n al PIB de 20,9%, seguidos por los servicios de gobierno, sociales y personales (15,4%) y las actividades manufactureras (11,2%). Bogot\u00e1 D.C., Antioquia y el Valle del Cauca concentran aproximadamente la mitad de la actividad productiva, con participaciones en el PIB de 25,7, 13,9 y 9,7%, respectivamente. Sin embargo, los departamentos con m\u00e1s alto PIB per c\u00e1pita son Casanare y Meta, ambos importantes productores de petr\u00f3leo. Los gr\u00e1ficos siguientes presentan m\u00e1s detalles.", + "country.show.employment_wage_occupation": "Empleo formal, ocupaciones y salarios", + "country.show.employment_wage_occupation.copy.p1": "Los registros de la PILA, que cubren el universo de los trabajadores que hacen contribuciones al sistema de seguridad social, indican que el n\u00famero efectivo de trabajadores-a\u00f1o en el sector formal en 2016 fue 8,2 millones. Bogot\u00e1 DC, Antioquia y el Valle del Cauca generan, respectivamente 31,7%, 17,1%, and 10,8% del empleo formal (efectivo).", + "country.show.employment_wage_occupation.copy.p2": "Los siguientes gr\u00e1ficos ofrecen informaci\u00f3n m\u00e1s detallada de los patrones de empleo formal y los salarios pagados seg\u00fan los registros de PILA. Tambi\u00e9n se incluye informaci\u00f3n de vacantes anunciadas y salarios ofrecidos por ocupaci\u00f3n, calculados a partir de los anuncios colocados por empresas en sitios de Internet durante 2014.", + "country.show.export_complexity_possibilities": "Complejidad de las exportaciones y posibilidades de exportaci\u00f3n", + "country.show.export_complexity_possibilities.copy.p1": "El concepto de complejidad de las exportaciones es an\u00e1logo al de complejidad de los sectores sectorial presentado arriba, pero referido ahora a las exportaciones. Se mide mediante el \u00cdndice de Complejidad del Producto. Se ha comprobado que los pa\u00edses que exportan productos que son relativamente complejos con respecto a su nivel de desarrollo tienden a crecer m\u00e1s r\u00e1pido que los pa\u00edses que exportan bienes relativamente simples. Seg\u00fan la complejidad de su canasta exportadora en 2013, Colombia ocupa el puesto 53 entre 124 pa\u00edses. La tasa de crecimiento proyectada para Colombia con base en su complejidad y su nivel de desarrollo es 3,3% por a\u00f1o en el per\u00edodo 2013-2023.", + "country.show.export_complexity_possibilities.copy.p2": "El \"mapa de similitud tecnol\u00f3gica de los productos de exportaci\u00f3n\" (o mapa de los productos) que se presenta enseguida es una representaci\u00f3n gr\u00e1fica de la similitud tecnol\u00f3gica entre todos los productos de exportaci\u00f3n, seg\u00fan los patrones de exportaci\u00f3n de todos los pa\u00edses. Cada punto o nodo representa un producto; los nodos conectados entre s\u00ed requieren capacidades productivas semejantes. Los productos que est\u00e1n m\u00e1s conectados tienden a agruparse en el centro de la red, lo cual implica que las capacidades que ellos usan pueden ser utilizadas en la producci\u00f3n de muchos otros productos.", + "country.show.export_complexity_possibilities.copy.p3": "Los puntos que aparecen destacados representan productos que Colombia exporta en cantidades relativamente importantes (m\u00e1s exactamente, con ventaja comparativa revelada mayor de uno, v\u00e9ase el Glosario). Los colores representan grupos de productos (son los mismos colores usados para los sectores correspondientes en el mapa de similitud tecnol\u00f3gica presentado arriba). El gr\u00e1fico que aparece m\u00e1s abajo, junto con el cuadro que lo acompa\u00f1a, indica qu\u00e9 productos ofrecen las mejores posibilidades para Colombia, dadas las capacidades productivas que ya tiene el pa\u00eds y que tan \u2018distantes\u2019 son esas capacidades de las que requieren para exportar otras cosas. ", + "country.show.exports": "Exportaciones", + "country.show.exports.copy.p1": "Colombia export\u00f3 US$32,5 miles de millones en 2016. Sus principales destinos de exportaci\u00f3n son los Estados Unidos, Panam\u00e1, China y Espa\u00f1a. En 2016, los productos minerales (entre los cuales, petr\u00f3leo, carb\u00f3n y ferron\u00edquel son los m\u00e1s importantes) representaron 51,7% de las exportaciones totales de bienes; los productos vegetales, alimentos y maderas 22,57%, y los quimicos y pl\u00e1sticos 9,78%. Los siguientes gr\u00e1ficos presentan m\u00e1s detalles.", + "country.show.exports_composition_by_department": "Composici\u00f3n de las exportaciones por departamento ({{year}})", + "country.show.exports_composition_by_products": "Composici\u00f3n de las exportaciones ({{year}})", + "country.show.gdp": "Col $756,152 bill", + "country.show.gdp_per_capita": "Col $15.864.953", + "country.show.industry_complex": "Complejidad de los sectores productivos", + "country.show.industry_complex.copy.p1": "La complejidad de los sectores productivos, que se cuantifica mediante el \u00cdndice de Complejidad del Sector, es una media de la amplitud de las capacidades y habilidades \u2013know-how\u2013 que se requiere en un sector productivo. Se dice que sectores tales como qu\u00edmicos o maquinaria son altamente complejos porque requieren un nivel sofisticado de conocimientos productivos que solo es factible encontrar en grandes empresas donde interact\u00faa un n\u00famero de individuos altamente capacitados. En contraste, sectores como el comercio minorista o restaurantes requieren solo niveles b\u00e1sicos de capacitaci\u00f3n que pueden encontrarse incluso en una peque\u00f1a empresa familiar. Los sectores m\u00e1s complejos son m\u00e1s productivos y contribuyen m\u00e1s a elevar el ingreso per c\u00e1pita. Los departamentos y ciudades con sectores m\u00e1s complejos tienen una base productiva m\u00e1s diversificada y tienden a crear m\u00e1s empleo formal.", + "country.show.industry_complex.copy.p2": "El \"mapa de similitud tecnol\u00f3gica de los sectores\" (o mapa de los sectores) que se presenta enseguida es una representaci\u00f3n gr\u00e1fica de la similitud de las capacidades y habilidades entre pares de sectores. Cada punto (o nodo) representa un sector; los nodos conectados por l\u00edneas requieren capacidades semejantes. Los sectores con m\u00e1s conexiones usan capacidades que pueden ser utilizadas en muchos otros sectores. Los colores representan grupos de sectores.", + "country.show.industry_space": "Mapa de los sectores", + "country.show.landuses": "Uso del Suelo en Colombia", + "country.show.landuses.area": "\u00c1rea Total (ha)", + "country.show.nonag_farmsize": "4.53 ha", + "country.show.occupation.num_vac": "Vacantes anunciadas", + "country.show.population": "48,1 mill", + "country.show.product_space": "Mapa de los productos", + "country.show.total": "Totales", + "ctas.csv": "CSV", + "ctas.download": "Descargue estos datos", + "ctas.embed": "Insertar", + "ctas.excel": "Excel", + "ctas.export": "Exportar", + "ctas.facebook": "Facebook", + "ctas.pdf": "PDF", + "ctas.png": "PNG", + "ctas.share": "Compartir", + "ctas.twitter": "Twitter", + "currency": "Col$", + "decimal_delmiter": ",", + "downloads.cta_download": "Descargar", + "downloads.cta_na": "No disponible", + "downloads.head": "Acerca de los datos", + "downloads.industry_copy": "La Planilla Integrada de Aportes Laborales, PILA, del Ministerio de Salud, es la fuente principal de los datos por sector. Contiene informaci\u00f3n de empleo formal, salarios y n\u00famero de empresas por municipio y sector. La clasificaci\u00f3n sectorial de Colombia es una versi\u00f3n modificada de la Clasificaci\u00f3n Sectorial Internacional Uniforme de todas las Actividades Econ\u00f3micas (CIIU). La lista de los sectores productivos puede verse en las bases de datos descargables de sectores. Puede descargarse aqu\u00ed un archivo con la lista de los sectores productivos del CIIU los cu\u00e1les no aparecen representados en el mapa de los sectores (por razones que se explican en los M\u00e9todos de C\u00e1lculo).", + "downloads.industry_head": "Datos de sectores productivos (PILA)", + "downloads.industry_row_1": "Empleo, salarios, n\u00famero de empresas e indicadores de complejidad productiva ({{yearRange}})", + "downloads.list_of_cities.header": "Listas de departamentos, ciudades y municipios", + "downloads.map.cell": "Datos del mapa", + "downloads.map.header": "Mapa", + "downloads.occupations_copy": "Todos los datos sobre las ocupaciones (salarios ofrecidos por ocupaci\u00f3n y sector, y estructura ocupacional por sector) provienen de los anuncios de vacantes de empleo colocados por las empresas en los sitios de empleo de Internet p\u00fablicos y privados. Las ocupaciones se clasifican de acuerdo con el \u00cdndice Num\u00e9rico de la Red Ocupacional (ONET). Los datos fueron procesados \u200b\u200bpor Jeisson Arley Rubio C\u00e1rdenas, investigador de la Universidad del Rosario, Bogot\u00e1, y Jaime Mauricio Monta\u00f1a Doncel, estudiante de maestr\u00eda en la Escuela de Econom\u00eda de Par\u00eds.", + "downloads.occupations_head": "Datos de ocupaciones", + "downloads.occupations_row_1": "Vacantes laborales y salarios ofrecidos (2014)", + "downloads.other_copy": "El Departamento Administrativo Nacional de Estad\u00edstica, DANE, es la fuente de todos los datos sobre el PIB y la poblaci\u00f3n.", + "downloads.other_head": "Otros datos (DANE)", + "downloads.other_row_1": "PIB y variables demogr\u00e1ficas", + "downloads.rural_agproduct": "Productos Agropecuarios", + "downloads.rural_copy": "Se utilizan dos fuentes de datos: el Censo Nacional Agropecuario del DANE (2014) y la informaci\u00f3n publicada en la plataforma Agronet del Ministerio de Agricultura y Desarrollo Rural (2017).
La clasificaci\u00f3n del uso del suelo y la informaci\u00f3n de hect\u00e1reas (1 hect\u00e1rea = 10.000 metros cuadrados) provienen del Censo Nacional Agropecuario (CNA). Las unidades de producci\u00f3n agropecuaria se clasifican seg\u00fan el CNA en \"Unidades de Producci\u00f3n Agropecuaria\", o UPAs, y \"Unidades de Producci\u00f3n No Agropecuaria\", o UPNAs. Mientras que la producci\u00f3n agropecuaria (que incluye cultivos y ganado) s\u00f3lo puede tener lugar en las UPAs, tanto las UPAs como las UPNAs pueden tener actividades de producci\u00f3n no agropecuaria. La clasificaci\u00f3n de las actividades de producci\u00f3n no agropecuaria proviene del Censo y no coincide con la clasificaci\u00f3n CIIU utilizada para los sectores productivos. UPAs y UPNAs pueden ser informales (no registradas como empresas).
La informaci\u00f3n de los cultivos, que proviene del Ministerio de Agricultura y Desarrollo Rural, es para los a\u00f1os agr\u00edcolas 2008-2015 (un a\u00f1o agr\u00edcola, para un cultivo transitorio, corresponde al segundo semestre del a\u00f1o anterior y el primer semestre del a\u00f1o correspondiente). El \u00e1rea sembrada y el \u00e1rea cosechada se miden en t\u00e9rminos de hect\u00e1reas y la producci\u00f3n se mide t\u00e9rminos de toneladas m\u00e9tricas (en todos los casos, sumando los dos semestres del a\u00f1o agr\u00edcola). La productividad de la tierra (para cualquier producto y lugar) es el rendimiento en t\u00e9rminos de toneladas por hect\u00e1rea cosechada. Un \u00edndice de rendimiento (para cualquier producto y lugar) es el rendimiento dividido por el rendimiento a nivel nacional. Los \u00edndices de rendimiento para m\u00e1s de un producto (por lugar) se calculan como el promedio ponderado de los \u00edndices de rendimiento de los productos, donde los pesos son el \u00e1rea cosechada que corresponde a cada producto.
Es importante tener en cuenta que la informaci\u00f3n presentada en esta secci\u00f3n para ca\u00f1a azucarera corresponde al rendimiento (ton/ha) de material verde y no al de az\u00facar. Esto resulta debido a que existe una relaci\u00f3n de aproximadamente 10 toneladas de material verde por cada tonelada de az\u00facar.
", + "downloads.rural_farmsize": "Tama\u00f1o de UPA ", + "downloads.rural_farmtype": "Tipo de UPA", + "downloads.rural_head": "Datos rurales", + "downloads.rural_landuse": "Usos del suelo ", + "downloads.rural_livestock": "Especies Pecuarias", + "downloads.rural_nonag": "Actividades no agropecuarias", + "downloads.thead_departments": "Departamentos", + "downloads.thead_met": "Ciudades", + "downloads.thead_muni": "Municipios", + "downloads.thead_national": "Nacional", + "downloads.trade_copy": "La fuente de todos los datos sobre las exportaciones e importaciones por departamento y municipio es la Direcci\u00f3n de Impuestos y Aduanas Nacionales, DIAN. Colombia utiliza la nomenclatura arancelaria NANDINA, la cual calza a los seis d\u00edgitos con el Sistema Armonizado (SA) de clasificaci\u00f3n internacional de productos. Eso lo estandarizamos despu\u00e9s a SA (HS) 1992 para resolver cualquier inconsistencia entre las versiones a trav\u00e9s de los a\u00f1os, de manera tal que los datos se puedan visualizar en el tiempo. La lista de partidas arancelarias puede verse en las bases de datos descargables de exportaci\u00f3n e importaci\u00f3n.El origen de las exportaciones se establece en dos etapas. Primero, se define el departamento de origen como es el \u00faltimo lugar donde tuvieron alg\u00fan procesamiento, ensamblaje o empaque, seg\u00fan la DIAN. Luego, se distribuyen los valores entre municipios seg\u00fan la composici\u00f3n del empleo de la firma correspondiente con base en la PILA (para las firmas sin esta informaci\u00f3n se asign\u00f3 el valor total a la capital del departamento). En el caso de las exportaciones de petr\u00f3leo (2709) y gas (2711), los valores totales se distribuyeron por origen seg\u00fan la producci\u00f3n por municipios (Agencia Nacional de Hidrocarburos y Asociaci\u00f3n Colombiana de Petr\u00f3leo) y en el caso de las exportaciones de refinados de petr\u00f3leo (2710) seg\u00fan el valor agregado por municipio (sectores 2231, 2322 y 2320 CIIU revisi\u00f3n 3, Encuesta Anual Manufacturera, DANE).
Los totales de exportaci\u00f3n por partida arancelaria pueden no corresponder a los datos oficiales porque quedan excluidas: (a) las exportaciones sin informaci\u00f3n sobre el sector del exportador y/o el departamento o municipio de origen, y (b) las exportaciones que en los datos de la DIAN tienen como destino las zonas francas; mientras que quedan incluidas: (c) las exportaciones de las zonas francas, que la DIAN no incluye en dichos totales.
De forma semejante, los totales de importaci\u00f3n por partida arancelaria pueden no corresponder a los datos oficiales porque quedan excluidas: (a) las importaciones sin informaci\u00f3n sobre el departamento o municipio de destino, y (b) las importaciones que en los datos de la DIAN tienen como origen las zonas francas; mientras que quedan incluidas: (c) las importaciones realizadas por las zonas francas, que la DIAN no incluye en dichos totales.
El archivo que describe la correspondencia entre la versi\u00f3n del Sistema Armonizado (HS) utilizado por la DIAN y su revisi\u00f3n de 1992 puede encontrarse aqu\u00ed.
Tambi\u00e9n puede descargarse aqu\u00ed un archivo con la lista de los productos del Sistema Armonizado los cu\u00e1les no aparecen representados en el mapa del producto (por razones que se explican en los M\u00e9todos de C\u00e1lculo).", + "downloads.trade_head": "Datos de exportaciones e importaciones (DIAN)", + "downloads.trade_row_1": "Exportaciones, importaciones e indicadores de complejidad ({{yearRange}})", + "downloads.trade_row_2": "Exportaciones e importaciones con origen y destino ({{yearRange}})", + "first_year": "2008", + "general.export_and_import": "Productos", + "general.geo": "Mapa geogr\u00e1fico", + "general.glossary": "Glosario", + "general.industries": "Sectores", + "general.industry": "sector", + "general.location": "lugar", + "general.locations": "Lugares", + "general.multiples": "Gr\u00e1ficos de \u00e1reas", + "general.occupation": "ocupaci\u00f3n", + "general.occupations": "Ocupaciones", + "general.product": "producto", + "general.scatter": "Gr\u00e1fico de dispersi\u00f3n", + "general.similarity": "mapa de los sectores", + "general.total": "Totales", + "general.treemap": "Gr\u00e1fico de composici\u00f3n", + "geomap.center": "4.6,-74.06", + "glossary.head": "Glosario", + "graph_builder.builder_mod_header.agproduct.departments.land_harvested": "\u00c1rea cosechada (ha)", + "graph_builder.builder_mod_header.agproduct.departments.land_sown": "\u00c1rea sembrada (ha)", + "graph_builder.builder_mod_header.agproduct.departments.production_tons": "Producci\u00f3n (toneladas)", + "graph_builder.builder_mod_header.agproduct.municipalities.land_harvested": "\u00c1rea cosechada (ha)", + "graph_builder.builder_mod_header.agproduct.municipalities.land_sown": "\u00c1rea sembrada (ha)", + "graph_builder.builder_mod_header.agproduct.municipalities.production_tons": "Producci\u00f3n (toneladas)", + "graph_builder.builder_mod_header.industry.cities.employment": "Empleo total", + "graph_builder.builder_mod_header.industry.cities.wage_avg": "Salarios mensuales promedio", + "graph_builder.builder_mod_header.industry.cities.wages": "N\u00f3mina salarial", + "graph_builder.builder_mod_header.industry.departments.employment": "Empleo total", + "graph_builder.builder_mod_header.industry.departments.wage_avg": "Salarios mensuales promedio", + "graph_builder.builder_mod_header.industry.departments.wages": "N\u00f3mina salarial", + "graph_builder.builder_mod_header.industry.locations.employment": "Empleo total", + "graph_builder.builder_mod_header.industry.locations.wage_avg": "Salarios mensuales promedio", + "graph_builder.builder_mod_header.industry.locations.wages": "N\u00f3mina salarial", + "graph_builder.builder_mod_header.industry.occupations.num_vacancies": "Total de vacantes", + "graph_builder.builder_mod_header.landUse.departments.area": "\u00c1rea total", + "graph_builder.builder_mod_header.landUse.municipalities.area": "\u00c1rea total", + "graph_builder.builder_mod_header.livestock.departments.num_farms": "N\u00famero de UPAs", + "graph_builder.builder_mod_header.livestock.departments.num_livestock": "N\u00famero de cabezas de ganado", + "graph_builder.builder_mod_header.livestock.municipalities.num_farms": "N\u00famero de UPAs", + "graph_builder.builder_mod_header.livestock.municipalities.num_livestock": "N\u00famero de cabezas de ganado", + "graph_builder.builder_mod_header.location.agproducts.land_harvested": "\u00c1rea cosechada (hect\u00e1reas)", + "graph_builder.builder_mod_header.location.agproducts.land_sown": "\u00c1rea sembrada (hect\u00e1reas)", + "graph_builder.builder_mod_header.location.agproducts.production_tons": "Producci\u00f3n (toneladas)", + "graph_builder.builder_mod_header.location.agproducts.yield_ratio": "Productividad (tons/ha)", + "graph_builder.builder_mod_header.location.farmtypes.num_farms": "UPAs y UPNAs", + "graph_builder.builder_mod_header.location.industries.employment": "Empleo total", + "graph_builder.builder_mod_header.location.industries.scatter": "Complejidad, distancia y valor estrat\u00e9gico de sectores potenciales ", + "graph_builder.builder_mod_header.location.industries.similarity": "Sectores con ventaja comparativa revelada >1 (con color) y <1 (gris)", + "graph_builder.builder_mod_header.location.industries.wages": "Salarios totales", + "graph_builder.builder_mod_header.location.landUses.area": "\u00c1rea total", + "graph_builder.builder_mod_header.location.livestock.num_farms": "N\u00famero de UPAs ganaderas", + "graph_builder.builder_mod_header.location.livestock.num_livestock": "N\u00famero de animales", + "graph_builder.builder_mod_header.location.nonags.num_farms": "N\u00famero de UPNAs", + "graph_builder.builder_mod_header.location.partners.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.location.partners.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.location.products.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.location.products.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.location.products.scatter": "Complejidad, distancia y valor estrat\u00e9gico de exportaciones potenciales", + "graph_builder.builder_mod_header.location.products.similarity": "Exportaciones con ventaja comparativa revelada >1 (con color) y <1 (gris)", + "graph_builder.builder_mod_header.nonag.departments.num_farms": "N\u00famero de UPNAs", + "graph_builder.builder_mod_header.nonag.municipalities.num_farms": "N\u00famero de UPNAs", + "graph_builder.builder_mod_header.product.cities.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.product.cities.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.product.departments.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.product.departments.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.product.partners.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.product.partners.import_value": "Importaciones totales", + "graph_builder.builder_nav.header": "M\u00e1s gr\u00e1ficos para este {{entity}}", + "graph_builder.builder_nav.intro": "Seleccione una pregunta para ver el gr\u00e1fico correspondiente. Si en la pregunta faltan par\u00e1metros ({{icon}}), los podr\u00e1 llenar cuando haga click.", + "graph_builder.builder_questions.city": "Preguntas: Ciudades", + "graph_builder.builder_questions.department": "Preguntas: Departamentos", + "graph_builder.builder_questions.employment": "Preguntas: Empleo", + "graph_builder.builder_questions.export": "Preguntas: Exportaciones", + "graph_builder.builder_questions.import": "Preguntas: Importaciones", + "graph_builder.builder_questions.industry": "Preguntas: Sectores", + "graph_builder.builder_questions.landUse": "Preguntas: Usos del suelo", + "graph_builder.builder_questions.land_harvested": "Preguntas: \u00c1rea cosechada", + "graph_builder.builder_questions.land_sown": "Preguntas: \u00c1rea sembrada", + "graph_builder.builder_questions.livestock_num_farms": "Preguntas: N\u00famero de UPAs", + "graph_builder.builder_questions.livestock_num_livestock": "Preguntas: N\u00famero de cabezas de ganado", + "graph_builder.builder_questions.location": "Preguntas: Lugares", + "graph_builder.builder_questions.nonag": "Preguntas: Actividades no agropecuarias", + "graph_builder.builder_questions.occupation": "Preguntas: Ocupaciones", + "graph_builder.builder_questions.partner": "Preguntas: Socios Comerciales", + "graph_builder.builder_questions.product": "Preguntas: Productos de Exportaci\u00f3n", + "graph_builder.builder_questions.production_tons": "Preguntas: Producci\u00f3n", + "graph_builder.builder_questions.rural": "Preguntas: Actividades Rurales", + "graph_builder.builder_questions.wage": "Preguntas: N\u00f3mina Salarial", + "graph_builder.change_graph.geo_description": "Mapea los datos", + "graph_builder.change_graph.label": "Cambie el gr\u00e1fico", + "graph_builder.change_graph.multiples_description": "Muestra la evoluci\u00f3n en varios per\u00edodos", + "graph_builder.change_graph.scatter_description": "Muestra la complejidad y la distancia", + "graph_builder.change_graph.similarity_description": "Presenta las ventajas comparativas reveladas", + "graph_builder.change_graph.treemap_description": "Muestra la descomposici\u00f3n en varios niveles", + "graph_builder.change_graph.unavailable": "Este gr\u00e1fico no est\u00e1 disponible para esta pregunta", + "graph_builder.download.agproduct": "Producto Agropecuario", + "graph_builder.download.area": "\u00c1rea ", + "graph_builder.download.average_livestock_load": "", + "graph_builder.download.average_wages": "Salario mensual promedio, Col$ ", + "graph_builder.download.avg_wage": "Salario mensual promedio, Col$ ", + "graph_builder.download.code": "C\u00f3digo", + "graph_builder.download.cog": "Valor estrat\u00e9gico", + "graph_builder.download.complexity": "Complejidad", + "graph_builder.download.distance": "Distancia", + "graph_builder.download.eci": "Complejidad exportadora", + "graph_builder.download.employment": "Empleo", + "graph_builder.download.employment_growth": "Tasa de crecimiento del empleo ({{yearRange}})", + "graph_builder.download.export": "Exportaci\u00f3n", + "graph_builder.download.export_num_plants": "N\u00famero de empresas", + "graph_builder.download.export_rca": "Ventaja comparativa revelada", + "graph_builder.download.export_value": "Exportaciones, USD", + "graph_builder.download.farmtype": "Tipo de UPA", + "graph_builder.download.gdp_pc_real": "PIB per c\u00e1pita, Col $", + "graph_builder.download.gdp_real": "PIB, Col $", + "graph_builder.download.import_value": "Importaciones, USD", + "graph_builder.download.industry": "Sector", + "graph_builder.download.industry_eci": "Complejidad sectorial", + "graph_builder.download.land_harvested": "\u00c1rea cosechada (ha)", + "graph_builder.download.land_sown": "\u00c1rea sembrada (ha)", + "graph_builder.download.land_use": "Usos del suelo", + "graph_builder.download.less_than_5": "Menos de 5", + "graph_builder.download.livestock": "Especie Pecuaria", + "graph_builder.download.location": "Lugar", + "graph_builder.download.monthly_wages": "Salario mensual promedio, Col$", + "graph_builder.download.name": "Nombre", + "graph_builder.download.num_establishments": "N\u00famero de empresas", + "graph_builder.download.num_farms": "N\u00famero de Unidades de Producci\u00f3n", + "graph_builder.download.num_farms_ag": "N\u00famero de UPAs ", + "graph_builder.download.num_farms_nonag": "N\u00famero de UPNAs", + "graph_builder.download.num_livestock": "N\u00famero de cabezas de ganado", + "graph_builder.download.num_vacancies": "Vacantes", + "graph_builder.download.occupation": "Ocupaci\u00f3n", + "graph_builder.download.parent": "Grupo", + "graph_builder.download.population": "Poblaci\u00f3n", + "graph_builder.download.production_tons": "Producci\u00f3n (toneladas)", + "graph_builder.download.rca": "Ventaja comparativa revelada", + "graph_builder.download.read_more": "\u00bfNo entiende alguno de estos t\u00e9rminos? Consulte el", + "graph_builder.download.wages": "N\u00f3mina salarial total, Col$ ", + "graph_builder.download.year": "A\u00f1o", + "graph_builder.download.yield_index": "\u00cdndice de Rendimiento de Cultivos", + "graph_builder.download.yield_ratio": "Rendimiento de los Cultivos (tons/ha)", + "graph_builder.explanation": "Explicaci\u00f3n", + "graph_builder.explanation.agproduct.departments.land_harvested": "Muestra la composici\u00f3n de lugares que cosechan este producto agropecuario, por \u00e1rea cosechada. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.departments.land_sown": "Muestra la composici\u00f3n de lugares que siembran este producto agropecuario, por \u00e1rea sembrada. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.departments.production_tons": "Muestra la composici\u00f3n de lugares que producen este producto agropecuario, por toneladas producidas. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.land_harvested": "Muestra la composici\u00f3n de lugares que siembran este producto agropecuario, por \u00e1rea sembrada. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.land_sown": "Muestra la composici\u00f3n de lugares que siembran este producto agropecuario, por \u00e1rea sembrada. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.agproduct.municipalities.production_tons": "Muestra la composici\u00f3n de lugares que producen este producto agropecuario, por toneladas producidas. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.hide": "Oculte", + "graph_builder.explanation.industry.cities.employment": "Muestra la composici\u00f3n por departamentos del empleo formal del sector. Fuente: PILA.", + "graph_builder.explanation.industry.cities.wages": "Muestra la composici\u00f3n por departamentos de la n\u00f3mina salarial del sector. Fuente: PILA.", + "graph_builder.explanation.industry.departments.employment": "Muestra la composici\u00f3n por departamentos del empleo formal del sector. Fuente: PILA.", + "graph_builder.explanation.industry.departments.wages": "Muestra la composici\u00f3n por departamentos de la n\u00f3mina salarial del sector. Fuente: PILA.", + "graph_builder.explanation.industry.occupations.num_vacancies": "Muestra la composici\u00f3n de las vacantes anunciadas en sitios de Internet y los salarios ofrecidos.", + "graph_builder.explanation.landUse.departments.area": "Muestra la composici\u00f3n de lugares en donde se usa el suelo espec\u00edficamente de esta manera, por \u00e1rea. Fuente: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE)", + "graph_builder.explanation.landUse.municipalities.area": "Muestra la composici\u00f3n de lugares en donde se usa el suelo espec\u00edficamente de esta manera, por \u00e1rea. Fuente: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE)", + "graph_builder.explanation.livestock.departments.num_farms": "Muestra la composici\u00f3n de localizaciones para esta especie pecuaria, por n\u00famero de UPAs. Fuente: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE)", + "graph_builder.explanation.livestock.departments.num_livestock": "Muestra la composici\u00f3n de localizaciones para esta especie pecuaria, por n\u00famero de cabezas de ganado. Fuente: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE)", + "graph_builder.explanation.livestock.municipalities.num_farms": "Muestra la composici\u00f3n de localizaciones para esta especie pecuaria, por n\u00famero de UPAs. Fuente: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE)", + "graph_builder.explanation.livestock.municipalities.num_livestock": "Muestra la composici\u00f3n de localizaciones para esta especie pecuaria, por n\u00famero de cabezas de ganado. Fuente: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE)", + "graph_builder.explanation.location.agproducts.land_harvested": "Muestra la composici\u00f3n de productos agropecuarios en esta localizaci\u00f3n, por \u00e1rea de \u00e1rea cosechada. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.agproducts.land_sown": "Muestra la composici\u00f3n de productos agropecuarios en esta localizaci\u00f3n, por \u00e1rea de \u00e1rea sembrada. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.agproducts.production_tons": "Muestra la composici\u00f3n de productos agropecuarios en esta localizaci\u00f3n, por peso. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.location.agproducts.yield_ratio": "Muestra el rendimiento de la tierra cosechada por producto en las UPAs de este lugar. Fuente: Agronet (2017), Ministerio de Agricultura. Link Informaci\u00f3n acerca de ca\u00f1a de az\u00facar: Es importante tener en cuenta que la informaci\u00f3n presentada en esta secci\u00f3n para ca\u00f1a azucarera corresponde al rendimiento (ton/ha) de material verde y no al de az\u00facar. Esto resulta debido a que existe una relaci\u00f3n de aproximadamente 10 toneladas de material verde por cada tonelada de az\u00facar.", + "graph_builder.explanation.location.farmtypes.num_farms": "Muestra la composici\u00f3n de UPAs en esta localizaci\u00f3n, por tipo de UPA. Fuente: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE)", + "graph_builder.explanation.location.industries.employment": "Muestra la composici\u00f3n sectorial del empleo formal del departamento. Fuente: PILA.", + "graph_builder.explanation.location.industries.scatter": "Cada punto representa un sector productivo. Cuando se selecciona un punto aparece el nombre y la ventaja comparativa revelada del lugar en ese sector. Los colores de los puntos representan grupos de sectores (v\u00e9ase el c\u00f3digo de colores en la tabla que sigue). El eje vertical es el \u00edndice de complejidad sectorial y el eje horizontal es la distancia tecnol\u00f3gica para que el sector se desarrolle, dadas las capacidades que ya existen en el lugar. El tama\u00f1o de los puntos es proporcional al valor estrat\u00e9gico del sector para el lugar, es decir qu\u00e9 tanto puede contribuir el sector al aumento del \u00edndice de complejidad del lugar a trav\u00e9s de nuevas capacidades productivas que pueden ser \u00fatiles en otros sectores. Los sectores m\u00e1s atractivos son los ubicados arriba y a la izquierda, especialmente si los puntos que los representan son grandes. Fuente: c\u00e1lculos del CID con datos de PILA. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los t\u00e9rminos).", + "graph_builder.explanation.location.industries.similarity": "El mapa de similitud tecnol\u00f3gica de los sectores (o mapa de los sectores) muestra qu\u00e9 tan similares son los conocimientos requeridos por unos sectores y otros. Cada punto representa un sector productivo y cada enlace entre un par de sectores indica que requieren capacidades productivas similares. Los puntos coloreados son sectores con ventaja comparativa revelada (VCR) mayor que uno en el departamento o ciudad. Los colores de los puntos representan grupos de sectores (v\u00e9ase el c\u00f3digo de colores en el cuadro que sigue). Cuando se selecciona un punto aparece su nombre, su VCR y sus enlaces a otros sectores. Fuente: c\u00e1lculos del CID con datos de PILA. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los t\u00e9rminos).", + "graph_builder.explanation.location.industries.wages": "Muestra la composici\u00f3n sectorial de la n\u00f3mina salarial del departamento o ciudad. Fuente: PILA.", + "graph_builder.explanation.location.landUses.area": "Muestra la composici\u00f3n de usos del suelo en esta localizaci\u00f3n, por \u00e1rea. Fuente: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE)", + "graph_builder.explanation.location.livestock.num_farms": "Muestra la composici\u00f3n de especies pecuarias en esta localizaci\u00f3n, por n\u00famero de UPAs. Fuente: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE)", + "graph_builder.explanation.location.livestock.num_livestock": "Muestra la composici\u00f3n de especies pecuarias en esta localizaci\u00f3n, por n\u00famero de UPAs. Fuente: National Agricultural Census (2014). Departamento Administrativo Nacional de Estad\u00edstica (DANE)", + "graph_builder.explanation.location.nonags.num_farms": "Muestra la composici\u00f3n de actividades no agropecuarias realizadas en este lugar por el n\u00famero de UPAs que las realizan. Fuente: CNA", + "graph_builder.explanation.location.partners.export_value": "Muestra la composici\u00f3n de las exportaciones de este lugar por pa\u00eds de destino, agrupados por regiones del mundo. Fuente: DIAN.", + "graph_builder.explanation.location.partners.import_value": "Muestra la composici\u00f3n de las importaciones de este lugar por pa\u00eds de origen, agrupados por regiones del mundo. Fuente: DIAN.", + "graph_builder.explanation.location.products.export_value": "Muestra la composici\u00f3n de las exportaciones del departamento o ciudad. Los colores representan grupos de productos (v\u00e9ase el cuadro). Fuente: DIAN.", + "graph_builder.explanation.location.products.import_value": "Muestra la composici\u00f3n de las importaciones del departamento o ciudad. Los colores representan grupos de productos (v\u00e9ase el cuadro). Fuente: DIAN.", + "graph_builder.explanation.location.products.scatter": "Cada punto representa un producto de exportaci\u00f3n. Cuando se selecciona un punto aparece el nombre y la ventaja comparativa revelada del departamento o ciudad en ese producto. Los colores de los puntos representan grupos de sectores (v\u00e9ase el c\u00f3digo de colores en la tabla que sigue). El eje vertical es el \u00edndice de complejidad del producto y el eje horizontal es la distancia tecnol\u00f3gica para poder exportar un producto, dadas las capacidades que ya existen en el lugar. La l\u00ednea discontinua es el \u00edndice de complejidad sectorial promedio del lugar. El tama\u00f1o de los puntos es proporcional al valor estrat\u00e9gico del producto para el departamento o ciudad, es decir qu\u00e9 tanto puede contribuir el producto al aumento del \u00edndice de complejidad del lugar a trav\u00e9s de nuevas capacidades productivas que pueden ser \u00fatiles para otras exportaciones. Las exportaciones m\u00e1s atractivas de desarrollar son las ubicadas arriba y a la izquierda, especialmente si los puntos que las representan son grandes. Fuente: c\u00e1lculos del CID con datos de la DIAN. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los conceptos).", + "graph_builder.explanation.location.products.similarity": "El mapa de similitud tecnol\u00f3gica de los productos (o mapa de los productos) muestra que tan similares son los conocimientos requeridos por unos productos y otros. Cada punto representa un producto de exportaci\u00f3n y cada enlace entre un par de productos indica que requieren capacidades productivas similares. Los puntos coloreados son exportaciones con ventaja comparativa revelada (VCR) mayor que uno en el departamento o ciudad. Los colores de los puntos representan grupos de productos (v\u00e9ase el cuadro). Cuando se selecciona un punto aparece su nombre, su VCR y sus enlaces a otros productos. Fuente: c\u00e1lculos del CID con datos de DIAN. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los conceptos).", + "graph_builder.explanation.nonag.departments.num_farms": "Muestra la composici\u00f3n de lugares que realizan esta actividad no agropecuaria por n\u00famero de UPAs que la realizan. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.nonag.municipalities.num_farms": "Muestra la composici\u00f3n de lugares que siembran este producto agr\u00edcola por \u00e1rea\u00a0sembrada. Fuente: Agronet (2017), Ministerio de Agricultura. Link", + "graph_builder.explanation.product.cities.export_value": "Muestra la composici\u00f3n por ciudades de las exportaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.cities.import_value": "Muestra la composici\u00f3n por ciudades de las importaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.departments.export_value": "Muestra la composici\u00f3n por departamentos de las exportaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.departments.import_value": "Muestra la composici\u00f3n por departamentos de las importaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.partners.export_value": "Muestra el destino de las exportaciones de este producto, por pa\u00eds y regi\u00f3n del mundo. Fuente: DIAN.", + "graph_builder.explanation.product.partners.import_value": "Muestra el origen de las importaciones de este producto, por pa\u00eds y regi\u00f3n del mundo. Fuente: DIAN.", + "graph_builder.explanation.show": "Muestre m\u00e1s", + "graph_builder.multiples.show_all": "Mostrar todo", + "graph_builder.page_title.agproduct.departments.land_harvested": "\u00bfQu\u00e9 departamentos cosechan este producto agropecuario?", + "graph_builder.page_title.agproduct.departments.land_sown": "\u00bfQu\u00e9 departamentos siembran este producto agropecuario?", + "graph_builder.page_title.agproduct.departments.production_tons": "\u00bfQu\u00e9 departamentos producen este producto agropecuario?", + "graph_builder.page_title.agproduct.municipalities.land_harvested": "\u00bfQu\u00e9 municipios cosechan este producto agropecuario?", + "graph_builder.page_title.agproduct.municipalities.land_sown": "\u00bfQu\u00e9 municipios siembran este producto agropecuario?", + "graph_builder.page_title.agproduct.municipalities.production_tons": "\u00bfQu\u00e9 municipios producen este producto agropecuario?", + "graph_builder.page_title.industry.cities.employment": "\u00bfQu\u00e9 ciudades en Colombia ocupan m\u00e1s gente en este sector?", + "graph_builder.page_title.industry.cities.wages": "\u00bfQu\u00e9 ciudades en Colombia tienen las mayores n\u00f3minas salariales en este sector?", + "graph_builder.page_title.industry.departments.employment": "\u00bfQu\u00e9 departamentos en Colombia ocupan m\u00e1s gente en este sector?", + "graph_builder.page_title.industry.departments.wages": "\u00bfQu\u00e9 departamentos en Colombia tienen las mayores n\u00f3minas salariales en este sector?", + "graph_builder.page_title.industry.occupations.num_vacancies": "\u00bfQu\u00e9 ocupaciones demanda este sector?", + "graph_builder.page_title.landUse.departments.area": "\u00bfQu\u00e9 departamentos tienen este uso del suelo?", + "graph_builder.page_title.landUse.municipalities.area": "\u00bfQu\u00e9 departamentos tienen este uso del suelo?", + "graph_builder.page_title.livestock.departments.num_farms": "\u00bfCu\u00e1ntas UPAs cr\u00edan esta especie pecuaria en cada departamento?", + "graph_builder.page_title.livestock.departments.num_livestock": "\u00bfCu\u00e1ntos animales de esta especie pecuaria se cr\u00edan en cada departamento?", + "graph_builder.page_title.livestock.municipalities.num_farms": "\u00bfCu\u00e1ntas UPAs cr\u00edan esta especie pecuaria en cada municipio?", + "graph_builder.page_title.livestock.municipalities.num_livestock": "\u00bfCu\u00e1ntos animales de esta especie pecuaria se cr\u00edan en cada municipio?", + "graph_builder.page_title.location.agproducts.land_harvested.country": "\u00bfCu\u00e1ntas hect\u00e1reas cosechadas por cultivo hay en Colombia?", + "graph_builder.page_title.location.agproducts.land_harvested.department": "\u00bfCu\u00e1ntas hect\u00e1reas cosechadas por cultivo hay en este departamento?", + "graph_builder.page_title.location.agproducts.land_harvested.municipality": "\u00bfCu\u00e1ntas hect\u00e1reas cosechadas por cultivo hay en este municipio?", + "graph_builder.page_title.location.agproducts.land_sown.country": "\u00bfCu\u00e1ntas hect\u00e1reas sembradas por cultivo hay en Colombia?", + "graph_builder.page_title.location.agproducts.land_sown.department": "\u00bfCu\u00e1ntas hect\u00e1reas sembradas por cultivo hay en este departamento?", + "graph_builder.page_title.location.agproducts.land_sown.municipality": "\u00bfCu\u00e1ntas hect\u00e1reas sembradas por cultivo hay en este municipio?", + "graph_builder.page_title.location.agproducts.production_tons.country": "\u00bfCu\u00e1ntas toneladas se producen por cultivo en Colombia?", + "graph_builder.page_title.location.agproducts.production_tons.department": "\u00bfCu\u00e1ntas toneladas se producen por cultivo en este departamento?", + "graph_builder.page_title.location.agproducts.production_tons.municipality": "\u00bfCu\u00e1ntas toneladas se producen por cultivo en este municipio?", + "graph_builder.page_title.location.agproducts.yield_ratio.country": "\u00bfCu\u00e1nto es el rendimiento (ton/ha) de los cultivos en Colombia?", + "graph_builder.page_title.location.agproducts.yield_ratio.department": "\u00bfCu\u00e1nto es el rendimiento (ton/ha) de los cultivos en este departamento?", + "graph_builder.page_title.location.agproducts.yield_ratio.municipality": "\u00bfCu\u00e1nto es el rendimiento (ton/ha) de los cultivos en este municipio?", + "graph_builder.page_title.location.destination_by_product.export_value.department": "\u00bfA qu\u00e9 pa\u00edses env\u00eda este departamento sus exportaciones de petr\u00f3leo?", + "graph_builder.page_title.location.destination_by_product.import_value.department": "\u00bfDe qu\u00e9 pa\u00edses recibe este departamento sus importaciones de veh\u00edculos?", + "graph_builder.page_title.location.farmtypes.num_farms.country": "\u00bfCu\u00e1ntas Unidades de Produccion Agropecuaria (UPAs) y no Agropecuaria (UPNAs) hay en Colombia?", + "graph_builder.page_title.location.farmtypes.num_farms.department": "\u00bfCu\u00e1ntas Unidades de Produccion Agropecuaria (UPAs) y no Agropecuaria (UPNAs) hay en este departamento?", + "graph_builder.page_title.location.farmtypes.num_farms.municipality": "\u00bfCu\u00e1ntas Unidades de Produccion Agropecuaria (UPAs) y no Agropecuaria (UPNAs) hay en este municipio?", + "graph_builder.page_title.location.industries.employment.country": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en Colombia?", + "graph_builder.page_title.location.industries.employment.department": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en este departamento?", + "graph_builder.page_title.location.industries.employment.msa": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en esta ciudad?", + "graph_builder.page_title.location.industries.employment.municipality": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en este municipio?", + "graph_builder.page_title.location.industries.scatter.country": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en Colombia?", + "graph_builder.page_title.location.industries.scatter.department": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en este departamento?", + "graph_builder.page_title.location.industries.scatter.msa": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en esta ciudad?", + "graph_builder.page_title.location.industries.scatter.municipality": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en este municipio?", + "graph_builder.page_title.location.industries.similarity.country": "\u00bfC\u00f3mo es el mapa de los sectores de Colombia?", + "graph_builder.page_title.location.industries.similarity.department": "\u00bfC\u00f3mo es el mapa de los sectores de este departamento?", + "graph_builder.page_title.location.industries.similarity.msa": "\u00bfC\u00f3mo es el mapa de los sectores de esta ciudad?", + "graph_builder.page_title.location.industries.similarity.municipality": "\u00bfC\u00f3mo es el mapa de los sectores de este municipio?", + "graph_builder.page_title.location.industries.wages.country": "\u00bfQu\u00e9 sectores en Colombia tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.industries.wages.department": "\u00bfQu\u00e9 sectores en este departamento tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.industries.wages.msa": "\u00bfQu\u00e9 sectores en esta ciudad tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.industries.wages.municipality": "\u00bfQu\u00e9 sectores en este municipio tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.landUses.area.country": "\u00bfC\u00f3mo se usa el suelo en Colombia?", + "graph_builder.page_title.location.landUses.area.department": "\u00bfC\u00f3mo se usa el suelo en este departamento?", + "graph_builder.page_title.location.landUses.area.municipality": "\u00bfC\u00f3mo se usa el suelo en este municipio?", + "graph_builder.page_title.location.livestock.num_farms.country": "\u00bfCu\u00e1ntas UPAs realizan actividad pecuaria seg\u00fan especie?", + "graph_builder.page_title.location.livestock.num_farms.department": "\u00bfCu\u00e1ntas UPAs realizan actividad pecuaria seg\u00fan especie?", + "graph_builder.page_title.location.livestock.num_farms.municipality": "\u00bfCu\u00e1ntas UPAs realizan actividad pecuaria seg\u00fan especie?", + "graph_builder.page_title.location.livestock.num_livestock.country": "\u00bfCu\u00e1les y cuantas son las especies pecuarias en Colombia?", + "graph_builder.page_title.location.livestock.num_livestock.department": "\u00bfCu\u00e1les y cuantas son las especies pecuarias en este departamento?", + "graph_builder.page_title.location.livestock.num_livestock.municipality": "\u00bfCu\u00e1les y cuantas son las especies pecuarias en este municipio?", + "graph_builder.page_title.location.nonags.num_farms.country": "\u00bfQu\u00e9 actividades no agropecuarias se realizan en Colombia?", + "graph_builder.page_title.location.nonags.num_farms.department": "\u00bfQu\u00e9 actividades no agropecuarias se realizan en este departamento?", + "graph_builder.page_title.location.nonags.num_farms.municipality": "\u00bfQu\u00e9 actividades no agropecuarias se realizan en este municipio?", + "graph_builder.page_title.location.partners.export_value.country": "\u00bfA qu\u00e9 pa\u00edses exporta Colombia?", + "graph_builder.page_title.location.partners.export_value.department": "\u00bfA qu\u00e9 pa\u00edses exporta este departamento?", + "graph_builder.page_title.location.partners.export_value.msa": "\u00bfA qu\u00e9 pa\u00edses exporta esta ciudad?", + "graph_builder.page_title.location.partners.export_value.municipality": "\u00bfA qu\u00e9 pa\u00edses exporta este municipio?", + "graph_builder.page_title.location.partners.import_value.country": "\u00bfDe d\u00f3nde vienen las importaciones de Colombia?", + "graph_builder.page_title.location.partners.import_value.department": "\u00bfDe d\u00f3nde vienen las importaciones de este departamento?", + "graph_builder.page_title.location.partners.import_value.msa": "\u00bfDe d\u00f3nde vienen las importaciones de esta ciudad?", + "graph_builder.page_title.location.partners.import_value.municipality": "\u00bfDe d\u00f3nde vienen las importaciones de este municipio?", + "graph_builder.page_title.location.products.export_value.country": "\u00bfQu\u00e9 productos exporta Colombia?", + "graph_builder.page_title.location.products.export_value.department": "\u00bfQu\u00e9 productos exporta este departamento?", + "graph_builder.page_title.location.products.export_value.msa": "\u00bfQu\u00e9 productos exporta esta ciudad?", + "graph_builder.page_title.location.products.export_value.municipality": "\u00bfQu\u00e9 productos exporta este municipio?", + "graph_builder.page_title.location.products.import_value.country": "\u00bfQu\u00e9 productos importa Colombia?", + "graph_builder.page_title.location.products.import_value.department": "\u00bfQu\u00e9 productos importa este departamento?", + "graph_builder.page_title.location.products.import_value.msa": "\u00bfQu\u00e9 productos importa esta ciudad?", + "graph_builder.page_title.location.products.import_value.municipality": "\u00bfQu\u00e9 productos importa este municipio?", + "graph_builder.page_title.location.products.scatter.country": "\u00bfQu\u00e9 productos tienen el mayor potencial para Colombia?", + "graph_builder.page_title.location.products.scatter.department": "\u00bfQu\u00e9 productos tienen el mayor potencial para este departamento?", + "graph_builder.page_title.location.products.scatter.msa": "\u00bfQu\u00e9 productos tienen el mayor potencial para esta ciudad?", + "graph_builder.page_title.location.products.scatter.municipality": "\u00bfQu\u00e9 productos tienen el mayor potencial para este municipio?", + "graph_builder.page_title.location.products.similarity.country": "\u00bfC\u00f3mo es el mapa de los productos de Colombia?", + "graph_builder.page_title.location.products.similarity.department": "\u00bfC\u00f3mo es el mapa de los productos de este departamento?", + "graph_builder.page_title.location.products.similarity.msa": "\u00bfC\u00f3mo es el mapa de los productos de esta ciudad?", + "graph_builder.page_title.location.products.similarity.municipality": "\u00bfC\u00f3mo es el mapa de los productos de este municipio?", + "graph_builder.page_title.nonag.departments.num_farms": "\u00bfCu\u00e1ntas unidades productivas rurales (UPAs y UPNAs) por departamento tienen esta actividad no agropecuaria?", + "graph_builder.page_title.nonag.municipalities.num_farms": "\u00bfCu\u00e1ntas unidades productivas rurales (UPAs y UPNAs) por municipio tienen esta actividad no agropecuaria?", + "graph_builder.page_title.product.cities.export_value": "\u00bfQu\u00e9 ciudades en Colombia exportan este producto?", + "graph_builder.page_title.product.cities.import_value": "\u00bfQu\u00e9 ciudades en Colombia importan este producto?", + "graph_builder.page_title.product.departments.export_value": "\u00bfQu\u00e9 departamentos en Colombia exportan este producto?", + "graph_builder.page_title.product.departments.import_value": "\u00bfQu\u00e9 departamentos en Colombia importan este producto?", + "graph_builder.page_title.product.partners.export_value": "\u00bfA d\u00f3nde exporta Colombia este producto?", + "graph_builder.page_title.product.partners.export_value.destination": "\u00bfA qu\u00e9 pa\u00edses env\u00eda {{location}} sus exportaciones de {{product}}?", + "graph_builder.page_title.product.partners.import_value": "\u00bfDe d\u00f3nde importa Colombia este producto?", + "graph_builder.page_title.product.partners.import_value.origin": "\u00bfDe qu\u00e9 pa\u00edses recibe {{location}} sus importaciones de {{product}}?", + "graph_builder.questions.label": "Cambiar pregunta", + "graph_builder.recirc.header.industry": "Lea el perfil de este sector", + "graph_builder.recirc.header.location": "Lea el perfil de este lugar", + "graph_builder.recirc.header.product": "Lea el perfil de este producto", + "graph_builder.search.placeholder.agproducts": "Se\u00f1ale productos agropecuarios en el siguiente gr\u00e1fico", + "graph_builder.search.placeholder.cities": "Destaque una ciudad en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.departments": "Destaque un departamento en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.farmtypes": "Se\u00f1ale un tipo de unidad de producci\u00f3n rural en el siguiente gr\u00e1fico", + "graph_builder.search.placeholder.industries": "Destaque un sector en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.landUses": "Se\u00f1ale un uso de suelo en el siguiente gr\u00e1fico", + "graph_builder.search.placeholder.livestock": "Se\u00f1ale una especie pecuaria en el siguiente gr\u00e1fico", + "graph_builder.search.placeholder.locations": "Destaque un lugar en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.municipalities": "Se\u00f1ale una municipio en el siguiente gr\u00e1fico", + "graph_builder.search.placeholder.nonags": "Se\u00f1ale una actividad no agropecuaria en el siguiente gr\u00e1fico", + "graph_builder.search.placeholder.occupations": "Destaque una ocupaci\u00f3n en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.partners": "Resaltar socios comerciales en la gr\u00e1fica inferior", + "graph_builder.search.placeholder.products": "Destaque un producto en el gr\u00e1fico siguiente", + "graph_builder.search.submit": "Destacar", + "graph_builder.settings.change_time": "Cambiar per\u00edodo", + "graph_builder.settings.close_settings": "Archive y cierre", + "graph_builder.settings.label": "Cambiar caracter\u00edsticas", + "graph_builder.settings.rca": "Ventaja comparativa revelada", + "graph_builder.settings.rca.all": "Todo", + "graph_builder.settings.rca.greater": "> 1", + "graph_builder.settings.rca.less": "< 1", + "graph_builder.settings.to": "a", + "graph_builder.settings.year": "Selector de A\u00f1os", + "graph_builder.settings.year.next": "Siguiente", + "graph_builder.settings.year.previous": "Anterior", + "graph_builder.table.agproduct": "Producto Agr\u00edcola", + "graph_builder.table.area": "\u00c1rea (ha)", + "graph_builder.table.average_livestock_load": "", + "graph_builder.table.average_wages": "Salario mensual promedio, Col$ ", + "graph_builder.table.avg_wage": "Salario mensual promedio, Col$ ", + "graph_builder.table.code": "C\u00f3digo", + "graph_builder.table.cog": "Valor estrat\u00e9gico", + "graph_builder.table.coi": "Complejidad exportadora potencial", + "graph_builder.table.complexity": "Complejidad", + "graph_builder.table.country": "Pa\u00eds", + "graph_builder.table.department": "Departamento", + "graph_builder.table.distance": "Distancia", + "graph_builder.table.eci": "Complejidad exportadora", + "graph_builder.table.employment": "Empleo", + "graph_builder.table.employment_growth": "Tasa de crecimiento del empleo ({{yearRange}})", + "graph_builder.table.export": "Exportaci\u00f3n", + "graph_builder.table.export_num_plants": "N\u00famero de empresas", + "graph_builder.table.export_rca": "Ventaja comparativa revelada", + "graph_builder.table.export_value": "Exportaciones, USD", + "graph_builder.table.farmtype": "Tipo de UPA", + "graph_builder.table.gdp_pc_real": "PIB per c\u00e1pita", + "graph_builder.table.gdp_real": "PIB", + "graph_builder.table.import_value": "Importaciones, USD", + "graph_builder.table.industry": "Sector", + "graph_builder.table.industry_coi": "Complejidad sectorial potencial", + "graph_builder.table.industry_eci": "Complejidad sectorial", + "graph_builder.table.land_harvested": "\u00c1rea cosechada (ha)", + "graph_builder.table.land_sown": "\u00c1rea sembrada (ha)", + "graph_builder.table.land_use": "Usos del suelo", + "graph_builder.table.less_than_5": "Menos de 5", + "graph_builder.table.livestock": "Especie", + "graph_builder.table.location": "Lugar", + "graph_builder.table.monthly_wages": "Salario mensual promedio, Col$", + "graph_builder.table.name": "Nombre", + "graph_builder.table.nonag": "Actividades no agropecuarias", + "graph_builder.table.num_establishments": "N\u00famero de empresas", + "graph_builder.table.num_farms": "N\u00famero de Unidades de Producci\u00f3n", + "graph_builder.table.num_farms_ag": "N\u00famero de UPAs", + "graph_builder.table.num_farms_nonag": "N\u00famero de UPNAs", + "graph_builder.table.num_livestock": "N\u00famero de animales", + "graph_builder.table.num_vacancies": "Vacantes", + "graph_builder.table.occupation": "Ocupaci\u00f3n", + "graph_builder.table.parent": "Grupo", + "graph_builder.table.parent.country": "Regi\u00f3n", + "graph_builder.table.parent.location": "Regi\u00f3n", + "graph_builder.table.population": "Poblaci\u00f3n", + "graph_builder.table.production_tons": "Producci\u00f3n (tons)", + "graph_builder.table.rca": "Ventaja comparativa revelada", + "graph_builder.table.read_more": "\u00bfNo entiende alguno de estos t\u00e9rminos? Consulte el", + "graph_builder.table.share": "Participaci\u00f3n", + "graph_builder.table.wages": "N\u00f3mina salarial total, Col$ (miles)", + "graph_builder.table.year": "A\u00f1o", + "graph_builder.table.yield_index": "\u00cdndice de Rendimiento de Cultivos", + "graph_builder.table.yield_ratio": "Rendimiento de Cultivos (tons/ha)", + "graph_builder.view_more": "Muestre m\u00e1s", + "header.agproduct": "Productos agr\u00edcolas", + "header.destination": "Destino", + "header.destination_by_products": "Destinos por productos", + "header.employment": "Empleo", + "header.export": "Exportaciones", + "header.farmtypes.area": "Tipos de UPAs", + "header.import": "Importaciones", + "header.index": "\u00cdndice", + "header.industry": "Sectores", + "header.industry_potential": "Potencial", + "header.industry_space": "Mapa de los sectores ", + "header.land-use": "Usos del suelo", + "header.landUse": "Usos del suelo", + "header.landUses.area": "Usos del suelo", + "header.land_harvested": "Terreno Cosechado", + "header.land_sown": "\u00c1rea sembrada (ha)", + "header.landuse": "Usos del suelo", + "header.livestock": "Especies Pecuarias", + "header.livestock.num_farms": "N\u00famero de UPAs", + "header.livestock.num_livestock": "N\u00famero de cabezas de ganado", + "header.livestock_num_farms": "N\u00famero de UPAs", + "header.livestock_num_livestock": "N\u00famero de cabezas de ganado", + "header.location": "Lugares", + "header.nonag": "Actividades no agropecuarias", + "header.occupation": "Ocupaciones", + "header.occupation.available_jobs": "Vacantes anunciadas", + "header.origin": "Origen", + "header.origin_by_products": "Origen por productos", + "header.overview": "Resumen", + "header.partner": "Socios comerciales", + "header.product": "Productos ", + "header.product_potential": "Potencial", + "header.product_space": "Mapa de los productos", + "header.production_tons": "Producci\u00f3n", + "header.region": "Por departamento", + "header.rural": "Preguntas: Actividades Rurales", + "header.subregion": "Por ciudad", + "header.subsubregion": "Por municipio", + "header.wage": "N\u00f3mina total", + "header.yield_ratio": "Productividad", + "index.builder_cta": "Explore las gr\u00e1ficas sobre el caf\u00e9", + "index.builder_head": "Luego vaya al graficador", + "index.builder_subhead": "Haga sus propios gr\u00e1ficos y mapas", + "index.complexity_caption": "\u00bfQu\u00e9 tan bueno es este enfoque? Las predicciones de crecimiento basadas en la complejidad son seis veces m\u00e1s preocsas que las basadas en variables convencionales, como los \u00cdndice de Competitividad Mundial. ", + "index.complexity_cta": "Lea m\u00e1s sobre los conceptos de complejidad", + "index.complexity_figure.WEF_name": "\u00cdndice de Competitividad Mundial", + "index.complexity_figure.complexity_name": "\u00cdndice de complejidad econ\u00f3mica", + "index.complexity_figure.head": "Crecimiento econ\u00f3mico explicado (% de la varianza decenal)", + "index.complexity_head": "La ventaja de la complejidad", + "index.complexity_subhead": "Los pa\u00edses que exportan productos complejos, que requieren una gran cantidad de conocimientos, crecen m\u00e1s r\u00e1pido que los que exportan materias primas. Usando los m\u00e9todos para medir y visualizar la complejidad desarrollados por la Universidad de Harvard, Datlas permite explorar las posibilidades productivas y de exportaci\u00f3n de los departamentos y ciudades colombianas.", + "index.country_profile": "Lea el perfil de Colombia", + "index.dropdown.industries": "461,488", + "index.dropdown.locations": "41,87,34,40", + "index.dropdown.products": "1143,87", + "index.farmandland_head": "Aprenda sobre Actividades Rurales", + "index.future_head": "Avizorando el futuro", + "index.future_subhead": "Los gr\u00e1ficos de dispersi\u00f3n y diagramas de redes permiten encontrar los sectores productivos que tienen las mejores posibilidades en un departamento o ciudad.", + "index.graphbuilder.id": "87", + "index.header_h1": "El Atlas Colombiano de Complejidad Econ\u00f3mica", + "index.header_head": "Colombia como usted nunca la ha visto", + "index.header_subhead": "Visualice las posibilidades de cualquier sector, cualquier producto de exportaci\u00f3n o cualquier lugar en Colombia.", + "index.industry_head": "Ent\u00e9rese de un sector", + "index.industry_q1": "\u00bfEn d\u00f3nde emplea m\u00e1s personas el sector qu\u00edmico de Colombia?", + "index.industry_q1.id": "461", + "index.industry_q2": "\u00bfQu\u00e9 ocupaciones demanda la sector qu\u00edmico?", + "index.industry_q2.id": "461", + "index.landuse_q1": "\u00bfCu\u00e1ntas hect\u00e1reas sembradas por cultivo hay en Colombia?", + "index.livestock_q1": "\u00bfCu\u00e1les y cu\u00e1ntas son las especies pecuarias en Colombia?", + "index.location_head": "Aprenda sobre un lugar", + "index.location_q1": "\u00bfQu\u00e9 sectores emplean m\u00e1s gente en Bogot\u00e1 Met?", + "index.location_q1.id": "41", + "index.location_q2": "\u00bfQu\u00e9 exportaciones tienen el mayor potencial en Bogot\u00e1 Met?", + "index.location_q2.id": "41", + "index.location_viewall": "Vea todas las preguntas", + "index.present_head": "Mapeando el presente", + "index.present_subhead": "Utilice nuestros diagramas, gr\u00e1ficos y mapas para descomponer las exportaciones, el empleo formal o las actividades rurales de su departamento, ciudad o municipio.", + "index.product_head": "Aprenda sobre un producto de exportaci\u00f3n", + "index.product_q1": "\u00bfQu\u00e9 lugares de Colombia exportan computadores?", + "index.product_q1.id": "1143", + "index.product_q2": "\u00bfQu\u00e9 lugares de Colombia importan computadores?", + "index.product_q2.id": "1143", + "index.profile.id": "1", + "index.profiles_cta": "Lea el perfil de Antioquia", + "index.profiles_head": "Comience por los perfiles", + "index.profiles_subhead": "S\u00f3lo lo esencial, en un resumen de una p\u00e1gina", + "index.questions_head": "No somos una bola de cristal, pero podemos responder muchas preguntas", + "index.questions_subhead": "index.questions_subhead", + "index.research_head": "Investigaci\u00f3n mencionada en", + "industry.show.avg_wages": "Salarios promedio ({{year}})", + "industry.show.employment": "Empleo ({{year}})", + "industry.show.employment_and_wages": "Empleo formal y salarios", + "industry.show.employment_growth": "Tasa de crecimiento del empleo ({{yearRange}})", + "industry.show.industries": "Sectores", + "industry.show.industry_composition": "Composici\u00f3n del sector ({{year}})", + "industry.show.occupation": "Ocupaciones", + "industry.show.occupation_demand": "Ocupaciones m\u00e1s demandadas en este sector, {{year}}", + "industry.show.value": "Valor", + "last_year": "2014", + "location.model.country": "Colombia", + "location.model.department": "departamento", + "location.model.msa": "ciudad", + "location.model.municipality": "municipio", + "location.show.ag_farmsize": "Tama\u00f1o promedio de UPAs", + "location.show.all_departments": "Comparaci\u00f3n con otros departamentos", + "location.show.all_regions": "En comparaci\u00f3n con los otros lugares", + "location.show.average_livestock_load": "", + "location.show.bullet.gdp_grow_rate": "La tasa de crecimiento del PIB en el per\u00edodo {{yearRange}} fue {{gdpGrowth}}, comparada con 5,3% para toda Colombia.", + "location.show.bullet.gdp_pc": "El PIB per capita de {{name}} es {{lastGdpPerCapita}}, comparado con Col$15,1 millones para toda Colombia en 2014.", + "location.show.bullet.last_pop": "La poblaci\u00f3n es {{lastPop}} de personas, frente a 46,3 millones de personas en todo el pa\u00eds en 2014.", + "location.show.eci": "Complejidad exportadora", + "location.show.employment": "Empleo total ({{lastYear}})", + "location.show.employment_and_wages": "Empleo formal y salarios", + "location.show.export_possiblities": "Posibilidades de exportaci\u00f3n", + "location.show.export_possiblities.footer": "Los productos indicados pueden no ser viables debido a condiciones del lugar que no se consideran en el an\u00e1lisis de similitud tecnol\u00f3gica.", + "location.show.export_possiblities.intro": "Hemos encontrado que los pa\u00edses que exportan productos m\u00e1s complejos crecen m\u00e1s r\u00e1pido. Usando el \"mapa del producto\" presentado arriba, estamos destacando productos de alto potencial para {{name}}, ordenados por las mejores combinaciones de complejidad actual y valor estrat\u00e9gico.", + "location.show.exports": "Exportaciones ({{year}})", + "location.show.exports_and_imports": "Exportaciones e importaciones", + "location.show.gdp": "PIB", + "location.show.gdp_pc": "PIB per c\u00e1pita", + "location.show.growth_annual": "Tasa de crecimiento ({{yearRange}})", + "location.show.imports": "Importaciones ({{year}})", + "location.show.nonag_farmsize": "Tama\u00f1o promedio de UPNAs (ha)", + "location.show.overview": "Resumen", + "location.show.population": "Poblaci\u00f3n", + "location.show.subregion.exports": "Composici\u00f3n de exportaciones por municipio ({{year}})", + "location.show.subregion.imports": "Composici\u00f3n de importaciones por municipio ({{year}})", + "location.show.subregion.title": "Exportaciones e importaciones por municipio", + "location.show.total_wages": "N\u00f3mina salarial ({{lastYear}})", + "location.show.value": "Valor", + "location.show.yield_index": "\u00cdndice de Rendimiento de Cultivos", + "pageheader.about": "Acerca de Datlas", + "pageheader.alternative_title": "Atlas de complejidad econ\u00f3mica", + "pageheader.brand_slogan": "Colombia como usted nunca la ha visto", + "pageheader.download": "Acerca de los datos", + "pageheader.graph_builder_link": "Graficador", + "pageheader.profile_link": "Perfil", + "pageheader.rankings": "Rankings", + "pageheader.search_link": "Buscar", + "pageheader.search_placeholder": "Busque un lugar, sector, producto o actividad rural", + "pageheader.search_placeholder.industry": "Busque un sector", + "pageheader.search_placeholder.location": "Busque un lugar", + "pageheader.search_placeholder.product": "Busque un producto", + "pageheader.search_placeholder.rural": "Busque actividades rurales", + "rankings.explanation.body": "", + "rankings.explanation.title": "Explicaci\u00f3n", + "rankings.intro.p": "Comparaci\u00f3n entre departamentos o ciudades", + "rankings.pagetitle": "Rankings", + "rankings.section.cities": "Ciudades", + "rankings.section.departments": "Departamentos", + "rankings.table-title": "Posici\u00f3n", + "search.didnt_find": "\u00bfEncontr\u00f3 lo que buscaba? Nos interesa saber: Datlascolombia@bancoldex.com", + "search.header": "resultados", + "search.intro": "Busque el lugar, producto, sector u ocupaci\u00f3n que le interese", + "search.level.4digit": "Partida arancelaria (1992) a cuatro d\u00edgitos", + "search.level.class": "CIIU a cuatro d\u00edgitos", + "search.level.country": "Pa\u00eds", + "search.level.department": "Departamento", + "search.level.division": "CIIU a dos d\u00edgitos", + "search.level.level1": "", + "search.level.level2": "", + "search.level.level3": "", + "search.level.msa": "Ciudad", + "search.level.municipality": "Municipio", + "search.level.parent.4digit": "Partida arancelaria (1992) a dos d\u00edgitos", + "search.level.parent.class": "CIIU a dos d\u00edgitos", + "search.level.parent.country": "Regi\u00f3n", + "search.placeholder": "Escriba aqu\u00ed para buscar lo que quiere", + "search.results_agproducts": "Productos agr\u00edcolas", + "search.results_industries": "Sectores", + "search.results_landuses": "Usos de suelo", + "search.results_livestock": "Especies Pecuarias", + "search.results_locations": "Lugares", + "search.results_nonag": "Actividades no agropecuarias", + "search.results_products": "Productos", + "search.results_rural": "Actividades rurales", + "table.export_data": "Descargar Datos", + "thousands_delimiter": "." +}; diff --git a/app/locales/es-col/translationsold.js b/app/locales/es-col/translationsold.js new file mode 100644 index 00000000..3c2cb86f --- /dev/null +++ b/app/locales/es-col/translationsold.js @@ -0,0 +1,568 @@ +export default { + "abbr_billion": "mm", + "abbr_million": "mill", + "abbr_thousand": "miles", + "abbr_trillion": "bill", + "about.downloads.explanation.p1": "Descarque el documento que explica c\u00f3mo se calcula cada una de las variables de complejidad que utiliza Datlas.", + "about.downloads.explanation.title": "M\u00e9todos de c\u00e1lculo de las variables de complejidad", + "about.downloads.locations": "Listas de departmentos, ciudades (incluyendo \u00e1reas metropolitanas) y municipios", + "about.glossary": "V\u00e9ase la p\u00e1gina \"Acerca de los datos\" para m\u00e1s informaci\u00f3n sobre fuentes, m\u00e9todos de c\u00e1lculo de las variables de complejidad y bases de datos descargables.
Un \u00e1rea metropolitana es la combinaci\u00f3n de dos o m\u00e1s municipios que est\u00e1n conectados a trav\u00e9s de flujos relativamente grandes de trabajadores (con independencia de su tama\u00f1o o contig\u00fcidad). Un municipio debe enviar al menos un 10% de sus trabajadores como viajeros diarios al resto de los municipios del \u00e1rea metropolitana para considerarse como parte de dicha \u00e1rea.
Con base en esta definici\u00f3n hay 19 \u00e1reas metropolitanas en Colombia, que comprenden 115 municipios. Las \u00e1reas metropolitanas resultantes son distintas de las oficiales. Se sigue la metodolog\u00eda de G. Duranton ( 2013): \u201cDelineating metropolitan areas: Measuring spatial labour market networks through commuting patterns.\u201d Wharton School, University of Pennsylvania.
Son las \u00e1reas metropolitanas y los municipios de m\u00e1s de 50.000 habitantes con al menos 75% de poblaci\u00f3n en la cabecera municipal. En total hay 62 ciudades (19 \u00e1reas metropolitanas que comprenden 115 municipios, m\u00e1s 43 ciudades de un solo municipio). El concepto de ciudad es relevante porque Datlas presenta indicadores de complejidad por departamento y por ciudad, pero no por municipio.
Complejidad es la diversidad y sofisticaci\u00f3n del \"know-how\" que se requiere para producir algo. El concepto de complejidad es central en Datlas porque la productividad y el crecimiento de cualquier lugar dependen de que las empresas puedan producir y exportar con \u00e9xito bienes y servicios que requieren capacidades y conocimientos m\u00e1s complejos, es decir m\u00e1s diversos y exclusivos. La complejidad puede medirse para un lugar, para un producto de exportaci\u00f3n, o para un sector.
Mide el potencial de aumento de la complejidad de un lugar. Tiene en cuenta el nivel de complejidad de todos los sectores productivos (o productos de exportaci\u00f3n), junto con la \u201cdistancia\u201d a los dem\u00e1s sectores (o productos). Con esta informaci\u00f3n mide la probabilidad de que aparezcan nuevos sectores (o exportaciones) y qu\u00e9 tanto elevar\u00edan la complejidad del lugar. Valores m\u00e1s altos indican que es m\u00e1s probable desarrollar nuevos sectores (o productos) m\u00e1s complejos que los que ya se tienen.
La complejidad potencial basada en sectores se calcula para los departamentos y ciudades, no para los dem\u00e1s municipios. La complejidad potencial basada en las exportaciones se calcula solamente por departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
DANE es el Departamento Administrativo Nacional de Estad\u00edstica de Colombia, fuente de todos los datos sobre el PIB y la poblaci\u00f3n que utiliza Datlas.
DIAN es la Direcci\u00f3n de Impuestos y Aduanas Nacionales, fuente de toda la informaci\u00f3n sobre exportaciones e importaciones de Datlas.
La \u201cdistancia\u201d es una medida de la capacidad de un lugar para desarrollar un sector o una exportaci\u00f3n espec\u00edfica, teniendo en cuenta las capacidades productivas existentes. La \u201cdistancia\u201d es menor en la medida en que las capacidades requeridas por un sector o exportaci\u00f3n son m\u00e1s similares a las ya existentes. En esa medida ser\u00e1n mayores las posibilidades de que desarrolle con \u00e9xito el sector o exportaci\u00f3n. Visto de otra forma, la distancia refleja la proporci\u00f3n del conocimiento productivo que se necesita para que aparezca un sector o exportaci\u00f3n que a\u00fan no existe en el lugar.
Las distancias por sectores productivos se calculan solamente para los departamentos y ciudades, no para los dem\u00e1s municipios. Las distancias para las exportaciones se calculan solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
Es una medida de cu\u00e1ntos productos diferentes puede hacer un lugar. La producci\u00f3n de un bien cualquiera requiere un conjunto espec\u00edfico de capacidades; por consiguiente la diversidad es otra forma de expresar la cantidad de conocimiento productivo de un lugar.
El empleo formal es aquel que est\u00e1 cubierto por el sistema de seguridad social en salud y/o por el sistema de pensiones. No incluye trabajadores independientes. El empleo formal reportado es el n\u00famero de empleados formales en un mes promedio. La tasa de formalidad es el empleo formal dividido por la poblaci\u00f3n mayor de 15 a\u00f1os. Los datos de empleo y salarios provienen de la PILA del Ministerio de Salud. Los datos de poblaci\u00f3n son del DANE.
El conteo de empresas con actividad productiva por lugar (municipio, departamento, nacional) se hizo teniendo en cuenta todas aquellas empresas registradas en la PILA que hicieron alg\u00fan aporte a la seguridad social para sus empleados en el a\u00f1o de referencia (aunque no hayan estado en operaci\u00f3n todo el a\u00f1o).
El conteo de empresas exportadoras o importadoras se hizo por municipio y producto teniendo en cuenta cualquier empresa que seg\u00fan la DIAN hubiera realizado alguna operaci\u00f3n en el a\u00f1o de referencia (por consiguiente, el conteo de empresas exportadoras o importadoras de un producto por departamento o para todo el pa\u00eds puede tener duplicaciones).
Ordena los productos de exportaci\u00f3n seg\u00fan qu\u00e9 tantas capacidades productivas se requieren para su fabricaci\u00f3n. Productos complejos de exportaci\u00f3n, tales como qu\u00edmicos y maquinaria, requieren un nivel sofisticado y diverso de conocimientos que s\u00f3lo se consigue con la interacci\u00f3n en empresas de muchos individuos con conocimientos especializados. Esto contrasta con las exportaciones de baja complejidad, como el caf\u00e9, que requieren apenas conocimientos productivos b\u00e1sicos que se pueden reunir en una empresa familiar. Para calcular la complejidad de los productos de exportaci\u00f3n se utilizan datos de Comtrade de las Naciones Unidas para cerca de 200 pa\u00edses.
Una medida de la sofisticaci\u00f3n de las capacidades productivas de un lugar basada en la diversidad y la ubicuidad de sus sectores productivos o sus exportaciones. Un lugar con alta complejidad produce o exporta bienes y servicios que pocos otros lugares producen. Lugares altamente complejos tienden a ser m\u00e1s productivos y a generar mayores salarios e ingresos. Los pa\u00edses con canastas de exportaci\u00f3n m\u00e1s sofisticadas de lo que se espera para su nivel de ingresos (como China) tienden a crecer m\u00e1s r\u00e1pido que aquellos en los que es todo lo contrario (como Grecia).
El ICE basado en los sectores productivos (o \u00edndice de complejidad productiva) se calcula solamente para departamentos y ciudades, no para los dem\u00e1s municipios. La ICE basado en las exportaciones se calcula solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la estructura de las exportaciones es inestable y/o poco representativa).
Es una medida de qu\u00e9 tantas capacidades productivas requieren un sector para operar. El ICS y el \u00cdndice de Complejidad del Producto (ICP) son medidas estrechamente relacionadas, pero se calculan en forma separada con datos y sistemas de clasificaci\u00f3n independientes, ya que la complejidad del producto se calcula solo para mercanc\u00edas comercializables internacionalmente, mientras que los sectores productivos comprenden todos los sectores que generan empleo, incluidos todos los servicios y el sector p\u00fablico. Un sector es complejo si requiere un nivel sofisticado de conocimientos productivos, como los servicios financieros y los sectores farmac\u00e9uticos, en donde trabajan en grandes empresas muchos individuos con conocimientos especializados distintos. La complejidad de un sector se mide calculando la diversidad promedio de los lugares donde existe el sector y la ubicuidad promedio de los sectores de esos lugares. Los datos de empleo formal necesarios para estos c\u00e1lculos provienen de la PILA del Ministerio de Salud.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos para la exportaci\u00f3n de unos productos y otros. Cada punto representa un producto de exportaci\u00f3n y cada enlace entre un par de productos indica que requieren capacidades productivas similares. Aparecen con color los productos de exportaci\u00f3n que se exportan con ventaja comparativa revelada mayor que uno. Cuando se selecciona un producto, el gr\u00e1fico destaca los productos que requieren capacidades productivas semejantes. Un producto con m\u00e1s enlaces con otros que no se exportan ofrece mayor potencial para la diversificaci\u00f3n exportadora a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el producto tiene un alto potencial para elevar la complejidad del lugar.
El mapa de similitud de los productos se basa en los datos de comercio internacional de 192 pa\u00edses en m\u00e1s de 50 a\u00f1os compilados por Comtrade. Ver http://atlas.cid.harvard.edu/.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos por unos sectores u otros. Cada punto representa un sector y cada enlace entre un par de sectores indica que requieren capacidades productivas similares. Aparecen con color los sectores con ventaja comparativa revelada mayor que uno. Cuando se selecciona un lugar, el gr\u00e1fico destaca los sectores que requieren capacidades productivas semejantes. Un sector con m\u00e1s enlaces con sectores que no existen ofrece mayor potencial para la diversificaci\u00f3n productiva a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el sector tiene un alto potencial para elevar la complejidad del lugar. El mapa de los sectores productivos de Colombia fue construido a partir de la informaci\u00f3n de empleo formal por municipio de la PILA del Ministerio de Salud.
Las ocupaciones se clasifican de acuerdo con el \u00cdndice Num\u00e9rico de la Red Ocupacional (ONET). Los datos sobre las ocupaciones (salarios ofrecidos, estructura ocupacional por sector y nivel educativo por ocupaci\u00f3n) provienen de los anuncios de vacantes de empleo colocados por las empresas en los sitios de empleo de Internet p\u00fablicos y privados. Los datos fueron procesados por Jeisson Arley Rubio C\u00e1rdenas (Universidad del Rosario, Bogot\u00e1) y Jaime Mauricio Monta\u00f1a Doncel (Escuela de Econom\u00eda de Par\u00eds).
PILA es la Planilla Integrada de Aportes Laborales del Ministerio de Salud. Es la fuente principal de los datos por sector. Contiene informaci\u00f3n de empleo formal, salarios y n\u00famero de empresas por municipio y sector.
El sistema de clasificaci\u00f3n de los productos de exportaci\u00f3n e importaci\u00f3n de Datlas es la nomenclatura arancelaria NABANDINA, la cual calza a seis d\u00edgitos con la clasificaci\u00f3n internacional del Sistema Armonizado (SA). Datlas presenta informaci\u00f3n de productos (de exportaci\u00f3n e importaci\u00f3n) a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n proviene de la DIAN.
La clasificaci\u00f3n sectorial de Colombia es una versi\u00f3n modificada de la Clasificaci\u00f3n Sectorial Internacional Uniforme de todas las Actividades Econ\u00f3micas (CIIU). Datlas presenta informaci\u00f3n sectorial a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n proviene de la PILA. Siguiendo las convenciones de la contabilidad nacional, los trabajadores contratados por agencias de empleo temporal se clasifican en el sector de suministro de personal (7491), no en el sector de la empresa donde prestan servicios.
Una medida del n\u00famero de lugares que pueden producir un producto.
Capta en qu\u00e9 medida un lugar podr\u00eda beneficiarse mediante el desarrollo de un sector en particular (o un producto de exportaci\u00f3n). Tambi\u00e9n conocida como \"ganancia de oportunidad\", esta medida representa la distancia a todos los otros sectores (o exportaciones) que un lugar no produce actualmente con ventaja comparativa revelada mayor que uno y su respectiva complejidad. Refleja c\u00f3mo un nuevo sector (o exportaci\u00f3n) puede abrir paso a otros sectores o productos m\u00e1s complejos. El valor estrat\u00e9gico de los sectores productivos se calcula solamente para departamentos y ciudades, no para los dem\u00e1s municipios. El valor estrat\u00e9gico de las exportaciones se calcula solamente para los departamentos y ciudades con exportaciones per c\u00e1pita mayores de 50 d\u00f3lares (por debajo de este umbral la composici\u00f3n de las exportaciones es inestable y/o poco representativa).
Mide el tama\u00f1o relativo de un sector o un producto de exportaci\u00f3n en un lugar. La VCR, que no debe interpretarse como un indicador de eficiencia productiva o de competitividad, se conoce tambi\u00e9n por el nombre de \"cociente de localizaci\u00f3n\u201d. Se calcula como el cociente entre la participaci\u00f3n del empleo formal de un sector en el lugar y la participaci\u00f3n del empleo formal total del mismo sector en todo el pa\u00eds. Por ejemplo, si la industria qu\u00edmica en una ciudad genera el 10% del empleo, mientras que en todo el pa\u00eds genera el 1% del empleo, la VCR de la industria qu\u00edmica en dicha ciudad es 10. Para una exportaci\u00f3n es la relaci\u00f3n entre la participaci\u00f3n que tiene el producto en la canasta de exportaci\u00f3n del lugar y la participaci\u00f3n que tiene en el comercio mundial. Si esta relaci\u00f3n es mayor que 1, se dice que el lugar tiene ventaja comparativa revelada en el sector o en la exportaci\u00f3n. Por ejemplo, si el caf\u00e9 representa el 30% de las exportaciones de un departamento colombiano, pero da cuenta apenas del 0.3% del comercio mundial, entonces la VCR del departamento en caf\u00e9 es 100.
", + "about.glossary_name": "Glosario", + "about.project_description.cid.header": "El CID y el Laboratorio de Crecimiento ", + "about.project_description.cid.p1": "Este proyecto ha sido desarrollado por el Centro para el Desarrollo Internacional de la Universidad de Harvard (CID), bajo la direcci\u00f3n del profesor Ricardo Hausmann", + "about.project_description.cid.p2": "El CID tiene por objetivos avanzar en la comprensi\u00f3n de los desaf\u00edos del desarrollo y ofrecer soluciones viables para reducir la pobreza mundial. El Laboratorio de Crecimiento es uno de los principales programas de investigaci\u00f3n del CID.", + "about.project_description.contact.header": "Informaci\u00f3n de contacto", + "about.project_description.contact.link": "Datlascolombia@bancoldex.com", + "about.project_description.founder1.header": "Banc\u00f3ldex", + "about.project_description.founder1.p": "Banc\u00f3ldex, el banco de desarrollo empresarial de Colombia, est\u00e1 comprometido con el desarrollo de instrumentos financieros y no financieros orientados a mejorar la competitividad, la productividad, el crecimiento y la internacionalizaci\u00f3n de las empresas colombianas. Aprovechando su posici\u00f3n de mercado y su capacidad para establecer relaciones empresariales, Banc\u00f3ldex gestiona activos financieros, desarrolla soluciones de acceso a la financiaci\u00f3n y ofrece soluciones de capital innovadoras que fomentan y aceleran el crecimiento empresarial. Adem\u00e1s de ofrecer pr\u00e9stamos tradicionales, Banc\u00f3ldex ha sido designado para ejecutar varios programas de desarrollo tales como el Programa de Transformaci\u00f3n Productiva, iNNpulsa Colombia, iNNpulsa Mipyme y la Banca de las Oportunidades. Todos ellos conforman una oferta integrada de servicios para promover el entorno empresarial colombiano y la competitividad. Datlas es parte del Programa de Transformaci\u00f3n Productiva y la iniciativas INNpulsa Colombia.", + "about.project_description.founder2.header": "Fundaci\u00f3n Mario Santo Domingo", + "about.project_description.founder2.p": "Creada en 1953, la Fundaci\u00f3n Mario Santo Domingo (FMSD) es una organizaci\u00f3n sin fines de lucro dedicada a la implementaci\u00f3n de programas de desarrollo comunitario en Colombia. FMSD concentra sus principales esfuerzos en la construcci\u00f3n de viviendas asequibles dentro de un modelo de desarrollo comunitario llamado Desarrollo Integral de Comunidades Sustentables, dise\u00f1ado por el FMSD como respuesta al gran d\u00e9ficit de vivienda en Colombia. A trav\u00e9s de este programa, el FMSD proporciona apoyo social a las familias, as\u00ed como infraestructura social y urbana para los menos privilegiados. FMSD tambi\u00e9n contribuye al desarrollo empresarial de la regi\u00f3n Norte de Colombia y de Bogot\u00e1 a trav\u00e9s de su Unidad de Microfinanzas, que ofrece capacitaci\u00f3n y servicios financieros como el microcr\u00e9dito. M\u00e1s de 130.000 empresarios han recibido pr\u00e9stamos de la Fundaci\u00f3n desde su lanzamiento en 1984. FMSD tambi\u00e9n trabaja en identificar alianzas y sinergias entre los sectores p\u00fablico y privado en las \u00e1reas de desarrollo social cr\u00edticos, como la primera infancia, la sostenibilidad ambiental, la atenci\u00f3n de desastres, la educaci\u00f3n y la salud.", + "about.project_description.founders.header": "Entidades Patrocinadoras", + "about.project_description.founders.p": "Este proyecto es financiado por Banc\u00f3ldex y la Fundaci\u00f3n Mario Santo Domingo", + "about.project_description.github": "Revise nuestro c\u00f3digo", + "about.project_description.intro.p1": "En Colombia, las diferencias de ingresos entre regiones son enormes y han ido creciendo: las nuevas oportunidades de empleo se concentran cada vez m\u00e1s en las \u00e1reas metropolitanas de Bogot\u00e1, Medell\u00edn y Cali, aparte de los lugares donde se extraen petr\u00f3leo y otros minerales. El ingreso promedio de los residentes de Bogot\u00e1 es cuatro veces el de los colombianos que viven en los 12 departamentos m\u00e1s pobres.", + "about.project_description.intro.p2": "Datlas es una herramienta de diagn\u00f3stico para que las empresas, los inversionistas y las autoridades de gobierno puedan tomar decisiones que ayuden a elevar la productividad. Contiene informaci\u00f3n por departamento, \u00e1rea metropolitana y municipio sobre actividad productiva, empleo, salarios y exportaciones. Ofrece criterios para identificar los sectores y las exportaciones con potencial de crecimiento con base en la complejidad econ\u00f3mica.", + "about.project_description.intro.p3": "La complejidad econ\u00f3mica es una medida de las capacidades y conocimientos de los sectores productivos de un pa\u00eds o una ciudad. Para hacer una camisa, hay que dise\u00f1arla, producir la tela, cortar, coser, empacar el producto, comercializarlo y distribuirlo. Para que un pa\u00eds pueda producir camisas, necesita personas que tengan experiencia en cada una de estas \u00e1reas. Cada una de estas tareas implica muchas m\u00e1s capacidades de las que cualquier persona sola puede dominar. S\u00f3lo mediante la combinaci\u00f3n de know-how de diferentes personas puede hacerse el producto. El camino hacia el desarrollo econ\u00f3mico consiste en aprender a hacer cosas m\u00e1s sofisticadas. El juego de Scrabble puede servir de analog\u00eda: el jugador que tiene un mayor n\u00famero de letras variadas puede hacer m\u00e1s palabras y conseguir m\u00e1s puntos. Los pa\u00edses con una mayor diversidad de capacidades productivas pueden hacer una mayor diversidad de productos. El desarrollo econ\u00f3mico ocurre en la medida en que el pa\u00eds o la ciudad adquiere m\u00e1s capacidades y conocimientos para producir productos cada vez m\u00e1s complejos.", + "about.project_description.intro.p4": "Este enfoque conceptual que ha sido aplicado a nivel internacional en el Atlas de la Complejidad Econ\u00f3mica se utiliza ahora en esta herramienta en l\u00ednea para identificar las posibilidades de exportaci\u00f3n y de desarrollo sectorial de los departamentos, las \u00e1reas metropolitanas y las ciudades colombianas.", + "about.project_description.letter.header": "Bolet\u00edn de Estudios del CID", + "about.project_description.letter.p": "Inscr\u00edbase al Bolet\u00edn de Estudios del CID para mantenerse al d\u00eda con los avances de la investigaci\u00f3n y las herramientas pr\u00e1cticas en temas relacionados con la complejidad.", + "about.project_description.team.header": "El equipo acad\u00e9mico y t\u00e9cnico", + "about.project_description.team.p": "El equipo acad\u00e9mico de CID de Harvard: Ricardo Hausmann (director), Eduardo Lora (coordinador), Tim Cheston, Andr\u00e9s G\u00f3mez-Li\u00e9vano, Jos\u00e9 Ram\u00f3n Morales, Neave O\u2019Clery y Juan T\u00e9llez. El equipo de programaci\u00f3n y visualizaci\u00f3n de CID de Harvard: Greg Shapiro (coordinador), Mali Akmanalp, Katy Harris, Quinn Lee, Romain Vuillemot y Gus Wezerek. Asesor estad\u00edstico de Colombia: Marcela Eslava (Universidad de los Andes). Recopilaci\u00f3n y procesamiento de los datos de ofertas de empleo de Colombia: Jeisson Arley C\u00e1rdenas Rubio (Universidad del Rosario, Bogot\u00e1) y Jaime Mauricio Monta\u00f1a Doncel (Paris School of Economics).", + "about.project_description_name": "Acerca de Datlas", + "census_year": "2014", + "country.show.ag_farmsize": "", + "country.show.dotplot-column": "Departamentos de Colombia", + "country.show.eci": "0,037", + "country.show.economic_structure": "Estructura econ\u00f3mica", + "country.show.economic_structure.copy.p1": "Con una poblaci\u00f3n de 48,1 millones (a mayo 2015), Colombia es el tercer pa\u00eds m\u00e1s grande de Am\u00e9rica Latina. Su PIB total en 2014 fue Col $756,1 billones, o US$377,9 miles de millones a la tasa de cambio promedio de 2014 (1 US d\u00f3lar = 2000,6 pesos colombianos). En 2014, se alcanz\u00f3 un nivel de ingreso per c\u00e1pita de Col $15.864.953 o US$7.930. La tasa de crecimiento desde 2008 ha sido en promedio 4.3% (o 3.1% por persona). ", + "country.show.economic_structure.copy.p2": "Los servicios empresariales y financieros son el sector m\u00e1s grande, con una contribuci\u00f3n al PIB de 18,8%, seguidos por los servicios de gobierno, sociales y personales (16,5%) y las actividades manufactureras (11,2%). Bogot\u00e1 D.C., Antioquia y el Valle del Cauca concentran aproximadamente la mitad de la actividad productiva, con participaciones en el PIB de 24,7, 13,1 y 9,2%, respectivamente. Sin embargo, los departamentos con m\u00e1s alto PIB per c\u00e1pita son Casanare y Meta, ambos importantes productores de petr\u00f3leo. Los gr\u00e1ficos siguientes presentan m\u00e1s detalles.", + "country.show.employment_wage_occupation": "Empleo formal, ocupaciones y salarios", + "country.show.employment_wage_occupation.copy.p1": "En 2014, aproximadamente 21,6 millones de personas fueron ocupadas en empleos formales o informales, con un leve aumento respecto al a\u00f1o anterior (21,1 millones). Los registros de la PILA, que cubren el universo de los trabajadores que hacen contribuciones al sistema de seguridad social, indican que 13,3 millones de personas estuvieron ocupadas en alg\u00fan momento en empleos formales en 2013. Teniendo en cuenta el n\u00famero de meses empleados, el n\u00famero efectivo de trabajadores-a\u00f1o en el sector formal en 2013 fue 6,7 millones. Bogot\u00e1 DC, Antioquia y el Valle del Cauca generan, respectivamente 32,7, 16,7, and 10,7% del empleo formal (efectivo).", + "country.show.employment_wage_occupation.copy.p2": "Los siguientes gr\u00e1ficos ofrecen informaci\u00f3n m\u00e1s detallada de los patrones de empleo formal y los salarios pagados seg\u00fan los registros de PILA. Tambi\u00e9n se incluye informaci\u00f3n de vacantes anunciadas y salarios ofrecidos por ocupaci\u00f3n, calculados a partir de los anuncios colocados por empresas en sitios de Internet durante 2014.", + "country.show.export_complexity_possibilities": "Complejidad de las exportaciones y posibilidades de exportaci\u00f3n", + "country.show.export_complexity_possibilities.copy.p1": "El concepto de complejidad de las exportaciones es an\u00e1logo al de complejidad de los sectores sectorial presentado arriba, pero referido ahora a las exportaciones. Se mide mediante el \u00cdndice de Complejidad del Producto. Se ha comprobado que los pa\u00edses que exportan productos que son relativamente complejos con respecto a su nivel de desarrollo tienden a crecer m\u00e1s r\u00e1pido que los pa\u00edses que exportan bienes relativamente simples. Seg\u00fan la complejidad de su canasta exportadora en 2013, Colombia ocupa el puesto 53 entre 124 pa\u00edses. La tasa de crecimiento proyectada para Colombia con base en su complejidad y su nivel de desarrollo es 3,3% por a\u00f1o en el per\u00edodo 2013-2023.", + "country.show.export_complexity_possibilities.copy.p2": "El \"mapa de similitud tecnol\u00f3gica de los productos de exportaci\u00f3n\" (o mapa de los productos) que se presenta enseguida es una representaci\u00f3n gr\u00e1fica de la similitud tecnol\u00f3gica entre todos los productos de exportaci\u00f3n, seg\u00fan los patrones de exportaci\u00f3n de todos los pa\u00edses. Cada punto o nodo representa un producto; los nodos conectados entre s\u00ed requieren capacidades productivas semejantes. Los productos que est\u00e1n m\u00e1s conectados tienden a agruparse en el centro de la red, lo cual implica que las capacidades que ellos usan pueden ser utilizadas en la producci\u00f3n de muchos otros productos.", + "country.show.export_complexity_possibilities.copy.p3": "Los puntos que aparecen destacados representan productos que Colombia exporta en cantidades relativamente importantes (m\u00e1s exactamente, con ventaja comparativa revelada mayor de uno, v\u00e9ase el Glosario). Los colores representan grupos de productos (son los mismos colores usados para los sectores correspondientes en el mapa de similitud tecnol\u00f3gica presentado arriba). El gr\u00e1fico que aparece m\u00e1s abajo, junto con el cuadro que lo acompa\u00f1a, indica qu\u00e9 productos ofrecen las mejores posibilidades para Colombia, dadas las capacidades productivas que ya tiene el pa\u00eds y que tan \u2018distantes\u2019 son esas capacidades de las que requieren para exportar otras cosas. ", + "country.show.exports": "Exportaciones", + "country.show.exports.copy.p1": "Colombia export\u00f3 US$54,8 miles de millones en 2014, comparado con $58,8 miles de millones en 2013 y $60,1 miles de millones en 2012. Sus principales destinos de exportaci\u00f3n son los Estados Unidos, Venezuela, Ecuador y Per\u00fa. En 2014, los productos mineros (entre los cuales, petr\u00f3leo, carb\u00f3n y ferron\u00edquel son los m\u00e1s importantes) representaron 59,3% de las exportaciones totales de bienes; los productos manufacturados 35,6%, y los productos agr\u00edcolas 4,6%. Los siguientes gr\u00e1ficos presentan m\u00e1s detalles.", + "country.show.exports_composition_by_department": "Composici\u00f3n de las exportaciones por departamento ({{year}})", + "country.show.exports_composition_by_products": "Composici\u00f3n de las exportaciones ({{year}})", + "country.show.gdp": "Col $756,152 bill", + "country.show.gdp_per_capita": "Col $15.864.953", + "country.show.industry_complex": "Complejidad de los sectores productivos", + "country.show.industry_complex.copy.p1": "La complejidad de los sectores productivos, que se cuantifica mediante el \u00cdndice de Complejidad del Sector, es una media de la amplitud de las capacidades y habilidades \u2013know-how\u2013 que se requiere en un sector productivo. Se dice que sectores tales como qu\u00edmicos o maquinaria son altamente complejos porque requieren un nivel sofisticado de conocimientos productivos que solo es factible encontrar en grandes empresas donde interact\u00faa un n\u00famero de individuos altamente capacitados. En contraste, sectores como el comercio minorista o restaurantes requieren solo niveles b\u00e1sicos de capacitaci\u00f3n que pueden encontrarse incluso en una peque\u00f1a empresa familiar. Los sectores m\u00e1s complejos son m\u00e1s productivos y contribuyen m\u00e1s a elevar el ingreso per c\u00e1pita. Los departamentos y ciudades con sectores m\u00e1s complejos tienen una base productiva m\u00e1s diversificada y tienden a crear m\u00e1s empleo formal.", + "country.show.industry_complex.copy.p2": "El \"mapa de similitud tecnol\u00f3gica de los sectores\" (o mapa de los sectores) que se presenta enseguida es una representaci\u00f3n gr\u00e1fica de la similitud de las capacidades y habilidades entre pares de sectores. Cada punto (o nodo) representa un sector; los nodos conectados por l\u00edneas requieren capacidades semejantes. Los sectores con m\u00e1s conexiones usan capacidades que pueden ser utilizadas en muchos otros sectores. Los colores representan grupos de sectores.", + "country.show.industry_space": "Mapa de los sectores", + "country.show.nonag_farmsize": "", + "country.show.occupation.num_vac": "Vacantes anunciadas (2014)", + "country.show.population": "48,1 millones", + "country.show.product_space": "Mapa de los productos", + "country.show.total": "Totales", + "ctas.csv": "CSV", + "ctas.download": "Descargue estos datos", + "ctas.embed": "Insertar", + "ctas.excel": "Excel", + "ctas.export": "Exportar", + "ctas.facebook": "Facebook", + "ctas.pdf": "PDF", + "ctas.png": "PNG", + "ctas.share": "Compartir", + "ctas.twitter": "Twitter", + "currency": "Col$", + "decimal_delmiter": ",", + "downloads.cta_download": "Descargar", + "downloads.cta_na": "No disponible", + "downloads.head": "Acerca de los datos", + "downloads.industry_copy": "La Planilla Integrada de Aportes Laborales, PILA, del Ministerio de Salud, es la fuente principal de los datos por sector. Contiene informaci\u00f3n de empleo formal, salarios y n\u00famero de empresas por municipio y sector. La clasificaci\u00f3n sectorial de Colombia es una versi\u00f3n modificada de la Clasificaci\u00f3n Sectorial Internacional Uniforme de todas las Actividades Econ\u00f3micas (CIIU). La lista de los sectores productivos puede verse en las bases de datos descargables de sectores. Puede descargarse aqu\u00ed un archivo con la lista de los sectores productivos del CIIU los cu\u00e1les no aparecen representados en el mapa de los sectores (por razones que se explican en los M\u00e9todos de C\u00e1lculo).", + "downloads.industry_head": "Datos de sectores productivos (PILA)", + "downloads.industry_row_1": "Empleo, salarios, n\u00famero de empresas e indicadores de complejidad productiva ({{yearRange}})", + "downloads.list_of_cities.header": "Listas de departamentos, ciudades y municipios", + "downloads.map.cell": "Datos del mapa", + "downloads.map.header": "Mapa", + "downloads.occupations_copy": "Todos los datos sobre las ocupaciones (salarios ofrecidos por ocupaci\u00f3n y sector, y estructura ocupacional por sector) provienen de los anuncios de vacantes de empleo colocados por las empresas en los sitios de empleo de Internet p\u00fablicos y privados. Las ocupaciones se clasifican de acuerdo con el \u00cdndice Num\u00e9rico de la Red Ocupacional (ONET). Los datos fueron procesados \u200b\u200bpor Jeisson Arley Rubio C\u00e1rdenas, investigador de la Universidad del Rosario, Bogot\u00e1, y Jaime Mauricio Monta\u00f1a Doncel, estudiante de maestr\u00eda en la Escuela de Econom\u00eda de Par\u00eds.", + "downloads.occupations_head": "Datos de ocupaciones", + "downloads.occupations_row_1": "Vacantes laborales y salarios ofrecidos (2014)", + "downloads.other_copy": "El Departamento Administrativo Nacional de Estad\u00edstica, DANE, es la fuente de todos los datos sobre el PIB y la poblaci\u00f3n.", + "downloads.other_head": "Otros datos (DANE)", + "downloads.other_row_1": "PIB y variables demogr\u00e1ficas", + "downloads.thead_departments": "Departamentos", + "downloads.thead_met": "Ciudades", + "downloads.thead_muni": "Municipios", + "downloads.thead_national": "Nacional", + "downloads.trade_copy": "La fuente de todos los datos sobre las exportaciones e importaciones por departamento y municipio es la Direcci\u00f3n de Impuestos y Aduanas Nacionales, DIAN. Colombia utiliza la nomenclatura arancelaria NANDINA, la cual calza a los seis d\u00edgitos con el Sistema Armonizado (SA) de clasificaci\u00f3n internacional de productos. Eso lo estandarizamos despu\u00e9s a SA (HS) 1992 para resolver cualquier inconsistencia entre las versiones a trav\u00e9s de los a\u00f1os, de manera tal que los datos se puedan visualizar en el tiempo. La lista de partidas arancelarias puede verse en las bases de datos descargables de exportaci\u00f3n e importaci\u00f3n.El origen de las exportaciones se establece en dos etapas. Primero, se define el departamento de origen como es el \u00faltimo lugar donde tuvieron alg\u00fan procesamiento, ensamblaje o empaque, seg\u00fan la DIAN. Luego, se distribuyen los valores entre municipios seg\u00fan la composici\u00f3n del empleo de la firma correspondiente con base en la PILA (para las firmas sin esta informaci\u00f3n se asign\u00f3 el valor total a la capital del departamento). En el caso de las exportaciones de petr\u00f3leo (2709) y gas (2711), los valores totales se distribuyeron por origen seg\u00fan la producci\u00f3n por municipios (Agencia Nacional de Hidrocarburos y Asociaci\u00f3n Colombiana de Petr\u00f3leo) y en el caso de las exportaciones de refinados de petr\u00f3leo (2710) seg\u00fan el valor agregado por municipio (sectores 2231, 2322 y 2320 CIIU revisi\u00f3n 3, Encuesta Anual Manufacturera, DANE).
Los totales de exportaci\u00f3n por partida arancelaria pueden no corresponder a los datos oficiales porque quedan excluidas: (a) las exportaciones sin informaci\u00f3n sobre el sector del exportador y/o el departamento o municipio de origen, y (b) las exportaciones que en los datos de la DIAN tienen como destino las zonas francas; mientras que quedan incluidas: (c) las exportaciones de las zonas francas, que la DIAN no incluye en dichos totales.
De forma semejante, los totales de importaci\u00f3n por partida arancelaria pueden no corresponder a los datos oficiales porque quedan excluidas: (a) las importaciones sin informaci\u00f3n sobre el departamento o municipio de destino, y (b) las importaciones que en los datos de la DIAN tienen como origen las zonas francas; mientras que quedan incluidas: (c) las importaciones realizadas por las zonas francas, que la DIAN no incluye en dichos totales.
El archivo que describe la correspondencia entre la versi\u00f3n del Sistema Armonizado (HS) utilizado por la DIAN y su revisi\u00f3n de 1992 puede encontrarse aqu\u00ed.
Tambi\u00e9n puede descargarse aqu\u00ed un archivo con la lista de los productos del Sistema Armonizado los cu\u00e1les no aparecen representados en el mapa del producto (por razones que se explican en los M\u00e9todos de C\u00e1lculo).", + "downloads.trade_head": "Datos de exportaciones e importaciones (DIAN)", + "downloads.trade_row_1": "Exportaciones, importaciones e indicadores de complejidad ({{yearRange}})", + "downloads.trade_row_2": "Exportaciones e importaciones con origen y destino ({{yearRange}})", + "first_year": "2008", + "general.export_and_import": "Productos", + "general.geo": "Mapa geogr\u00e1fico", + "general.glossary": "Glosario", + "general.industries": "Sectores", + "general.industry": "sector", + "general.location": "lugar", + "general.locations": "Lugares", + "general.multiples": "Gr\u00e1ficos de \u00e1reas", + "general.occupation": "ocupaci\u00f3n", + "general.occupations": "Ocupaciones", + "general.product": "producto", + "general.scatter": "Gr\u00e1fico de dispersi\u00f3n", + "general.similarity": "mapa de los sectores", + "general.total": "Totales", + "general.treemap": "Gr\u00e1fico de composici\u00f3n", + "geomap.center": "4.6,-74.06", + "glossary.head": "Glosario", + "graph_builder.builder_mod_header.agproduct.departments.land_harvested": "", + "graph_builder.builder_mod_header.agproduct.departments.land_sown": "", + "graph_builder.builder_mod_header.agproduct.departments.production_tons": "", + "graph_builder.builder_mod_header.agproduct.municipalities.land_harvested": "", + "graph_builder.builder_mod_header.agproduct.municipalities.land_sown": "", + "graph_builder.builder_mod_header.agproduct.municipalities.production_tons": "", + "graph_builder.builder_mod_header.industry.cities.employment": "Empleo total", + "graph_builder.builder_mod_header.industry.cities.wage_avg": "Salarios mensuales promedio, Col$", + "graph_builder.builder_mod_header.industry.cities.wages": "N\u00f3mina salarial, Col$", + "graph_builder.builder_mod_header.industry.departments.employment": "Empleo total", + "graph_builder.builder_mod_header.industry.departments.wage_avg": "Salarios mensuales promedio, Col$", + "graph_builder.builder_mod_header.industry.departments.wages": "N\u00f3mina salarial, Col$", + "graph_builder.builder_mod_header.industry.locations.employment": "Empleo total", + "graph_builder.builder_mod_header.industry.locations.wage_avg": "Salarios mensuales promedio, Col$", + "graph_builder.builder_mod_header.industry.locations.wages": "N\u00f3mina salarial, Col$", + "graph_builder.builder_mod_header.industry.occupations.num_vacancies": "Total de vacantes", + "graph_builder.builder_mod_header.landUse.departments.area": "", + "graph_builder.builder_mod_header.landUse.municipalities.area": "", + "graph_builder.builder_mod_header.location.agproducts.land_harvested": "", + "graph_builder.builder_mod_header.location.agproducts.land_sown": "", + "graph_builder.builder_mod_header.location.agproducts.production_tons": "", + "graph_builder.builder_mod_header.location.farmtypes.num_farms": "", + "graph_builder.builder_mod_header.location.industries.employment": "Empleo total", + "graph_builder.builder_mod_header.location.industries.scatter": "Complejidad, distancia y valor estrat\u00e9gico de sectores potenciales ", + "graph_builder.builder_mod_header.location.industries.similarity": "Sectores con ventaja comparativa revelada >1 (con color) y <1 (gris)", + "graph_builder.builder_mod_header.location.industries.wages": "Salarios totales", + "graph_builder.builder_mod_header.location.landUses.area": "", + "graph_builder.builder_mod_header.location.livestock.num_farms": "", + "graph_builder.builder_mod_header.location.livestock.num_livestock": "", + "graph_builder.builder_mod_header.location.partners.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.location.partners.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.location.products.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.location.products.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.location.products.scatter": "Complejidad, distancia y valor estrat\u00e9gico de exportaciones potenciales", + "graph_builder.builder_mod_header.location.products.similarity": "Exportaciones con ventaja comparativa revelada >1 (con color) y <1 (gris)", + "graph_builder.builder_mod_header.product.cities.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.product.cities.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.product.departments.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.product.departments.import_value": "Importaciones totales", + "graph_builder.builder_mod_header.product.partners.export_value": "Exportaciones totales", + "graph_builder.builder_mod_header.product.partners.import_value": "Importaciones totales", + "graph_builder.builder_nav.header": "M\u00e1s gr\u00e1ficos para este {{entity}}", + "graph_builder.builder_nav.intro": "Seleccione una pregunta para ver el gr\u00e1fico correspondiente. Si en la pregunta faltan par\u00e1metros ({{icon}}), los podr\u00e1 llenar cuando haga click.", + "graph_builder.builder_questions.city": "Preguntas: ciudades", + "graph_builder.builder_questions.department": "Preguntas: departamentos", + "graph_builder.builder_questions.employment": "Preguntas: empleo", + "graph_builder.builder_questions.export": "Preguntas: exportaciones", + "graph_builder.builder_questions.import": "Preguntas: importaciones", + "graph_builder.builder_questions.industry": "Preguntas: sectores", + "graph_builder.builder_questions.landUse": "", + "graph_builder.builder_questions.location": "Preguntas: lugares", + "graph_builder.builder_questions.occupation": "Preguntas: ocupaciones", + "graph_builder.builder_questions.partner": "Preguntas: socios comerciales", + "graph_builder.builder_questions.product": "Preguntas: productos de exportaci\u00f3n", + "graph_builder.builder_questions.wage": "Preguntas: n\u00f3mina salarial", + "graph_builder.change_graph.geo_description": "Mapea los datos", + "graph_builder.change_graph.label": "Cambie el gr\u00e1fico", + "graph_builder.change_graph.multiples_description": "Muestra el crecimiento en varios per\u00edodos", + "graph_builder.change_graph.scatter_description": "Muestra la complejidad y la distancia", + "graph_builder.change_graph.similarity_description": "Presenta las ventajas comparativas reveladas", + "graph_builder.change_graph.treemap_description": "Muestra la descomposici\u00f3n en varios niveles", + "graph_builder.change_graph.unavailable": "Este gr\u00e1fico no est\u00e1 disponible para esta pregunta", + "graph_builder.download.agproduct": "", + "graph_builder.download.area": "", + "graph_builder.download.average_wages": "Salario mensual promedio, Col$ ", + "graph_builder.download.avg_wage": "Salario mensual promedio, Col$ ", + "graph_builder.download.code": "C\u00f3digo", + "graph_builder.download.cog": "Valor estrat\u00e9gico", + "graph_builder.download.complexity": "Complejidad", + "graph_builder.download.distance": "Distancia", + "graph_builder.download.eci": "Complejidad exportadora", + "graph_builder.download.employment": "Empleo", + "graph_builder.download.employment_growth": "Tasa de crecimiento del empleo ({{yearRange}})", + "graph_builder.download.export": "Exportaci\u00f3n", + "graph_builder.download.export_num_plants": "N\u00famero de empresas", + "graph_builder.download.export_rca": "Ventaja comparativa revelada", + "graph_builder.download.export_value": "Exportaciones, USD", + "graph_builder.download.farmtype": "", + "graph_builder.download.gdp_pc_real": "PIB per c\u00e1pita, Col $", + "graph_builder.download.gdp_real": "PIB, Col $", + "graph_builder.download.import_value": "Importaciones, USD", + "graph_builder.download.industry": "Sector", + "graph_builder.download.industry_eci": "Complejidad sectorial", + "graph_builder.download.land_harvested": "", + "graph_builder.download.land_sown": "", + "graph_builder.download.land_use": "", + "graph_builder.download.less_than_5": "Menos de 5", + "graph_builder.download.livestock": "", + "graph_builder.download.location": "Lugar", + "graph_builder.download.monthly_wages": "Salario mensual promedio, Col$", + "graph_builder.download.name": "Nombre", + "graph_builder.download.num_establishments": "N\u00famero de empresas", + "graph_builder.download.num_farms": "", + "graph_builder.download.num_livestock": "", + "graph_builder.download.num_vacancies": "Vacantes", + "graph_builder.download.occupation": "Ocupaci\u00f3n", + "graph_builder.download.parent": "Grupo", + "graph_builder.download.population": "Poblaci\u00f3n", + "graph_builder.download.production_tons": "", + "graph_builder.download.rca": "Ventaja comparativa revelada", + "graph_builder.download.read_more": "\u00bfNo entiende alguno de estos t\u00e9rminos? Consulte el", + "graph_builder.download.wages": "N\u00f3mina salarial total, Col$ ", + "graph_builder.download.year": "A\u00f1o", + "graph_builder.download.yield_index": "", + "graph_builder.download.yield_ratio": "", + "graph_builder.explanation": "Explicaci\u00f3n", + "graph_builder.explanation.agproduct.departments.land_harvested": "", + "graph_builder.explanation.agproduct.departments.land_sown": "", + "graph_builder.explanation.agproduct.departments.production_tons": "", + "graph_builder.explanation.agproduct.municipalities.land_harvested": "", + "graph_builder.explanation.agproduct.municipalities.land_sown": "", + "graph_builder.explanation.agproduct.municipalities.production_tons": "", + "graph_builder.explanation.hide": "Oculte", + "graph_builder.explanation.industry.cities.employment": "Muestra la composici\u00f3n por departamentos del empleo formal del sector. Fuente: PILA.", + "graph_builder.explanation.industry.cities.wages": "Muestra la composici\u00f3n por departamentos de la n\u00f3mina salarial del sector. Fuente: PILA.", + "graph_builder.explanation.industry.departments.employment": "Muestra la composici\u00f3n por departamentos del empleo formal del sector. Fuente: PILA.", + "graph_builder.explanation.industry.departments.wages": "Muestra la composici\u00f3n por departamentos de la n\u00f3mina salarial del sector. Fuente: PILA.", + "graph_builder.explanation.industry.occupations.num_vacancies": "Muestra la composici\u00f3n de las vacantes anunciadas en sitios de Internet y los salarios ofrecidos.", + "graph_builder.explanation.landUse.departments.area": "", + "graph_builder.explanation.landUse.municipalities.area": "", + "graph_builder.explanation.location.agproducts.land_harvested": "", + "graph_builder.explanation.location.agproducts.land_sown": "", + "graph_builder.explanation.location.agproducts.production_tons": "", + "graph_builder.explanation.location.farmtypes.num_farms": "", + "graph_builder.explanation.location.industries.employment": "Muestra la composici\u00f3n sectorial del empleo formal del departamento. Fuente: PILA.", + "graph_builder.explanation.location.industries.scatter": "Cada punto representa un sector productivo. Cuando se selecciona un punto aparece el nombre y la ventaja comparativa revelada del lugar en ese sector. Los colores de los puntos representan grupos de sectores (v\u00e9ase el c\u00f3digo de colores en la tabla que sigue). El eje vertical es el \u00edndice de complejidad sectorial y el eje horizontal es la distancia tecnol\u00f3gica para que el sector se desarrolle, dadas las capacidades que ya existen en el lugar. El tama\u00f1o de los puntos es proporcional al valor estrat\u00e9gico del sector para el lugar, es decir qu\u00e9 tanto puede contribuir el sector al aumento del \u00edndice de complejidad del lugar a trav\u00e9s de nuevas capacidades productivas que pueden ser \u00fatiles en otros sectores. Los sectores m\u00e1s atractivos son los ubicados arriba y a la izquierda, especialmente si los puntos que los representan son grandes. Fuente: c\u00e1lculos del CID con datos de PILA. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los t\u00e9rminos).", + "graph_builder.explanation.location.industries.similarity": "El mapa de similitud tecnol\u00f3gica de los sectores (o mapa de los sectores) muestra qu\u00e9 tan similares son los conocimientos requeridos por unos sectores y otros. Cada punto representa un sector productivo y cada enlace entre un par de sectores indica que requieren capacidades productivas similares. Los puntos coloreados son sectores con ventaja comparativa revelada (VCR) mayor que uno en el departamento o ciudad. Los colores de los puntos representan grupos de sectores (v\u00e9ase el c\u00f3digo de colores en el cuadro que sigue). Cuando se selecciona un punto aparece su nombre, su VCR y sus enlaces a otros sectores. Fuente: c\u00e1lculos del CID con datos de PILA. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los t\u00e9rminos).", + "graph_builder.explanation.location.industries.wages": "Muestra la composici\u00f3n sectorial de la n\u00f3mina salarial del departamento o ciudad. Fuente: PILA.", + "graph_builder.explanation.location.landUses.area": "", + "graph_builder.explanation.location.livestock.num_farms": "", + "graph_builder.explanation.location.livestock.num_livestock": "", + "graph_builder.explanation.location.partners.export_value": "Muestra la composici\u00f3n de las exportaciones de este lugar por pa\u00eds de destino, agrupados por regiones del mundo. Fuente: DIAN.", + "graph_builder.explanation.location.partners.import_value": "Muestra la composici\u00f3n de las importaciones de este lugar por pa\u00eds de origen, agrupados por regiones del mundo. Fuente: DIAN.", + "graph_builder.explanation.location.products.export_value": "Muestra la composici\u00f3n de las exportaciones del departamento o ciudad. Los colores representan grupos de productos (v\u00e9ase el cuadro). Fuente: DIAN.", + "graph_builder.explanation.location.products.import_value": "Muestra la composici\u00f3n de las importaciones del departamento o ciudad. Los colores representan grupos de productos (v\u00e9ase el cuadro). Fuente: DIAN.", + "graph_builder.explanation.location.products.scatter": "Cada punto representa un producto de exportaci\u00f3n. Cuando se selecciona un punto aparece el nombre y la ventaja comparativa revelada del departamento o ciudad en ese producto. Los colores de los puntos representan grupos de sectores (v\u00e9ase el c\u00f3digo de colores en la tabla que sigue). El eje vertical es el \u00edndice de complejidad del producto y el eje horizontal es la distancia tecnol\u00f3gica para poder exportar un producto, dadas las capacidades que ya existen en el lugar. La l\u00ednea discontinua es el \u00edndice de complejidad sectorial promedio del lugar. El tama\u00f1o de los puntos es proporcional al valor estrat\u00e9gico del producto para el departamento o ciudad, es decir qu\u00e9 tanto puede contribuir el producto al aumento del \u00edndice de complejidad del lugar a trav\u00e9s de nuevas capacidades productivas que pueden ser \u00fatiles para otras exportaciones. Las exportaciones m\u00e1s atractivas de desarrollar son las ubicadas arriba y a la izquierda, especialmente si los puntos que las representan son grandes. Fuente: c\u00e1lculos del CID con datos de la DIAN. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los conceptos).", + "graph_builder.explanation.location.products.similarity": "El mapa de similitud tecnol\u00f3gica de los productos (o mapa de los productos) muestra que tan similares son los conocimientos requeridos por unos productos y otros. Cada punto representa un producto de exportaci\u00f3n y cada enlace entre un par de productos indica que requieren capacidades productivas similares. Los puntos coloreados son exportaciones con ventaja comparativa revelada (VCR) mayor que uno en el departamento o ciudad. Los colores de los puntos representan grupos de productos (v\u00e9ase el cuadro). Cuando se selecciona un punto aparece su nombre, su VCR y sus enlaces a otros productos. Fuente: c\u00e1lculos del CID con datos de DIAN. (En el glosario se encuentran explicaciones m\u00e1s detalladas de los conceptos).", + "graph_builder.explanation.product.cities.export_value": "Muestra la composici\u00f3n por ciudades de las exportaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.cities.import_value": "Muestra la composici\u00f3n por ciudades de las importaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.departments.export_value": "Muestra la composici\u00f3n por departamentos de las exportaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.departments.import_value": "Muestra la composici\u00f3n por departamentos de las importaciones de este producto. Fuente: DIAN.", + "graph_builder.explanation.product.partners.export_value": "Muestra el destino de las exportaciones de este producto, por pa\u00eds y regi\u00f3n del mundo. Fuente: DIAN.", + "graph_builder.explanation.product.partners.import_value": "Muestra el origen de las importaciones de este producto, por pa\u00eds y regi\u00f3n del mundo. Fuente: DIAN.", + "graph_builder.explanation.show": "Muestre m\u00e1s", + "graph_builder.multiples.show_all": "Mostrar todo", + "graph_builder.page_title.agproduct.departments.land_harvested": "", + "graph_builder.page_title.agproduct.departments.land_sown": "", + "graph_builder.page_title.agproduct.departments.production_tons": "", + "graph_builder.page_title.agproduct.municipalities.land_harvested": "", + "graph_builder.page_title.agproduct.municipalities.land_sown": "", + "graph_builder.page_title.agproduct.municipalities.production_tons": "", + "graph_builder.page_title.industry.cities.employment": "\u00bfQu\u00e9 ciudades en Colombia ocupan m\u00e1s gente en este sector?", + "graph_builder.page_title.industry.cities.wages": "\u00bfQu\u00e9 ciudades en Colombia tienen las mayores n\u00f3minas salariales en este sector?", + "graph_builder.page_title.industry.departments.employment": "\u00bfQu\u00e9 departamentos en Colombia ocupan m\u00e1s gente en este sector?", + "graph_builder.page_title.industry.departments.wages": "\u00bfQu\u00e9 departamentos en Colombia tienen las mayores n\u00f3minas salariales en este sector?", + "graph_builder.page_title.industry.occupations.num_vacancies": "\u00bfQu\u00e9 ocupaciones demanda este sector?", + "graph_builder.page_title.landUse.departments.area": "", + "graph_builder.page_title.landUse.municipalities.area": "", + "graph_builder.page_title.location.agproducts.land_harvested.country": "", + "graph_builder.page_title.location.agproducts.land_harvested.department": "", + "graph_builder.page_title.location.agproducts.land_harvested.municipality": "", + "graph_builder.page_title.location.agproducts.land_sown.country": "", + "graph_builder.page_title.location.agproducts.land_sown.department": "", + "graph_builder.page_title.location.agproducts.land_sown.municipality": "", + "graph_builder.page_title.location.agproducts.production_tons.country": "", + "graph_builder.page_title.location.agproducts.production_tons.department": "", + "graph_builder.page_title.location.agproducts.production_tons.municipality": "", + "graph_builder.page_title.location.destination_by_product.export_value.department": "\u00bfA qu\u00e9 pa\u00edses env\u00eda este departamento sus exportaciones de petr\u00f3leo?", + "graph_builder.page_title.location.destination_by_product.import_value.department": "\u00bfDe qu\u00e9 pa\u00edses recibe este departamento sus importaciones de veh\u00edculos?", + "graph_builder.page_title.location.farmtypes.num_farms.country": "", + "graph_builder.page_title.location.farmtypes.num_farms.department": "", + "graph_builder.page_title.location.farmtypes.num_farms.municipality": "", + "graph_builder.page_title.location.industries.employment.country": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en Colombia?", + "graph_builder.page_title.location.industries.employment.department": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en este departamento?", + "graph_builder.page_title.location.industries.employment.msa": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en esta ciudad?", + "graph_builder.page_title.location.industries.employment.municipality": "\u00bfQu\u00e9 sectores generan m\u00e1s empleo en este municipio?", + "graph_builder.page_title.location.industries.scatter.country": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en Colombia?", + "graph_builder.page_title.location.industries.scatter.department": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en este departamento?", + "graph_builder.page_title.location.industries.scatter.msa": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en esta ciudad?", + "graph_builder.page_title.location.industries.scatter.municipality": "\u00bfQu\u00e9 sectores relativamente complejos podr\u00edan desarrollarse m\u00e1s en este municipio?", + "graph_builder.page_title.location.industries.similarity.country": "\u00bfC\u00f3mo es el mapa de los sectores de Colombia?", + "graph_builder.page_title.location.industries.similarity.department": "\u00bfC\u00f3mo es el mapa de los sectores de este departamento?", + "graph_builder.page_title.location.industries.similarity.msa": "\u00bfC\u00f3mo es el mapa de los sectores de esta ciudad?", + "graph_builder.page_title.location.industries.similarity.municipality": "\u00bfC\u00f3mo es el mapa de los sectores de este municipio?", + "graph_builder.page_title.location.industries.wages.country": "\u00bfQu\u00e9 sectores en Colombia tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.industries.wages.department": "\u00bfQu\u00e9 sectores en este departamento tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.industries.wages.msa": "\u00bfQu\u00e9 sectores en esta ciudad tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.industries.wages.municipality": "\u00bfQu\u00e9 sectores en este municipio tienen las mayores n\u00f3minas salariales?", + "graph_builder.page_title.location.landUses.area.country": "", + "graph_builder.page_title.location.landUses.area.department": "", + "graph_builder.page_title.location.landUses.area.municipality": "", + "graph_builder.page_title.location.livestock.num_farms.country": "", + "graph_builder.page_title.location.livestock.num_farms.department": "", + "graph_builder.page_title.location.livestock.num_farms.municipality": "", + "graph_builder.page_title.location.livestock.num_livestock.country": "", + "graph_builder.page_title.location.livestock.num_livestock.department": "", + "graph_builder.page_title.location.livestock.num_livestock.municipality": "", + "graph_builder.page_title.location.partners.export_value.country": "\u00bfA qu\u00e9 pa\u00edses exporta Colombia?", + "graph_builder.page_title.location.partners.export_value.department": "\u00bfA qu\u00e9 pa\u00edses exporta este departamento?", + "graph_builder.page_title.location.partners.export_value.msa": "\u00bfA qu\u00e9 pa\u00edses exporta esta ciudad?", + "graph_builder.page_title.location.partners.export_value.municipality": "\u00bfA qu\u00e9 pa\u00edses exporta este municipio?", + "graph_builder.page_title.location.partners.import_value.country": "\u00bfDe d\u00f3nde vienen las importaciones de Colombia?", + "graph_builder.page_title.location.partners.import_value.department": "\u00bfDe d\u00f3nde vienen las importaciones de este departamento?", + "graph_builder.page_title.location.partners.import_value.msa": "\u00bfDe d\u00f3nde vienen las importaciones de esta ciudad?", + "graph_builder.page_title.location.partners.import_value.municipality": "\u00bfDe d\u00f3nde vienen las importaciones de este municipio?", + "graph_builder.page_title.location.products.export_value.country": "\u00bfQu\u00e9 productos exporta Colombia?", + "graph_builder.page_title.location.products.export_value.department": "\u00bfQu\u00e9 productos exporta este departamento?", + "graph_builder.page_title.location.products.export_value.msa": "\u00bfQu\u00e9 productos exporta esta ciudad?", + "graph_builder.page_title.location.products.export_value.municipality": "\u00bfQu\u00e9 productos exporta este municipio?", + "graph_builder.page_title.location.products.import_value.country": "\u00bfQu\u00e9 productos importa Colombia?", + "graph_builder.page_title.location.products.import_value.department": "\u00bfQu\u00e9 productos importa este departamento?", + "graph_builder.page_title.location.products.import_value.msa": "\u00bfQu\u00e9 productos importa esta ciudad?", + "graph_builder.page_title.location.products.import_value.municipality": "\u00bfQu\u00e9 productos importa este municipio?", + "graph_builder.page_title.location.products.scatter.country": "\u00bfQu\u00e9 productos tienen el mayor potencial para Colombia?", + "graph_builder.page_title.location.products.scatter.department": "\u00bfQu\u00e9 productos tienen el mayor potencial para este departamento?", + "graph_builder.page_title.location.products.scatter.msa": "\u00bfQu\u00e9 productos tienen el mayor potencial para esta ciudad?", + "graph_builder.page_title.location.products.scatter.municipality": "\u00bfQu\u00e9 productos tienen el mayor potencial para este municipio?", + "graph_builder.page_title.location.products.similarity.country": "\u00bfC\u00f3mo es el mapa de los productos de Colombia?", + "graph_builder.page_title.location.products.similarity.department": "\u00bfC\u00f3mo es el mapa de los productos de este departamento?", + "graph_builder.page_title.location.products.similarity.msa": "\u00bfC\u00f3mo es el mapa de los productos de esta ciudad?", + "graph_builder.page_title.location.products.similarity.municipality": "\u00bfC\u00f3mo es el mapa de los productos de este municipio?", + "graph_builder.page_title.product.cities.export_value": "\u00bfQu\u00e9 ciudades en Colombia exportan este producto?", + "graph_builder.page_title.product.cities.import_value": "\u00bfQu\u00e9 ciudades en Colombia importan este producto?", + "graph_builder.page_title.product.departments.export_value": "\u00bfQu\u00e9 departamentos en Colombia exportan este producto?", + "graph_builder.page_title.product.departments.import_value": "\u00bfQu\u00e9 departamentos en Colombia importan este producto?", + "graph_builder.page_title.product.partners.export_value": "\u00bfA d\u00f3nde exporta Colombia este producto?", + "graph_builder.page_title.product.partners.export_value.destination": "\u00bfA qu\u00e9 pa\u00edses env\u00eda {{location}} sus exportaciones de {{product}}?", + "graph_builder.page_title.product.partners.import_value": "\u00bfDe d\u00f3nde importa Colombia este producto?", + "graph_builder.page_title.product.partners.import_value.origin": "\u00bfDe qu\u00e9 pa\u00edses recibe {{location}} sus importaciones de {{product}}?", + "graph_builder.questions.label": "Cambiar pregunta", + "graph_builder.recirc.header.industry": "Lea el perfil de este sector", + "graph_builder.recirc.header.location": "Lea el perfil de este lugar", + "graph_builder.recirc.header.product": "Lea el perfil de este producto", + "graph_builder.search.placeholder.agproducts": "", + "graph_builder.search.placeholder.cities": "Destaque una ciudad en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.departments": "Destaque un departamento en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.farmtypes": "", + "graph_builder.search.placeholder.industries": "Destaque un sector en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.landUses": "", + "graph_builder.search.placeholder.livestock": "", + "graph_builder.search.placeholder.locations": "Destaque un lugar en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.municipalities": "", + "graph_builder.search.placeholder.occupations": "Destaque una ocupaci\u00f3n en el gr\u00e1fico siguiente", + "graph_builder.search.placeholder.partners": "Resaltar socios comerciales en la gr\u00e1fica inferior", + "graph_builder.search.placeholder.products": "Destaque un producto en el gr\u00e1fico siguiente", + "graph_builder.search.submit": "Destacar", + "graph_builder.settings.change_time": "Cambiar per\u00edodo", + "graph_builder.settings.close_settings": "Archive y cierre", + "graph_builder.settings.label": "Cambiar caracter\u00edsticas", + "graph_builder.settings.rca": "Ventaja comparativa revelada", + "graph_builder.settings.rca.all": "Todo", + "graph_builder.settings.rca.greater": "> 1", + "graph_builder.settings.rca.less": "< 1", + "graph_builder.settings.to": "a", + "graph_builder.settings.year": "Selector de A\u00f1os", + "graph_builder.settings.year.next": "Siguiente", + "graph_builder.settings.year.previous": "Anterior", + "graph_builder.table.agproduct": "", + "graph_builder.table.area": "", + "graph_builder.table.average_wages": "Salario mensual promedio, Col$ ", + "graph_builder.table.avg_wage": "Salario mensual promedio, Col$ ", + "graph_builder.table.code": "C\u00f3digo", + "graph_builder.table.cog": "Valor estrat\u00e9gico", + "graph_builder.table.coi": "Complejidad exportadora potencial", + "graph_builder.table.complexity": "Complejidad", + "graph_builder.table.country": "Pa\u00eds", + "graph_builder.table.distance": "Distancia", + "graph_builder.table.eci": "Complejidad exportadora", + "graph_builder.table.employment": "Empleo", + "graph_builder.table.employment_growth": "Tasa de crecimiento del empleo ({{yearRange}})", + "graph_builder.table.export": "Exportaci\u00f3n", + "graph_builder.table.export_num_plants": "N\u00famero de empresas", + "graph_builder.table.export_rca": "Ventaja comparativa revelada", + "graph_builder.table.export_value": "Exportaciones, USD", + "graph_builder.table.farmtype": "", + "graph_builder.table.gdp_pc_real": "PIB per c\u00e1pita", + "graph_builder.table.gdp_real": "PIB", + "graph_builder.table.import_value": "Importaciones, USD", + "graph_builder.table.industry": "Sector", + "graph_builder.table.industry_coi": "Complejidad sectorial potencial", + "graph_builder.table.industry_eci": "Complejidad sectorial", + "graph_builder.table.land_harvested": "", + "graph_builder.table.land_sown": "", + "graph_builder.table.land_use": "", + "graph_builder.table.less_than_5": "Menos de 5", + "graph_builder.table.livestock": "", + "graph_builder.table.location": "Lugar", + "graph_builder.table.monthly_wages": "Salario mensual promedio, Col$", + "graph_builder.table.name": "Nombre", + "graph_builder.table.num_establishments": "N\u00famero de empresas", + "graph_builder.table.num_farms": "", + "graph_builder.table.num_livestock": "", + "graph_builder.table.num_vacancies": "Vacantes", + "graph_builder.table.occupation": "Ocupaci\u00f3n", + "graph_builder.table.parent": "Grupo", + "graph_builder.table.parent.country": "Regi\u00f3n", + "graph_builder.table.population": "Poblaci\u00f3n", + "graph_builder.table.production_tons": "", + "graph_builder.table.rca": "Ventaja comparativa revelada", + "graph_builder.table.read_more": "\u00bfNo entiende alguno de estos t\u00e9rminos? Consulte el", + "graph_builder.table.share": "Participaci\u00f3n", + "graph_builder.table.wages": "N\u00f3mina salarial total, Col$ (miles)", + "graph_builder.table.year": "A\u00f1o", + "graph_builder.table.yield_index": "", + "graph_builder.table.yield_ratio": "", + "graph_builder.view_more": "Muestre m\u00e1s", + "header.destination": "Destino", + "header.destination_by_products": "Destinos por productos", + "header.employment": "Empleo", + "header.export": "Exportaciones", + "header.import": "Importaciones", + "header.industry": "Sectores", + "header.industry_potential": "Potencial", + "header.industry_space": "Mapa de los sectores ", + "header.landUse": "", + "header.land_harvested": "", + "header.land_sown": "", + "header.occupation": "Ocupaciones", + "header.occupation.available_jobs": "Vacantes anunciadas", + "header.origin": "Origen", + "header.origin_by_products": "Origen por productos", + "header.overview": "Resumen", + "header.partner": "Socios comerciales", + "header.product": "Productos ", + "header.product_potential": "Potencial", + "header.product_space": "Mapa de los productos", + "header.production_tons": "", + "header.region": "Por departamento", + "header.subregion": "Por ciudad", + "header.subsubregion": "", + "header.wage": "N\u00f3mina total", + "index.builder_cta": "Explore las gr\u00e1ficas sobre el caf\u00e9", + "index.builder_head": "Luego vaya al graficador", + "index.builder_subhead": "Haga sus propios gr\u00e1ficos y mapas", + "index.complexity_caption": "\u00bfQu\u00e9 tan bueno es este enfoque? Las predicciones de crecimiento basadas en la complejidad son seis veces m\u00e1s preocsas que las basadas en variables convencionales, como los \u00cdndice de Competitividad Mundial. ", + "index.complexity_cta": "Lea m\u00e1s sobre los conceptos de complejidad", + "index.complexity_figure.WEF_name": "\u00cdndice de Competitividad Mundial", + "index.complexity_figure.complexity_name": "\u00cdndice de complejidad econ\u00f3mica", + "index.complexity_figure.head": "Crecimiento econ\u00f3mico explicado (% de la varianza decenal)", + "index.complexity_head": "La ventaja de la complejidad", + "index.complexity_subhead": "Los pa\u00edses que exportan productos complejos, que requieren una gran cantidad de conocimientos, crecen m\u00e1s r\u00e1pido que los que exportan materias primas. Usando los m\u00e9todos para medir y visualizar la complejidad desarrollados por la Universidad de Harvard, Datlas permite explorar las posibilidades productivas y de exportaci\u00f3n de los departamentos y ciudades colombianas.", + "index.country_profile": "Lea el perfil de Colombia", + "index.dropdown.industries": "461,488", + "index.dropdown.locations": "41,87,34,40", + "index.dropdown.products": "1143,87", + "index.future_head": "Avizorando el futuro", + "index.future_subhead": "Los gr\u00e1ficos de dispersi\u00f3n y diagramas de redes permiten encontrar los sectores productivos que tienen las mejores posibilidades en un departamento o ciudad.", + "index.graphbuilder.id": "87", + "index.header_h1": "El Atlas Colombiano de Complejidad Econ\u00f3mica", + "index.header_head": "Colombia como usted nunca la ha visto", + "index.header_subhead": "Visualice las posibilidades de cualquier sector, cualquier producto de exportaci\u00f3n o cualquier lugar en Colombia.", + "index.industry_head": "Ent\u00e9rese de un sector", + "index.industry_q1": "\u00bfD\u00f3nde emplea m\u00e1s gente la industria qu\u00edmica en Colombia?", + "index.industry_q1.id": "461", + "index.industry_q2": "\u00bfQu\u00e9 ocupaciones demanda la industria qu\u00edmica?", + "index.industry_q2.id": "461", + "index.location_head": "Aprenda sobre un lugar", + "index.location_q1": "\u00bfQu\u00e9 sectores emplean m\u00e1s gente en Bogot\u00e1 Met?", + "index.location_q1.id": "41", + "index.location_q2": "\u00bfQu\u00e9 exportaciones tienen el mayor potencial en Bogot\u00e1 Met?", + "index.location_q2.id": "41", + "index.location_viewall": "Vea todas las preguntas", + "index.present_head": "Mapeando el presente", + "index.present_subhead": "Utilice nuestros diagramas de composici\u00f3n para estudiar las exportaciones o el empleo formal de su departamento, su ciudad o su municipio.", + "index.product_head": "Aprenda sobre un producto de exportaci\u00f3n", + "index.product_q1": "\u00bfQu\u00e9 lugares de Colombia exportan computadores?", + "index.product_q1.id": "1143", + "index.product_q2": "\u00bfQu\u00e9 lugares de Colombia importan computadores?", + "index.product_q2.id": "1143", + "index.profile.id": "1", + "index.profiles_cta": "Lea el perfil de Antioquia", + "index.profiles_head": "Comience por los perfiles", + "index.profiles_subhead": "S\u00f3lo lo esencial, en un resumen de una p\u00e1gina", + "index.questions_head": "No somos una bola de cristal, pero podemos responder muchas preguntas", + "index.questions_subhead": "index.questions_subhead", + "index.research_head": "Investigaci\u00f3n mencionada en", + "industry.show.avg_wages": "Salarios promedio ({{year}})", + "industry.show.employment": "Empleo ({{year}})", + "industry.show.employment_and_wages": "Empleo formal y salarios", + "industry.show.employment_growth": "Tasa de crecimiento del empleo ({{yearRange}})", + "industry.show.industries": "Sectores", + "industry.show.industry_composition": "Composici\u00f3n del sector ({{year}})", + "industry.show.occupation": "Ocupaciones", + "industry.show.occupation_demand": "Ocupaciones m\u00e1s demandadas en este sector, 2014", + "industry.show.value": "Valor", + "last_year": "2014", + "location.model.country": "Colombia", + "location.model.department": "departamento", + "location.model.msa": "ciudad", + "location.model.municipality": "municipio", + "location.show.ag_farmsize": "", + "location.show.all_departments": "Comparaci\u00f3n con otros departamentos", + "location.show.all_regions": "En comparaci\u00f3n con los otros lugares", + "location.show.bullet.gdp_grow_rate": "La tasa de crecimiento del PIB en el per\u00edodo {{yearRange}} fue {{gdpGrowth}}, comparada con 5,3% para toda Colombia.", + "location.show.bullet.gdp_pc": "El PIB per capita de {{name}} es {{lastGdpPerCapita}}, comparado con Col$15,1 millones para toda Colombia en 2014.", + "location.show.bullet.last_pop": "La poblaci\u00f3n es {{lastPop}} de personas, frente a 46,3 millones de personas en todo el pa\u00eds en 2014.", + "location.show.eci": "Complejidad exportadora", + "location.show.employment": "Empleo total ({{lastYear}})", + "location.show.employment_and_wages": "Empleo formal y salarios", + "location.show.export_possiblities": "Posibilidades de exportaci\u00f3n", + "location.show.export_possiblities.footer": "Los productos indicados pueden no ser viables debido a condiciones del lugar que no se consideran en el an\u00e1lisis de similitud tecnol\u00f3gica.", + "location.show.export_possiblities.intro": "Hemos encontrado que los pa\u00edses que exportan productos m\u00e1s complejos crecen m\u00e1s r\u00e1pido. Usando el \"mapa del producto\" presentado arriba, estamos destacando productos de alto potencial para {{name}}, ordenados por las mejores combinaciones de complejidad actual y valor estrat\u00e9gico.", + "location.show.exports": "Exportaciones ({{year}})", + "location.show.exports_and_imports": "Exportaciones e importaciones", + "location.show.gdp": "PIB", + "location.show.gdp_pc": "PIB per c\u00e1pita", + "location.show.growth_annual": "Tasa de crecimiento ({{yearRange}})", + "location.show.imports": "Importaciones ({{year}})", + "location.show.nonag_farmsize": "", + "location.show.overview": "", + "location.show.population": "Poblaci\u00f3n", + "location.show.subregion.exports": "Composici\u00f3n de exportaciones por municipio ({{year}})", + "location.show.subregion.imports": "Composici\u00f3n de importaciones por municipio ({{year}})", + "location.show.subregion.title": "Exportaciones e importaciones por municipio", + "location.show.total_wages": "N\u00f3mina salarial ({{lastYear}})", + "location.show.value": "Valor", + "pageheader.about": "Acerca de Datlas", + "pageheader.alternative_title": "Atlas de complejidad econ\u00f3mica", + "pageheader.brand_slogan": "Colombia como usted nunca la ha visto", + "pageheader.download": "Acerca de los datos", + "pageheader.graph_builder_link": "Graficador", + "pageheader.profile_link": "Perfil", + "pageheader.rankings": "Rankings", + "pageheader.search_link": "Buscar", + "pageheader.search_placeholder": "Busque un lugar, producto o sector", + "pageheader.search_placeholder.industry": "Busque un sector", + "pageheader.search_placeholder.location": "Busque un lugar", + "pageheader.search_placeholder.product": "Busque un producto", + "rankings.explanation.body": "", + "rankings.explanation.title": "Explicaci\u00f3n", + "rankings.intro.p": "Comparaci\u00f3n entre departamentos o ciudades", + "rankings.pagetitle": "Rankings", + "rankings.section.cities": "Ciudades", + "rankings.section.departments": "Departamentos", + "rankings.table-title": "Posici\u00f3n", + "search.didnt_find": "\u00bfEncontr\u00f3 lo que buscaba? Nos interesa saber: Datlascolombia@bancoldex.com", + "search.header": "resultados", + "search.intro": "Busque el lugar, producto, sector u ocupaci\u00f3n que le interese", + "search.level.4digit": "Partida arancelaria (1992) a cuatro d\u00edgitos", + "search.level.class": "CIIU a cuatro d\u00edgitos", + "search.level.country": "Pa\u00eds", + "search.level.department": "Departamento", + "search.level.division": "CIIU a dos d\u00edgitos", + "search.level.msa": "Ciudad", + "search.level.municipality": "Municipio", + "search.level.parent.4digit": "Partida arancelaria (1992) a dos d\u00edgitos", + "search.level.parent.class": "CIIU a dos d\u00edgitos", + "search.level.parent.country": "Regi\u00f3n", + "search.placeholder": "Escriba aqu\u00ed para buscar lo que quiere", + "search.results_industries": "Sectores", + "search.results_locations": "Lugares", + "search.results_products": "Productos", + "table.export_data": "Descargar Datos", + "thousands_delimiter": "." +}; diff --git a/app/locales/es-mex/translations.js b/app/locales/es-mex/translations.js index 16bea1a5..f14586bb 100644 --- a/app/locales/es-mex/translations.js +++ b/app/locales/es-mex/translations.js @@ -6,7 +6,7 @@ export default { "about.downloads.explanation.p1": "Descarque el documento que explica c\u00f3mo se calcula cada una de las variables de complejidad que utiliza el Atlas Mexicano de Complejidad Econ\u00f3mica.", "about.downloads.explanation.title": "M\u00e9todos de c\u00e1lculo de las variables de complejidad", "about.downloads.locations": "Listas de entidades, ciudades (zonas metropolitanas) y municipios", - "about.glossary": "La complejidad econ\u00f3mica es importante porque las rutas hacia la prosperidad de una sociedad dependen de que las empresas puedan producir y exportar con \u00e9xito bienes y servicios que requieren diversas capacidades y conocimientos. La complejidad puede medirse para un lugar, para un producto de exportaci\u00f3n , o para un sector.
Mide cu\u00e1l es el potencial para incrementar la complejidad econ\u00f3mica de un lugar. Tiene en cuenta el nivel de complejidad de todos los sectores productivos existentes (o productos de exportaci\u00f3n), junto con la distancia en t\u00e9rminos de capacidades y conocimientos a los dem\u00e1s sectores (o productos). Con base en esta informaci\u00f3n, el indicador mide la probabilidad de que aparezcan nuevos sectores (o exportaciones) y qu\u00e9 tanto elevar\u00edan la complejidad del lugar.
Es una medida de la capacidad de un lugar para desarrollar un sector o una exportaci\u00f3n espec\u00edfica, teniendo en cuenta las capacidades productivas existentes. La \u201cdistancia\u201d es menor en la medida en que las capacidades requeridas por un sector o exportaci\u00f3n son similares a las ya existentes. Visto de otra forma, la distancia refleja la proporci\u00f3n del conocimiento productivo que se necesita para que aparezca un sector o exportaci\u00f3n que a\u00fan no existe en el lugar.
Es una medida de la sofisticaci\u00f3n de las capacidades productivas de un lugar basada en la diversidad y la exclusividad de sus sectores productivos o sus exportaciones. Un lugar con alta complejidad produce o exporta bienes y servicios que pocos otros lugares producen. Lugares altamente complejos tienden a ser m\u00e1s productivos y a generar mayores salarios e ingresos. Los pa\u00edses con canastas de exportaci\u00f3n m\u00e1s sofisticadas de lo cabe esperar dado su nivel de ingreso tienden a crecer m\u00e1s r\u00e1pido.
Es una medida que ordena los sectores productivos de un lugar seg\u00fan la diversidad y unicidad de las capacidades productivas que requiere. La complejidad de los sectores y de las exportaciones son medidas estrechamente relacionadas, pero se calculan en forma separada con datos y sistemas de clasificaci\u00f3n independientes. Las exportaciones se limitan a mercanc\u00edas comercializables internacionalmente (utilizando el Sistema Armonizado de clasificaci\u00f3n de productos, revisi\u00f3n de 1992), mientras que los sectores productivos comprenden todos los sectores de la econom\u00eda que generan empleo (utilizando la versi\u00f3n mexicana del Sistema de Clasificaci\u00f3n Industrial de Am\u00e9rica del Norte -SCIAN-, revisi\u00f3n de 2007). La complejidad de un sector se mide calculando la diversidad promedio de los lugares donde existe el sector y la ubicuidad promedio de los sectores de esos lugares. Los datos de empleo formal necesarios para estos c\u00e1lculos provienen de la agregaci\u00f3n de los datos del seguro social (IMSS) a nivel de industria-ubicaci\u00f3n
El empleo formal es aquel que est\u00e1 cubierto por el sistema de seguridad social. Los salarios son los salarios declarados por las empresas como base para ese prop\u00f3sito. La tasa de formalidad es la proporci\u00f3n de la poblaci\u00f3n mayor de 14 a\u00f1os del lugar que tiene un empleo formal. Las estimaciones de empleo formal y salarios hacen uso de una muestra de empresas registradas en el IMSS cuya principal caracter\u00edstica es que para cada empresa incluida fue posible asociarle de forma clara una \u00fanica actividad econ\u00f3mica preponderante, seg\u00fan el Sistema de Clasificaci\u00f3n Industrial de Am\u00e9rica del Norte (SCIAN-2007). Esto es, las estimaciones de empleo y salario contenidas en el Atlas de Complejidad Econ\u00f3mica de M\u00e9xico no incluyen informaci\u00f3n de todas las empresas afiliadas en el IMSS. Por lo anterior, los resultados de estas estimaciones no deben interpretarse como una forma de hacer inferencia sobre el comportamiento de estas variables a nivel agregado. Para dicho prop\u00f3sito, debe consultarse la fuente oficial de la informaci\u00f3n: el IMSS (http://busca.datos.gob.mx/#/conjuntos/asegurados-en-el-imss). Los datos de poblaci\u00f3n son del INEGI.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos por diferentes sectores. Cada color representa un sector, cada punto representa una industria de ese sector, y cada enlace indica que dos industrias requieren capacidades productivas similares. El espacio de industrias tambi\u00e9n indica (puntos llenos) cu\u00e1ndo un lugar exhibe ventajas comperativas reveladas (VCR) en la producci\u00f3n de una industria, y qu\u00e9 tan cerca est\u00e1 de otras industrias en donde el lugar no cuenta con VCR. El mapa presenta rutas potenciales para la expansi\u00f3n industrial a partir de los conocimientos y capacidades existentes. Un sector con m\u00e1s enlaces con sectores que no existen ofrece mayor potencial para la diversificaci\u00f3n productiva a trav\u00e9s de las capacidades compartidas. El espacio de industrias de M\u00e9xico fue construido a partir de la informaci\u00f3n de empleo formal por municipio e industria del IMSS.
La definici\u00f3n de \u00e1reas metropolitanas se ha hecho siguiendo los lineamientos establecidos en 2004 por CONAPO, el INEGI y SEDESOL: 1) el grupo de dos o m\u00e1s municipios en los cuales se ubica una ciudad de al menos 50,000 habitantes cuya \u00e1rea se extiende sobre los l\u00edmites del municipio al cual pertenece originalmente incorporando influencia directa sobre otra u otras poblaciones aleda\u00f1as regularmente con un alto nivel de integraci\u00f3n socio-econ\u00f3mica; o bien 2) un solo municipio dentro del cual se ubica totalmente una ciudad con una poblaci\u00f3n de al menos un mill\u00f3n de habitantes; o bien una ciudad con una poblaci\u00f3n de al menos 250,000 habitantes que forma una conurbaci\u00f3n con una ciudad de los Estados Unidos.
Ordena los productos de exportaci\u00f3n seg\u00fan la diversidad y ubicuidad de capacidades productivas requeridas para su fabricaci\u00f3n. Un lugar con alta complejidad econ\u00f3mica es capaz de producir muchos bienes y servicios que en promedio pocos saben hacer. Los lugares de mayor complejidad econ\u00f3mica tienden a ser m\u00e1s productivos, lo que se traduce en mayores salarios. Aquellos pa\u00edses con cestas de exportaci\u00f3n m\u00e1s complejas de lo que cabr\u00eda esperar dado sus niveles de ingresos tienden a crecer m\u00e1s r\u00e1pido. Para calcular la complejidad de los productos de exportaci\u00f3n se utilizan datos de Comtrade de las Naciones Unidas para cerca de 200 pa\u00edses.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos y capacidades requeridos por diferentes productos. Cada color representa un sector, cada punto representa un producto de exportaci\u00f3n, y cada enlace entre un par de productos indica que requieren capacidades productivas similares. El espacio de productos tambi\u00e9n muestra cuando un lugar posee ventajas comparativas reveladas (VCR) en la producci\u00f3n y exportaci\u00f3n de un bien, y qu\u00e9 tan cerca est\u00e1 de otros productos en donde no cuenta con VCR. El mapa presenta caminos potenciales para la diversificaci\u00f3n de las exportaciones a partir de los conocimientos y capacidades existentes. Un producto con m\u00e1s enlaces con otros que no se exportan ofrece mayor potencial para la diversificaci\u00f3n exportadora a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el producto tiene un alto potencial para elevar la complejidad del lugar.
El mapa de similitud de los productos se basa en los datos de comercio internacional de 192 pa\u00edses en m\u00e1s de 50 a\u00f1os. Ver http://atlas.cid.harvard.edu/.
Mide en qu\u00e9 medida se podr\u00eda beneficiar un lugar si consigue desarrollar una industria o producto de exportaci\u00f3n espec\u00edfico. Tambi\u00e9n conocida como \"ganancia de oportunidad\", esta medida representa la distancia a todos los otros sectores (o exportaciones) que un lugar no produce actualmente y su respectiva complejidad. Refleja c\u00f3mo un nuevo sector (o exportaci\u00f3n) puede abrir paso a otros sectores o productos m\u00e1s complejos.
Mide el tama\u00f1o relativo de un sector o un producto de exportaci\u00f3n en un lugar. La VCR, que no debe interpretarse como un indicador de eficiencia productiva o de competitividad, se conoce tambi\u00e9n por el nombre de \"cociente de localizaci\u00f3n\u201d. Se calcula como el cociente entre la participaci\u00f3n del empleo formal de un sector en el lugar y la participaci\u00f3n del empleo formal total del mismo sector en todo el pa\u00eds. Para una exportaci\u00f3n es la relaci\u00f3n entre el peso que tiene el producto en la canasta de exportaci\u00f3n del lugar y el peso que tiene en el comercio mundial. Si esta relaci\u00f3n es mayor que 1, se dice que el lugar tiene ventaja comparativa revelada en el sector o en la exportaci\u00f3n.
", + "about.glossary": "La complejidad econ\u00f3mica es importante porque las rutas hacia la prosperidad de una sociedad dependen de que las empresas puedan producir y exportar con \u00e9xito bienes y servicios que requieren diversas capacidades y conocimientos. La complejidad puede medirse para un lugar, para un producto de exportaci\u00f3n , o para un sector.
Mide cu\u00e1l es el potencial para incrementar la complejidad econ\u00f3mica de un lugar. Tiene en cuenta el nivel de complejidad de todos los sectores productivos existentes (o productos de exportaci\u00f3n), junto con la distancia en t\u00e9rminos de capacidades y conocimientos a los dem\u00e1s sectores (o productos). Con base en esta informaci\u00f3n, el indicador mide la probabilidad de que aparezcan nuevos sectores (o exportaciones) y qu\u00e9 tanto elevar\u00edan la complejidad del lugar.
Es una medida de la capacidad de un lugar para desarrollar un sector o una exportaci\u00f3n espec\u00edfica, teniendo en cuenta las capacidades productivas existentes. La \u201cdistancia\u201d es menor en la medida en que las capacidades requeridas por un sector o exportaci\u00f3n son similares a las ya existentes. Visto de otra forma, la distancia refleja la proporci\u00f3n del conocimiento productivo que se necesita para que aparezca un sector o exportaci\u00f3n que a\u00fan no existe en el lugar.
Es una medida de la sofisticaci\u00f3n de las capacidades productivas de un lugar basada en la diversidad y la exclusividad de sus sectores productivos o sus exportaciones. Un lugar con alta complejidad produce o exporta bienes y servicios que pocos otros lugares producen. Lugares altamente complejos tienden a ser m\u00e1s productivos y a generar mayores salarios e ingresos. Los pa\u00edses con canastas de exportaci\u00f3n m\u00e1s sofisticadas de lo cabe esperar dado su nivel de ingreso tienden a crecer m\u00e1s r\u00e1pido.
Es una medida que ordena los sectores productivos de un lugar seg\u00fan la diversidad y unicidad de las capacidades productivas que requiere. La complejidad de los sectores y de las exportaciones son medidas estrechamente relacionadas, pero se calculan en forma separada con datos y sistemas de clasificaci\u00f3n independientes. Las exportaciones se limitan a mercanc\u00edas comercializables internacionalmente (utilizando el Sistema Armonizado de clasificaci\u00f3n de productos, revisi\u00f3n de 1992), mientras que los sectores productivos comprenden todos los sectores de la econom\u00eda que generan empleo (utilizando la versi\u00f3n mexicana del Sistema de Clasificaci\u00f3n Industrial de Am\u00e9rica del Norte -SCIAN-, revisi\u00f3n de 2007). La complejidad de un sector se mide calculando la diversidad promedio de los lugares donde existe el sector y la ubicuidad promedio de los sectores de esos lugares. Los datos de empleo formal necesarios para estos c\u00e1lculos provienen de la agregaci\u00f3n de los datos del seguro social (IMSS) a nivel de industria-ubicaci\u00f3n
El empleo formal es aquel que est\u00e1 cubierto por el sistema de seguridad social. Los salarios son los salarios declarados por las empresas como base para ese prop\u00f3sito. La tasa de formalidad es la proporci\u00f3n de la poblaci\u00f3n mayor de 14 a\u00f1os del lugar que tiene un empleo formal. Las estimaciones de empleo formal y salarios hacen uso de una muestra de empresas registradas en el IMSS cuya principal caracter\u00edstica es que para cada empresa incluida fue posible asociarle de forma clara una \u00fanica actividad econ\u00f3mica preponderante, seg\u00fan el Sistema de Clasificaci\u00f3n Industrial de Am\u00e9rica del Norte (SCIAN-2007). Esto es, las estimaciones de empleo y salario contenidas en el Atlas de Complejidad Econ\u00f3mica de M\u00e9xico no incluyen informaci\u00f3n de todas las empresas afiliadas en el IMSS. Por lo anterior, los resultados de estas estimaciones no deben interpretarse como una forma de hacer inferencia sobre el comportamiento de estas variables a nivel agregado. Para dicho prop\u00f3sito, debe consultarse la fuente oficial de la informaci\u00f3n: el IMSS (http://busca.datos.gob.mx/#/conjuntos/asegurados-en-el-imss). Los datos de poblaci\u00f3n son del INEGI.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos requeridos por diferentes sectores. Cada color representa un sector, cada punto representa una industria de ese sector, y cada enlace indica que dos industrias requieren capacidades productivas similares. El espacio de industrias tambi\u00e9n indica (puntos llenos) cu\u00e1ndo un lugar exhibe ventajas comperativas reveladas (VCR) en la producci\u00f3n de una industria, y qu\u00e9 tan cerca est\u00e1 de otras industrias en donde el lugar no cuenta con VCR. El mapa presenta rutas potenciales para la expansi\u00f3n industrial a partir de los conocimientos y capacidades existentes. Un sector con m\u00e1s enlaces con sectores que no existen ofrece mayor potencial para la diversificaci\u00f3n productiva a trav\u00e9s de las capacidades compartidas. El espacio de industrias de M\u00e9xico fue construido a partir de la informaci\u00f3n de empleo formal por municipio e industria del IMSS.
La definici\u00f3n de \u00e1reas metropolitanas se ha hecho siguiendo los lineamientos establecidos en 2004 por CONAPO, el INEGI y SEDESOL: 1) el grupo de dos o m\u00e1s municipios en los cuales se ubica una ciudad de al menos 50,000 habitantes cuya \u00e1rea se extiende sobre los l\u00edmites del municipio al cual pertenece originalmente incorporando influencia directa sobre otra u otras poblaciones aleda\u00f1as regularmente con un alto nivel de integraci\u00f3n socio-econ\u00f3mica; o bien 2) un solo municipio dentro del cual se ubica totalmente una ciudad con una poblaci\u00f3n de al menos un mill\u00f3n de habitantes; o bien una ciudad con una poblaci\u00f3n de al menos 250,000 habitantes que forma una conurbaci\u00f3n con una ciudad de los Estados Unidos.
Ordena los productos de exportaci\u00f3n seg\u00fan la diversidad y ubicuidad de capacidades productivas requeridas para su fabricaci\u00f3n. Un lugar con alta complejidad econ\u00f3mica es capaz de producir muchos bienes y servicios que en promedio pocos saben hacer. Los lugares de mayor complejidad econ\u00f3mica tienden a ser m\u00e1s productivos, lo que se traduce en mayores salarios. Aquellos pa\u00edses con cestas de exportaci\u00f3n m\u00e1s complejas de lo que cabr\u00eda esperar dado sus niveles de ingresos tienden a crecer m\u00e1s r\u00e1pido. Para calcular la complejidad de los productos de exportaci\u00f3n se utilizan datos de Comtrade de las Naciones Unidas para cerca de 200 pa\u00edses.
Una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos y capacidades requeridos por diferentes productos. Cada color representa un sector, cada punto representa un producto de exportaci\u00f3n, y cada enlace entre un par de productos indica que requieren capacidades productivas similares. El espacio de productos tambi\u00e9n muestra cuando un lugar posee ventajas comparativas reveladas (VCR) en la producci\u00f3n y exportaci\u00f3n de un bien, y qu\u00e9 tan cerca est\u00e1 de otros productos en donde no cuenta con VCR. El mapa presenta caminos potenciales para la diversificaci\u00f3n de las exportaciones a partir de los conocimientos y capacidades existentes. Un producto con m\u00e1s enlaces con otros que no se exportan ofrece mayor potencial para la diversificaci\u00f3n exportadora a trav\u00e9s de las capacidades compartidas. Y si esas capacidades son complejas, el producto tiene un alto potencial para elevar la complejidad del lugar.
El mapa de similitud de los productos se basa en los datos de comercio internacional de 192 pa\u00edses en m\u00e1s de 50 a\u00f1os. Ver http://atlas.cid.harvard.edu/.
Mide en qu\u00e9 medida se podr\u00eda beneficiar un lugar si consigue desarrollar una industria o producto de exportaci\u00f3n espec\u00edfico. Tambi\u00e9n conocida como \"ganancia de oportunidad\", esta medida representa la distancia a todos los otros sectores (o exportaciones) que un lugar no produce actualmente y su respectiva complejidad. Refleja c\u00f3mo un nuevo sector (o exportaci\u00f3n) puede abrir paso a otros sectores o productos m\u00e1s complejos.
Mide el tama\u00f1o relativo de un sector o un producto de exportaci\u00f3n en un lugar. La VCR, que no debe interpretarse como un indicador de eficiencia productiva o de competitividad, se conoce tambi\u00e9n por el nombre de \"cociente de localizaci\u00f3n\u201d. Se calcula como el cociente entre la participaci\u00f3n del empleo formal de un sector en el lugar y la participaci\u00f3n del empleo formal total del mismo sector en todo el pa\u00eds. Para una exportaci\u00f3n es la relaci\u00f3n entre el peso que tiene el producto en la canasta de exportaci\u00f3n del lugar y el peso que tiene en el comercio mundial. Si esta relaci\u00f3n es mayor que 1, se dice que el lugar tiene ventaja comparativa revelada en el sector o en la exportaci\u00f3n.
", "about.glossary_name": "Glosario", "about.project_description.cid.header": "El CID y el Laboratorio de Crecimiento ", "about.project_description.cid.p1": "El Centro para el Desarrollo Internacional (CID) tiene por objetivos avanzar en la comprensi\u00f3n de los desaf\u00edos del desarrollo y ofrecer soluciones viables para reducir la pobreza mundial. El Laboratorio de Crecimiento es uno de los principales programas de investigaci\u00f3n del CID.\n\n", @@ -212,6 +212,7 @@ export default { "graph_builder.explanation.product.partners.import_value": "Muestra el origen de las importaciones de este producto, por pa\u00edses de origen agrupados por regi\u00f3n del mundo. Fuente: SAT, IMSS y c\u00e1lculos propios del CID.", "graph_builder.explanation.show": "Muestre m\u00e1s", "graph_builder.multiples.show_all": "Mostrar todo", + "graph_builder.types": "Gráficas disponibles", "graph_builder.page_title.industry.cities.employment": "\u00bfQu\u00e9 ciudades de Mexico representan una porci\u00f3n mayor del empleo este sector?", "graph_builder.page_title.industry.cities.wages": "\u00bfQu\u00e9 ciudades en Mexico representan una porci\u00f3n mayor de los salarios pagados en este sector?", "graph_builder.page_title.industry.departments.employment": "\u00bfQu\u00e9 lugares en M\u00e9xico ocupan m\u00e1s gente en esta industria?", @@ -287,7 +288,7 @@ export default { "graph_builder.settings.rca.greater": "> 1", "graph_builder.settings.rca.less": "< 1", "graph_builder.settings.to": "a", - "graph_builder.settings.year": "A\u00f1os", + "graph_builder.settings.year": "Selector de A\u00f1os", "graph_builder.settings.year.next": "Pr\u00f3ximo", "graph_builder.settings.year.previous": "Previo", "graph_builder.table.average_wages": "Salarios promedio, MX$ (miles de pesos)", @@ -358,6 +359,8 @@ export default { "index.complexity_head": "La ventaja de la complejidad", "index.complexity_subhead": "Los pa\u00edses que exportan productos complejos, que requieren una gran cantidad de conocimientos, crecen m\u00e1s r\u00e1pido que los que exportan materias primas. Usando los m\u00e9todos de medir y visualizar la complejidad desarrollados por la Universidad de Harvard, el Atlas de Complejidad Econ\u00f3mica permite entender la complejidad y las posibilidades productivas y de exportaci\u00f3n de las entidades y ciudades mexicanas.", "index.country_profile": "Lea el perfil de M\u00e9xico", + "index.country_profile_p1": "Lea el perfil", + "index.country_profile_p2": "De colombia", "index.dropdown.industries": "294,359", "index.dropdown.locations": "2533,2501,2511,2539,2513", "index.dropdown.products": "1143,87", @@ -365,8 +368,13 @@ export default { "index.future_subhead": "Encuentre qu\u00e9 exportaciones o industrias tienen las mejores posibilidades en su entidad o ciudad.", "index.graphbuilder.id": "87", "index.header_h1": "Atlas de complejidad econ\u00f3mica", + "index.header_h1_add": "Quires saber", + "index.header_h1_p1": "El atlas colombiano de", + "index.header_h1_p2": "Complejidad econ\u00f3mica", "index.header_head": "M\u00e9xico como usted nunca lo ha visto", "index.header_subhead": "Visualice las posibilidades de cualquier industria, cualquier producto de exportaci\u00f3n o cualquier lugar en M\u00e9xico.", + "index.header_subhead_add": "\u00bfQue sectores emplean m\u00e1s gente en bogot\u00e1?", + "index.button_more_information": "M\u00e1s informaci\u00f3n", "index.industry_head": "Ent\u00e9rese de una industria", "index.industry_q1": "\u00bfD\u00f3nde emplea m\u00e1s gente el sector de seguros en M\u00e9xico?", "index.industry_q1.id": "294", @@ -390,8 +398,11 @@ export default { "index.profiles_head": "Comience por nuestros perfiles", "index.profiles_subhead": "S\u00f3lo lo esencial, en un resumen de una p\u00e1gina", "index.questions_head": "No somos una bola de cristal, pero podemos responder muchas preguntas", + "index.questions_head_p1": "Actualizaciones", + "index.questions_head_p2": "M\u00f3dulos comercio exterior y sectores", "index.questions_subhead": "Pero podemos responder muchas preguntas.", "index.research_head": "Investigaci\u00f3n mencionada en", + "index.sophistication_route": "Ruta de sofisticaci\u00f3n y diversificaci\u00f3n de producto", "industry.show.avg_wages": "Salarios promedio ({{year}})", "industry.show.employment": "Empleo ({{year}})", "industry.show.employment_and_wages": "Actividad econ\u00f3mica formal por industrias", @@ -439,9 +450,11 @@ export default { "pageheader.rankings": "Rankings", "pageheader.search_link": "Buscar", "pageheader.search_placeholder": "Busque el lugar, producto o sector", - "pageheader.search_placeholder.industry": "Busque un sector", + "pageheader.search_placeholder.header": "Realice una busqueda por", + "pageheader.search_placeholder.industry": "Busqueda por Nombre o c\u00f3digo CIIU", "pageheader.search_placeholder.location": "Busque un lugar", "pageheader.search_placeholder.product": "Busque un producto", + "pageheader.search_placeholder.rural": "Busqueda por producto agricola, uso de suelo, actividad agropecuaria o especie pecuaria", "rankings.explanation.body": "", "rankings.explanation.title": "Explicaci\u00f3n", "rankings.intro.p": "Compare entidades y ciudades mexicanas.", @@ -466,6 +479,35 @@ export default { "search.results_industries": "Sectores", "search.results_locations": "Lugares", "search.results_products": "Productos", + "search.sophistication_path_place": "Ruta de sofisticacion y diversificacion de lugar", + "search.sophistication_path_product": "Ruta de sofisticacion y diversificacion de producto", + "search.message.p1": "En el siguiente campo usted podra diligenciar su consulta, tambien usted podra realizar esta misma busqueda por codigo CIIU.", + "search.message.p2": "Haga uso del interrogante para ampliar la información.", + "search.modal.title": "CODIGO CIIU", + "search.placeholder.select2": "Busqueda por Nombre o Codigo CIIU", + "search.modal.close": "Cerrar", + "search.modal.title.industry": "Codigo CIIU", + "search.modal.p1.industry": "Clasificacion numerica que identifica las actividades economicas. Aunque pertenece a las naciones unidas, en Colombia, el DANE realiza la ultima clasificacion a 4 digitos.", + "search.modal.link.industry": "https://clasificaciones.dane.gov.co/ciiu4-0/ciiu4_dispone", + + "search.modal.title.rural": "Búsqueda", + "search.modal.p1.rural": "En esta opción puede buscar con nombre un producto agrícola, uso de suelo, actividad no agropecuaria o especie pecuaria.La complejidad econ\u00f3mica es importante porque la productividad y el crecimiento de cualquier lugar dependen de que las empresas puedan producir con \u00e9xito bienes y servicios que requieren capacidades y conocimientos m\u00e1s complejos, es decir m\u00e1s diversos y menos ubicuos. La complejidad puede medirse para un lugar, para un producto de exportaci\u00f3n, o para un sector.
Mide el potencial de aumento de la complejidad econ\u00f3mica de un lugar. Tiene en cuenta el nivel de complejidad de todos los productos de exportaci\u00f3n que a\u00fan no se exportan con ventaja comparativa (o que no se exportan en absoluto) junto con la \"distancia\" entre las capacidades productivas existentes en el lugar y las requeridas por estos productos. Con base en esta informaci\u00f3n, el indicador mide la probabilidad de que aparezcan nuevos productos de exportaci\u00f3n y qu\u00e9 tanto elevar\u00edan la complejidad del lugar. Valores m\u00e1s altos indican que es m\u00e1s probable desarrollar nuevos productos m\u00e1s complejos que los que ya se tienen.
Mide en qu\u00e9 medida un lugar podr\u00eda beneficiarse mediante el desarrollo de un producto de exportaci\u00f3n espec\u00edfico. Tambi\u00e9n conocida como \"ganancia de oportunidad\", esta medida representa el cambio en el Pron\u00f3stico de Complejidad (COI). Refleja c\u00f3mo un nuevo producto de exportaci\u00f3n puede abrir paso a otros productos m\u00e1s complejos.
Es una medida de la capacidad de un lugar para desarrollar un producto de exportaci\u00f3n espec\u00edfico, teniendo en cuenta las capacidades productivas existentes. La \u201cdistancia\u201d es menor en la medida en que las capacidades requeridas por un producto son similares a las ya existentes. As\u00ed, ser\u00e1n mayores las posibilidades de que en dicho lugar se desarrolle con \u00e9xito la exportaci\u00f3n. Visto de otra forma, la distancia refleja la proporci\u00f3n del conocimiento productivo que se necesita para que aparezca un producto de exportaci\u00f3n que a\u00fan no existe en el lugar.
Es una medida de cu\u00e1ntos productos diferentes puede hacer un lugar. La producci\u00f3n de un bien cualquiera requiere un conjunto espec\u00edfico de capacidades; por consiguiente la diversidad es otra forma de expresar la cantidad de conocimiento productivo de un lugar.
Es una medida de la sofisticaci\u00f3n de las capacidades productivas de un lugar basada en la diversidad y ubicuidad de sus exportaciones. Un lugar con alta complejidad exporta bienes que pocos otros lugares exportan. Lugares altamente complejos tienden a ser m\u00e1s productivos y a generar mayores salarios e ingresos. Los pa\u00edses con canastas de exportaci\u00f3n m\u00e1s sofisticadas de lo cabe esperar dado su nivel de ingreso (como China) tienden a crecer m\u00e1s r\u00e1pido que aquellos en los que se da el caso contrario (como Grecia).
INEI es el Instituto Nacional de Estad\u00edstica e Inform\u00e1tica de Per\u00fa, fuente de todos los datos sobre el PIB y la poblaci\u00f3n que utiliza el Atlas.
El sistema de clasificaci\u00f3n de los productos de exportaci\u00f3n del Atlas es la nomenclatura arancelaria NANDINA, la cual calza a seis d\u00edgitos con la clasificaci\u00f3n internacional del Sistema Armonizado (HS). El Atlas presenta informaci\u00f3n de productos de exportaci\u00f3n a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n fue originalmente registrada por la SUNAT y proporcionada por Promper\u00fa.
Es un \u00edndice que permite ordenar los productos de exportaci\u00f3n seg\u00fan la diversidad y ubicuidad de capacidades productivas requeridas para su fabricaci\u00f3n y exportaci\u00f3n. Un producto como la pasta de dientes es mucho m\u00e1s que pasta en un tubo, ya que incorpora el conocimiento t\u00e1cito productivo (o know-how) de los productos qu\u00edmicos que matan los g\u00e9rmenes que causan caries y enfermedades de las enc\u00edas. Los productos de exportaci\u00f3n complejos, que incluyen muchos productos qu\u00edmicos y maquinaria, requieren un nivel sofisticado y una base diversa de conocimiento productivo, con muchos individuos con conocimientos especializados interactuando en una gran organizaci\u00f3n. Esto contrasta con las exportaciones de baja complejidad, como el caf\u00e9, que requieren un nivel de conocimiento productivo m\u00e1s b\u00e1sico que se puede encontrar inclusive en una empresa familiar. Para calcular la complejidad de los productos de exportaci\u00f3n se utilizan datos de Comtrade de las Naciones Unidas.
Es una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos y capacidades productivas requeridas por diferentes productos. Cada color representa un sector, cada punto representa un producto de exportaci\u00f3n, y cada enlace entre un par de productos indica que requieren capacidades productivas similares. En el espacio de productos tambi\u00e9n se puede mostrar los productos en los cuales un lugar posee ventajas comparativas reveladas (RCA) en la exportaci\u00f3n, y qu\u00e9 tan cerca est\u00e1n de otros productos en donde no cuenta con RCA. El mapa presenta caminos potenciales para la diversificaci\u00f3n de las exportaciones a partir de los conocimientos y capacidades existentes. Un producto con m\u00e1s enlaces con otros que no se exportan ofrece mayor potencial para la diversificaci\u00f3n exportadora a trav\u00e9s de las capacidades compartidas. Y si las capacidades adicionales son complejas, el producto tiene un alto potencial para elevar la complejidad del lugar.
El mapa de similitud de los productos se basa en los datos de comercio internacional de 192 pa\u00edses por m\u00e1s de 50 a\u00f1os. Ver http://atlas.cid.harvard.edu/.
Promper\u00fa es la Comisi\u00f3n de Promoci\u00f3n para la Exportaci\u00f3n y el Turismo de Per\u00fa, organismo t\u00e9cnico especializado aut\u00f3nomo adscrito al Ministerio de Comercio Exterior y Turismo, instituci\u00f3n que ha proporcionado la informaci\u00f3n sobre exportaciones del Atlas.
Mide el tama\u00f1o relativo de un producto de exportaci\u00f3n en un lugar. Se calcula como el cociente entre la participaci\u00f3n que tiene el producto en la canasta de exportaci\u00f3n del lugar y la participaci\u00f3n que tiene en el comercio mundial. Si esta relaci\u00f3n es mayor que 1, se dice que el lugar tiene ventaja comparativa revelada en dicho producto de exportaci\u00f3n. Por ejemplo, si el cobre representa el 30% de las exportaciones de un departamento, pero da cuenta apenas del 0.3% del comercio mundial, entonces la RCA del departamento en cobre es 100.
Adicionalmente, para minimizar el error de medici\u00f3n, se decidi\u00f3 solo tomar en cuenta aquellos productos cuyo monto exportado en el lugar en cuesti\u00f3n alcance al menos los US$ 50,000.
SUNAT es la Superintendencia Nacional de Aduanas y de Administraci\u00f3n Tributaria de Per\u00fa, organismo t\u00e9cnico, especializado y aut\u00f3nomo adscrito al Ministerio de Econom\u00eda y Finanzas, instituci\u00f3n que registra originalmente la informaci\u00f3n sobre exportaciones utilizada en el Atlas.
Es una medida de cu\u00e1ntos lugares diferentes pueden exportar un producto. La producci\u00f3n de un bien cualquiera requiere un conjunto espec\u00edfico de capacidades; por consiguiente la ubicuidad es otra forma de expresar la cantidad de conocimiento productivo que su producci\u00f3n y exportaci\u00f3n requiere.", + "about.glossary": "
La complejidad econ\u00f3mica es importante porque la productividad y el crecimiento de cualquier lugar dependen de que las empresas puedan producir con \u00e9xito bienes y servicios que requieren capacidades y conocimientos m\u00e1s complejos, es decir m\u00e1s diversos y menos ubicuos. La complejidad puede medirse para un lugar, para un producto de exportaci\u00f3n, o para un sector.
Mide el potencial de aumento de la complejidad econ\u00f3mica de un lugar. Tiene en cuenta el nivel de complejidad de todos los productos de exportaci\u00f3n que a\u00fan no se exportan con ventaja comparativa (o que no se exportan en absoluto) junto con la \"distancia\" entre las capacidades productivas existentes en el lugar y las requeridas por estos productos. Con base en esta informaci\u00f3n, el indicador mide la probabilidad de que aparezcan nuevos productos de exportaci\u00f3n y qu\u00e9 tanto elevar\u00edan la complejidad del lugar. Valores m\u00e1s altos indican que es m\u00e1s probable desarrollar nuevos productos m\u00e1s complejos que los que ya se tienen.
Mide en qu\u00e9 medida un lugar podr\u00eda beneficiarse mediante el desarrollo de un producto de exportaci\u00f3n espec\u00edfico. Tambi\u00e9n conocida como \"ganancia de oportunidad\", esta medida representa el cambio en el Pron\u00f3stico de Complejidad (COI). Refleja c\u00f3mo un nuevo producto de exportaci\u00f3n puede abrir paso a otros productos m\u00e1s complejos.
Es una medida de la capacidad de un lugar para desarrollar un producto de exportaci\u00f3n espec\u00edfico, teniendo en cuenta las capacidades productivas existentes. La \u201cdistancia\u201d es menor en la medida en que las capacidades requeridas por un producto son similares a las ya existentes. As\u00ed, ser\u00e1n mayores las posibilidades de que en dicho lugar se desarrolle con \u00e9xito la exportaci\u00f3n. Visto de otra forma, la distancia refleja la proporci\u00f3n del conocimiento productivo que se necesita para que aparezca un producto de exportaci\u00f3n que a\u00fan no existe en el lugar.
Es una medida de cu\u00e1ntos productos diferentes puede hacer un lugar. La producci\u00f3n de un bien cualquiera requiere un conjunto espec\u00edfico de capacidades; por consiguiente la diversidad es otra forma de expresar la cantidad de conocimiento productivo de un lugar.
Es una medida de la sofisticaci\u00f3n de las capacidades productivas de un lugar basada en la diversidad y ubicuidad de sus exportaciones. Un lugar con alta complejidad exporta bienes que pocos otros lugares exportan. Lugares altamente complejos tienden a ser m\u00e1s productivos y a generar mayores salarios e ingresos. Los pa\u00edses con canastas de exportaci\u00f3n m\u00e1s sofisticadas de lo cabe esperar dado su nivel de ingreso (como China) tienden a crecer m\u00e1s r\u00e1pido que aquellos en los que se da el caso contrario (como Grecia).
INEI es el Instituto Nacional de Estad\u00edstica e Inform\u00e1tica de Per\u00fa, fuente de todos los datos sobre el PIB y la poblaci\u00f3n que utiliza el Atlas.
El sistema de clasificaci\u00f3n de los productos de exportaci\u00f3n del Atlas es la nomenclatura arancelaria NANDINA, la cual calza a seis d\u00edgitos con la clasificaci\u00f3n internacional del Sistema Armonizado (HS). El Atlas presenta informaci\u00f3n de productos de exportaci\u00f3n a dos y cuatro d\u00edgitos. Toda la informaci\u00f3n fue originalmente registrada por la SUNAT y proporcionada por Promper\u00fa.
Es un \u00edndice que permite ordenar los productos de exportaci\u00f3n seg\u00fan la diversidad y ubicuidad de capacidades productivas requeridas para su fabricaci\u00f3n y exportaci\u00f3n. Un producto como la pasta de dientes es mucho m\u00e1s que pasta en un tubo, ya que incorpora el conocimiento t\u00e1cito productivo (o know-how) de los productos qu\u00edmicos que matan los g\u00e9rmenes que causan caries y enfermedades de las enc\u00edas. Los productos de exportaci\u00f3n complejos, que incluyen muchos productos qu\u00edmicos y maquinaria, requieren un nivel sofisticado y una base diversa de conocimiento productivo, con muchos individuos con conocimientos especializados interactuando en una gran organizaci\u00f3n. Esto contrasta con las exportaciones de baja complejidad, como el caf\u00e9, que requieren un nivel de conocimiento productivo m\u00e1s b\u00e1sico que se puede encontrar inclusive en una empresa familiar. Para calcular la complejidad de los productos de exportaci\u00f3n se utilizan datos de Comtrade de las Naciones Unidas.
Es una visualizaci\u00f3n que muestra qu\u00e9 tan similares son los conocimientos y capacidades productivas requeridas por diferentes productos. Cada color representa un sector, cada punto representa un producto de exportaci\u00f3n, y cada enlace entre un par de productos indica que requieren capacidades productivas similares. En el espacio de productos tambi\u00e9n se puede mostrar los productos en los cuales un lugar posee ventajas comparativas reveladas (RCA) en la exportaci\u00f3n, y qu\u00e9 tan cerca est\u00e1n de otros productos en donde no cuenta con RCA. El mapa presenta caminos potenciales para la diversificaci\u00f3n de las exportaciones a partir de los conocimientos y capacidades existentes. Un producto con m\u00e1s enlaces con otros que no se exportan ofrece mayor potencial para la diversificaci\u00f3n exportadora a trav\u00e9s de las capacidades compartidas. Y si las capacidades adicionales son complejas, el producto tiene un alto potencial para elevar la complejidad del lugar.
El mapa de similitud de los productos se basa en los datos de comercio internacional de 192 pa\u00edses por m\u00e1s de 50 a\u00f1os. Ver http://atlas.cid.harvard.edu/.
Promper\u00fa es la Comisi\u00f3n de Promoci\u00f3n para la Exportaci\u00f3n y el Turismo de Per\u00fa, organismo t\u00e9cnico especializado aut\u00f3nomo adscrito al Ministerio de Comercio Exterior y Turismo, instituci\u00f3n que ha proporcionado la informaci\u00f3n sobre exportaciones del Atlas.
Mide el tama\u00f1o relativo de un producto de exportaci\u00f3n en un lugar. Se calcula como el cociente entre la participaci\u00f3n que tiene el producto en la canasta de exportaci\u00f3n del lugar y la participaci\u00f3n que tiene en el comercio mundial. Si esta relaci\u00f3n es mayor que 1, se dice que el lugar tiene ventaja comparativa revelada en dicho producto de exportaci\u00f3n. Por ejemplo, si el cobre representa el 30% de las exportaciones de un departamento, pero da cuenta apenas del 0.3% del comercio mundial, entonces la RCA del departamento en cobre es 100.
Adicionalmente, para minimizar el error de medici\u00f3n, se decidi\u00f3 solo tomar en cuenta aquellos productos cuyo monto exportado en el lugar en cuesti\u00f3n alcance al menos los US$ 50,000.
SUNAT es la Superintendencia Nacional de Aduanas y de Administraci\u00f3n Tributaria de Per\u00fa, organismo t\u00e9cnico, especializado y aut\u00f3nomo adscrito al Ministerio de Econom\u00eda y Finanzas, instituci\u00f3n que registra originalmente la informaci\u00f3n sobre exportaciones utilizada en el Atlas.
Es una medida de cu\u00e1ntos lugares diferentes pueden exportar un producto. La producci\u00f3n de un bien cualquiera requiere un conjunto espec\u00edfico de capacidades; por consiguiente la ubicuidad es otra forma de expresar la cantidad de conocimiento productivo que su producci\u00f3n y exportaci\u00f3n requiere.",
"about.glossary_name": "Glosario",
"about.project_description.cid.header": "El CID y el Laboratorio de Crecimiento ",
"about.project_description.cid.p1": "Este proyecto ha sido desarrollado por el Centro para el Desarrollo Internacional de la Universidad de Harvard (CID), bajo la direcci\u00f3n del profesor Ricardo Hausmann.",
@@ -208,6 +208,7 @@ export default {
"graph_builder.explanation.product.partners.import_value": "Muestra el origen de las importaciones de este producto, por pa\u00eds y regi\u00f3n del mundo. Fuente: DIAN.",
"graph_builder.explanation.show": "Muestre m\u00e1s",
"graph_builder.multiples.show_all": "Mostrar todo",
+ "graph_builder.types": "Gráficas disponibles",
"graph_builder.page_title.industry.cities.employment": "\u00bfQu\u00e9 ciudades en Mexico ocupan m\u00e1s gente en este sector?",
"graph_builder.page_title.industry.cities.wages": "\u00bfQu\u00e9 ciudades en Peru tienen las mayores n\u00f3minas salariales en este sector?",
"graph_builder.page_title.industry.departments.employment": "",
@@ -283,7 +284,7 @@ export default {
"graph_builder.settings.rca.greater": "RCA mayor o igual a 1",
"graph_builder.settings.rca.less": "RCA menos de 1",
"graph_builder.settings.to": "a",
- "graph_builder.settings.year": "A\u00f1os",
+ "graph_builder.settings.year": "Selector de A\u00f1os",
"graph_builder.settings.year.next": "Siguiente",
"graph_builder.settings.year.previous": "Anterior",
"graph_builder.table.average_wages": "Salarios promedio, MX$ (miles de pesos)",
@@ -353,6 +354,8 @@ export default {
"index.complexity_head": "La ventaja de la complejidad",
"index.complexity_subhead": "Las econom\u00edas que exportan productos m\u00e1s complejos, que requieren una gran cantidad de conocimientos, crecen m\u00e1s r\u00e1pido. Usando los m\u00e9todos para medir y visualizar la complejidad desarrollados por la Universidad de Harvard, el Atlas de Complejidad Econ\u00f3mica permite entender la complejidad y las posibilidades productivas y de exportaci\u00f3n de los departamentos y provincias peruanos.",
"index.country_profile": "Lea el perfil de Per\u00fa",
+ "index.country_profile_p1": "Lea el perfil",
+ "index.country_profile_p2": "De colombia",
"index.dropdown.industries": "294,359",
"index.dropdown.locations": "206,2501,87,2539",
"index.dropdown.products": "1143,87",
@@ -360,8 +363,13 @@ export default {
"index.future_subhead": "Encuentre qu\u00e9 productos de exportaci\u00f3n tienen las mejores posibilidades en su departamento o provincia.",
"index.graphbuilder.id": "87",
"index.header_h1": "El Atlas Peruano de Complejidad Econ\u00f3mica",
+ "index.header_h1_add": "Quires saber",
+ "index.header_h1_p1": "El atlas colombiano de",
+ "index.header_h1_p2": "Complejidad econ\u00f3mica",
"index.header_head": "Peru como usted nunca lo ha visto",
"index.header_subhead": "Visualice las posibilidades de cualquier producto de exportaci\u00f3n o lugar en Per\u00fa.",
+ "index.header_subhead_add": "\u00bfQue sectores emplean m\u00e1s gente en bogot\u00e1?",
+ "index.button_more_information": "M\u00e1s informaci\u00f3n",
"index.industry_head": "",
"index.industry_q1": "",
"index.industry_q1.id": "294",
@@ -385,8 +393,11 @@ export default {
"index.profiles_head": "Comience por nuestros perfiles",
"index.profiles_subhead": "S\u00f3lo lo esencial, en un resumen de una p\u00e1gina",
"index.questions_head": "No somos una bola de cristal, pero podemos responder muchas preguntas.",
+ "index.questions_head_p1": "Actualizaciones",
+ "index.questions_head_p2": "M\u00f3dulos comercio exterior y sectores",
"index.questions_subhead": "Pero podemos responder muchas preguntas.",
"index.research_head": "Investigaci\u00f3n mencionada en",
+ "index.sophistication_route": "Ruta de sofisticaci\u00f3n y diversificaci\u00f3n de producto",
"industry.show.avg_wages": "Salarios promedio ({{year}})",
"industry.show.employment": "Empleo ({{year}})",
"industry.show.employment_and_wages": "Actividad econ\u00f3mica formal por industrias",
@@ -433,9 +444,11 @@ export default {
"pageheader.rankings": "Rankings",
"pageheader.search_link": "Buscar",
"pageheader.search_placeholder": "Busque el lugar o producto de exportaci\u00f3n",
- "pageheader.search_placeholder.industry": "Busque un sector",
+ "pageheader.search_placeholder.header": "Realice una busqueda por",
+ "pageheader.search_placeholder.industry": "Busqueda por Nombre o c\u00f3digo CIIU",
"pageheader.search_placeholder.location": "Busque un lugar",
"pageheader.search_placeholder.product": "Busque un producto de exportaci\u00f3n",
+ "pageheader.search_placeholder.rural": "Busqueda por producto agricola, uso de suelo, actividad agropecuaria o especie pecuaria",
"rankings.explanation.body": "",
"rankings.explanation.title": "Explicaci\u00f3n",
"rankings.intro.p": "Comparaci\u00f3n entre departamentos y provincias de Per\u00fa.",
@@ -460,6 +473,35 @@ export default {
"search.results_industries": "Sectores",
"search.results_locations": "Lugares",
"search.results_products": "Productos de exportaci\u00f3n",
+ "search.sophistication_path_place": "Ruta de sofisticacion y diversificacion de lugar",
+ "search.sophistication_path_product": "Ruta de sofisticacion y diversificacion de producto",
+ "search.message.p1": "En el siguiente campo usted podra diligenciar su consulta, tambien usted podra realizar esta misma busqueda por codigo CIIU.",
+ "search.message.p2": "Haga uso del interrogante para ampliar la información.",
+ "search.modal.title": "CODIGO CIIU",
+ "search.placeholder.select2": "Busqueda por Nombre o Codigo CIIU",
+ "search.modal.close": "Cerrar",
+ "search.modal.title.industry": "Codigo CIIU",
+ "search.modal.p1.industry": "Clasificacion numerica que identifica las actividades economicas. Aunque pertenece a las naciones unidas, en Colombia, el DANE realiza la ultima clasificacion a 4 digitos.",
+ "search.modal.link.industry": "https://clasificaciones.dane.gov.co/ciiu4-0/ciiu4_dispone",
+
+ "search.modal.title.rural": "Búsqueda",
+ "search.modal.p1.rural": "En esta opción puede buscar con nombre un producto agrícola, uso de suelo, actividad no agropecuaria o especie pecuaria.
En caso de no encontrar lo deseado, en la parte inferior puede encontrar cada una de las actividades agropecuarias y seleccionarlas directamente.",
+ "search.modal.link.rural": "",
+
+ "search.rural.agproduct": "Producto Agrícola",
+ "search.rural.land-use": "Uso de Suelo",
+ "search.rural.nonag": "Actividades Agropecuarias",
+ "search.rural.livestock": "Especies Pecuarias",
+
+ "search.industry.title": "Realice una busqueda por",
+ "search.industry.subtitle": "Sector o por codigo CIIU",
+ "search.industry.body": "En el siguiente campo usted podra diligenciar su consulta, tambien usted podra realizar esta misma busqueda por codigo CIIU.
Haga uso del interrogante para ampliar la información.",
+
+ "search.rural.title": "Búsqueda por",
+ "search.rural.subtitle": "Una actividad rural",
+ "search.rural.body": "En el siguiente campo usted podra realizar una búsqueda por producto agrícola, uso del suelo, actividad agropecuaria o especie pecuaria.
Haga uso del interrogante para ampliar la información.",
+
"table.export_data": "Descargar datos",
- "thousands_delimiter": ","
-};
\ No newline at end of file
+ "thousands_delimiter": ",",
+ "header_nav.search": "REALICE UNA BUSQUEDA POR"
+};
diff --git a/app/mixins/table-map.js b/app/mixins/table-map.js
index 9b7237ae..f6d0976e 100644
--- a/app/mixins/table-map.js
+++ b/app/mixins/table-map.js
@@ -78,6 +78,45 @@ export default Ember.Mixin.create({
return columns;
}
+ }),
+ productsExportsMap: computed('featureToggle.showImports', function() {
+ let columns = [
+ { key: 'name' },
+ { key: 'parent' },
+ { key: 'year' },
+ { key: 'export_value' },
+ { key: 'export_rca' },
+ { key: 'export_num_plants' },
+ ];
+
+ return columns;
+
+ }),
+ productsImportsMap: computed('featureToggle.showImports', function() {
+ let columns = [
+ { key: 'name' },
+ { key: 'parent' },
+ { key: 'year' },
+ { key: 'import_value' },
+ { key: 'rca' },
+ { key: 'import_num_plants' },
+ ];
+
+ return columns;
+
+ }),
+ industriesTopMap: computed('featureToggle.showImports', function() {
+ let columns = [
+ { key: 'name', copy: 'industry' },
+ { key: 'parent' },
+ { key: 'year' },
+ { key: 'employment' },
+ { key: 'wages' },
+ { key: 'num_establishments' },
+ ]
+
+ return columns;
+
}),
citiesMap: computed('featureToggle.showImports', 'featureToggle.showIndustries', function() {
let columns = [
@@ -154,6 +193,82 @@ export default Ember.Mixin.create({
);
}
+ return columns;
+
+ }),
+ exportsDepartmentsMap: computed('featureToggle.showImports', 'featureToggle.showIndustries', function() {
+ let columns = [
+ { key: 'code' },
+ { key: 'name', copy: 'location' },
+ { key: 'product_code' },
+ { key: 'product_name_short_es', copy: 'product' },
+ { key: 'year' },
+ { key: 'export_value' },
+ { key: 'export_rca' },
+ { key: 'export_num_plants' },
+ { key: 'distance' }
+ ];
+ return columns;
+
+ }),
+ importsDepartmentsMap: computed('featureToggle.showImports', 'featureToggle.showIndustries', function() {
+ let columns = [
+ { key: 'code' },
+ { key: 'name', copy: 'location' },
+ { key: 'product_code' },
+ { key: 'product_name_short_es', copy: 'product' },
+ { key: 'year' },
+ { key: 'import_value' },
+ { key: 'import_rca' },
+ { key: 'import_num_plants' },
+ { key: 'distance' },
+
+ //
+ //{ key: 'rca' },
+
+ //{ key: 'cog' }
+ ];
+
+
+
+ return columns;
+
+ }),
+ exportsCitiesMap: computed('featureToggle.showImports', 'featureToggle.showIndustries', function() {
+ let columns = [
+ { key: 'code' },
+ { key: 'name', copy: 'location' },
+ { key: 'parent_name', copy: 'parent.location' },
+ { key: 'product_code' },
+ { key: 'product_name_short_es', copy: 'product' },
+ { key: 'year' },
+ { key: 'export_value' },
+ { key: 'export_rca' },
+ { key: 'export_num_plants' },
+ { key: 'distance' },
+ ];
+
+
+
+ return columns;
+
+ }),
+ importsCitiesMap: computed('featureToggle.showImports', 'featureToggle.showIndustries', function() {
+ let columns = [
+ { key: 'code' },
+ { key: 'name', copy: 'location' },
+ { key: 'parent_name', copy: 'parent.location' },
+ { key: 'product_code' },
+ { key: 'product_name_short_es', copy: 'product' },
+ { key: 'year' },
+ { key: 'import_value' },
+ { key: 'import_rca' },
+ { key: 'import_num_plants' },
+ { key: 'distance' },
+ ];
+
+
+
return columns;
}),
@@ -270,6 +385,51 @@ export default Ember.Mixin.create({
return columns;
}
}),
+ livestockDataMap: computed('featureToggle.showImports', function() {
+ let columns = [
+ { key: 'name', copy: 'livestock' },
+ { key: 'num_farms' },
+ { key: 'num_livestock' },
+ ];
+ return columns;
+ }),
+ partnersExportsMap: computed('featureToggle.showImports', function() {
+ let columns = [
+ { key: 'name', copy: 'country' },
+ { key: 'parent', copy: 'parent.country' },
+ { key: 'year' },
+ { key: 'export_value' },
+ { key: 'import_value' },
+ ];
+
+ return columns;
+ }),
+ exportPartnersMap: computed('featureToggle.showImports', function() {
+ let columns = [
+ { key: 'code' },
+ { key: 'name', copy: 'country' },
+ { key: 'parent', copy: 'parent.country' },
+ { key: 'product_code' },
+ { key: 'product_name_short_es', copy: 'product' },
+ { key: 'year' },
+ { key: 'export_value' }
+ ];
+
+ return columns;
+ }),
+ importPartnersMap: computed('featureToggle.showImports', function() {
+ let columns = [
+ { key: 'code' },
+ { key: 'name', copy: 'country' },
+ { key: 'parent', copy: 'parent.country' },
+ { key: 'product_code' },
+ { key: 'product_name_short_es', copy: 'product' },
+ { key: 'year' },
+ { key: 'import_value' }
+ ];
+
+ return columns;
+ }),
departmentRankingsMap: computed('featureToggle.showIndustries', function() {
let columns = [
{ key: 'name' },
diff --git a/app/router.js b/app/router.js
index 7133049b..05639c99 100644
--- a/app/router.js
+++ b/app/router.js
@@ -10,6 +10,7 @@ export default Router.map(function() {
this.route('search');
this.route('downloads');
this.route('colombia');
+ this.route('agro');
// About
this.resource('about', function() {
@@ -24,10 +25,59 @@ export default Router.map(function() {
// Profiles
this.resource('product', { path: 'product'}, function() {
this.route('show', { path: ':product_id'});
+ this.route('abstract', { path: ':product_id/abstract/'});
+
+ this.route('complexmap', { path: ':product_id/complexmap/'});
+ this.route('complexmapprimaries', { path: ':product_id/complexmap/primaries/'});
+ this.route('complexmapsecondaries', { path: ':product_id/complexmap/secondaries/'});
+ this.route('ringchart', { path: ':product_id/ringchart/'});
+ this.route('exports', { path: ':product_id/exports/'});
+ this.route('report', {path: ':product_id/report/'});
+
this.route('visualization', { path: ':product_id/source/:source_type/visualization/:visualization_type/:variable'});
});
this.resource('location', { path: 'location'}, function() {
this.route('show', {path: ':location_id'});
+ this.route('abstract', {path: ':location_id/abstract/'});
+ this.route('route', {path: ':location_id/route/'});
+
+
+
+
+ this.route('productmap', {path: ':location_id/route/product_map/'});
+ this.route('productmapdetail', {path: ':location_id/route/product_map/detail/'});
+ this.route('productmapprimaries', {path: ':location_id/route/product_map/primaries/'});
+ this.route('productmapsecondaries', {path: ':location_id/route/product_map/secondaries/'});
+ this.route('ringchart', {path: ':location_id/route/ringchart/'});
+ this.route('productmappotential', {path: ':location_id/route/product_map/potential/'});
+
+
+
+
+
+
+
+
+ this.route('locationimports', {path: ':location_id/route/imports/'});
+ this.route('locationwages', {path: ':location_id/route/wages/'});
+
+
+
+
+ this.route('complexsectors', {path: ':location_id/route/complex_sectors/'});
+ this.route('complexsectorsdetail', {path: ':location_id/route/complex_sectors/detail/'});
+ this.route('complexsectorsprimaries', {path: ':location_id/route/complex_sectors/primaries/'});
+
+ this.route('complexsectorssecondaries', {path: ':location_id/route/complex_sectors/secondaries/'});
+ this.route('potential', {path: ':location_id/route/potential/'});
+
+ this.route('ruralactivities', {path: ':location_id/route/rural_activities/'});
+ this.route('thirdparty', {path: ':location_id/route/thirdparty/'});
+ this.route('report', {path: ':location_id/route/report/'});
+
+
+ //this.route('productmapdecentralized', {path: ':location_id/route/product_map/decentralized/'});
+
this.route('visualization', { path: ':location_id/source/:source_type/visualization/:visualization_type/:variable'});
this.route('visualization-product', { path: ':location_id/product/:product_id/visualization/:visualization_type/:variable'});
});
diff --git a/app/routes/agproduct/visualization.js b/app/routes/agproduct/visualization.js
index 4ad1b3a0..6db46632 100644
--- a/app/routes/agproduct/visualization.js
+++ b/app/routes/agproduct/visualization.js
@@ -48,7 +48,8 @@ export default Ember.Route.extend({
let id = get(this, 'agproduct_id');
return {
model: this.store.find('agproduct', id),
- agproducts: $.getJSON(`${apiURL}/data/agproduct/${id}/locations/?level=department`)
+ agproducts: $.getJSON(`${apiURL}/data/agproduct/${id}/locations/?level=department`),
+ municipalities: $.getJSON(`${apiURL}/data/agproduct/${id}/locations/?level=municipality`)
};
}),
municipalities: computed('agproduct_id', function() {
@@ -59,7 +60,7 @@ export default Ember.Route.extend({
};
}),
departmentsDataMunging(hash) {
- let {model,agproducts} = hash;
+ let {model, agproducts, municipalities} = hash;
let locationsMetadata = this.modelFor('application').locations;
let data = _.map(agproducts.data, (d) => {
@@ -73,9 +74,24 @@ export default Ember.Route.extend({
);
});
+ let datas = _.map(municipalities.data, (d) => {
+ return _.merge(
+ copy(d),
+ locationsMetadata[d.location_id],
+ {
+ model: 'agproduct',
+ municipality_id: d.location_id,
+ group: locationsMetadata[d.location_id].parent_id,
+ parent_name_en: locationsMetadata[locationsMetadata[d.location_id].parent_id].name_en,
+ parent_name_es: locationsMetadata[locationsMetadata[d.location_id].parent_id].name_es,
+ }
+ );
+ });
+
return Ember.Object.create({
entity: model,
data: data,
+ cities:datas
});
},
municipalitiesDataMunging(hash) {
diff --git a/app/routes/agro.js b/app/routes/agro.js
new file mode 100644
index 00000000..4577f320
--- /dev/null
+++ b/app/routes/agro.js
@@ -0,0 +1,8 @@
+import Ember from 'ember';
+
+export default Ember.Route.extend({
+ activate: function() {
+ this._super.apply(this,arguments);
+ window.scrollTo(0,0);
+ }
+});
diff --git a/app/routes/application.js b/app/routes/application.js
index 99b28cb9..7c3d04a2 100644
--- a/app/routes/application.js
+++ b/app/routes/application.js
@@ -42,6 +42,9 @@ export default Ember.Route.extend({
var industryPCI = $.getJSON(apiURL+'/data/industry/?level=class');
var productSectionColor = $.getJSON('assets/color_mappings/product_section_colors.json');
+ var partnersSectionColor = $.getJSON('assets/color_mappings/partners_section_colors.json');
+ var farmtypesSectionColor = $.getJSON('assets/color_mappings/farmtypes_section_colors.json');
+ var agproductsSectionColor = $.getJSON('assets/color_mappings/agproducts_section_colors.json');
var industrySectionColor = $.getJSON(`assets/color_mappings/${this.get('i18n.country')}-industry_section_colors.json`);
var industrySpace = $.getJSON(`assets/networks/${this.get('i18n.country')}-industry_space.json`);
var productSpace = $.getJSON('assets/networks/product_space.json');
@@ -67,7 +70,10 @@ export default Ember.Route.extend({
productPCI,
industryPCI,
productSpace,
- industrySpace
+ industrySpace,
+ partnersSectionColor,
+ farmtypesSectionColor,
+ agproductsSectionColor
];
return RSVP.allSettled(promises).then((array) => {
@@ -92,6 +98,9 @@ export default Ember.Route.extend({
let industryPCI = array[18].value.data;
let productSpace = array[19].value;
let industrySpace = array[20].value;
+ let partnersSectionColor = array[21].value;
+ let farmtypesSectionColor = array[22].value;
+ let agproductsSectionColor = array[23].value;
// Finds the entity with the `1st digit` that matches
// sets `group` to the `1st digit code`
@@ -105,7 +114,7 @@ export default Ember.Route.extend({
industryPCI= _.groupBy(industryPCI, 'industry_id');
_.forEach(locationsMetadata, (d) => {
- let color = '#d7cbf2';
+ let color = '#880e4f';
d.group = d.id;
d.color = color;
@@ -115,10 +124,13 @@ export default Ember.Route.extend({
_.forEach(productsMetadata, (d) => {
let sectionId = productsHierarchy[d.id];
let color = _.isUndefined(sectionId) ? '#fff' : get(productSectionColor, `${sectionId}.color`);
+ let icon = _.isUndefined(sectionId) ? 'fas fa-arrow-alt-circle-up' : get(productSectionColor, `${sectionId}.icon`);
d.color = color;
+ d.icon = icon;
set(productSectionMap, `${sectionId}.color`, color);
+ set(productSectionMap, `${sectionId}.icon`, icon);
d.pci_data = get(productPCI, `${d.id}`);
d.parent_name_en = get(productSectionMap, `${sectionId}.name_en`);
@@ -129,7 +141,7 @@ export default Ember.Route.extend({
});
_.forEach(occupationsMetadata, (d) => {
- let color = '#ccafaf';
+ let color = '#7E57C2';
d.group = get(d,'code').split('-')[0];
d.parent_name_en = get(d, 'name_en');
@@ -140,46 +152,78 @@ export default Ember.Route.extend({
_.forEach(livestockMetadata, (d) => {
d.name_short_en = d.name_en;
d.name_short_es = d.name_es;
- d.color = '#ccafaf';
+ d.color = '#7E57C2';
d.model = 'livestock';
});
_.forEach(agproductsMetadata, (d) => {
+
+ let parent = agproductsMetadata[d.parent_id];
+ let color = '#880e4f';
+ let icon = 'fas fa-globe';
+
+ if(parent !== undefined){
+
+ if(d.level === "level3"){
+ let grandparent = agproductsMetadata[parent.parent_id];
+ if(agproductsSectionColor[grandparent.id] !== undefined){
+ color = agproductsSectionColor[grandparent.id].color;
+ icon = agproductsSectionColor[grandparent.id].icon;
+ }
+ }
+
+ }
+
d.name_short_en = d.name_en;
d.name_short_es = d.name_es;
- d.color = '#ccafaf';
+ d.color = color;
+ d.icon = icon;
d.model = 'agproduct';
});
_.forEach(nonagsMetadata, (d) => {
d.name_short_en = d.name_en;
d.name_short_es = d.name_es;
- d.color = '#ccafaf';
+ d.color = '#7E57C2';
d.model = 'nonag';
});
_.forEach(landUsesMetadata, (d) => {
d.name_short_en = d.name_en;
d.name_short_es = d.name_es;
- d.color = '#ccafaf';
+ d.color = '#880e4f';
d.model = 'landUse';
});
_.forEach(farmtypesMetadata, (d) => {
+
+ let color = '#880e4f';
+ let icon = 'fas fa-globe';
+
+ if(farmtypesSectionColor[d.parent_id] !== undefined){
+ color = farmtypesSectionColor[d.parent_id].color;
+ }
+
+ if(farmtypesSectionColor[d.parent_id] !== undefined){
+ icon = farmtypesSectionColor[d.parent_id].icon;
+ }
+
d.name_short_en = d.name_en;
d.name_short_es = d.name_es;
- d.color = '#ccafaf';
+ d.color = color;
+ d.icon = icon;
});
_.forEach(farmsizesMetadata, (d) => {
d.name_short_en = d.name_en;
d.name_short_es = d.name_es;
- d.color = '#ccafaf';
+ d.color = '#33691E';
});
_.forEach(industriesMetadata, (d) => {
let sectionId = industriesHierarchy[d.id];
let color = _.isUndefined(sectionId) ? '#fff' :get(industrySectionColor, `${sectionId}.color`);
+ let icon = _.isUndefined(sectionId) ? 'fas fa-arrow-alt-circle-up' : get(industrySectionColor, `${sectionId}.icon`);
d.pci_data = get(industryPCI, `${d.id}`);
/*
@@ -189,18 +233,35 @@ export default Ember.Route.extend({
set(industrySectionMap, `${sectionId}.color`, color);
}
+ if(!_.isUndefined(sectionId)) {
+ set(industrySectionMap, `${sectionId}.icon`, icon);
+ }
+
+
d.group = get(industrySectionMap, `${sectionId}.code`);
d.parent_name_en = get(industrySectionMap, `${sectionId}.name_en`);
d.parent_name_es = get(industrySectionMap, `${sectionId}.name_es`);
d.color = color;
+ d.icon = icon;
d.model = 'industry';
});
_.forEach(partnerCountries, (d) => {
- let color = '#d7cbf2';
+ let color = '#880e4f';
+ let icon = 'fas fa-globe';
+
+ if(partnersSectionColor[d.parent_id] !== undefined){
+ color = partnersSectionColor[d.parent_id].color;
+ }
+
+ if(partnersSectionColor[d.parent_id] !== undefined){
+ icon = partnersSectionColor[d.parent_id].icon;
+ }
+
d.name_short_en = d.name_en;
d.name_short_es = d.name_es;
d.color = color;
+ d.icon = icon;
});
// Index metadata by entity id's
diff --git a/app/routes/index.js b/app/routes/index.js
index a1d613a0..9200a01f 100644
--- a/app/routes/index.js
+++ b/app/routes/index.js
@@ -9,17 +9,24 @@ export default Ember.Route.extend({
let hash = {
locations: this.store.find('location'),
products: this.store.find('product', { level: '4digit' }),
- industries: this.store.find('industry', { level: 'division' }),
- agproducts: this.store.find('agproduct', { level: 'level3' })
+ industries: this.store.find('industry', { level: 'division', level: 'class' }),
+ agproducts: this.store.find('agproduct', { level: 'level3' }),
+ nonags: this.store.find('nonag', { level: 'level3' }),
+ livestock: this.store.find('livestock', { level: 'level1' }),
+ landuses: this.store.find('land-use', { level: 'level2' })
};
return RSVP.hash(hash).then((hash) => {
- let {industries, products, locations, agproducts} = hash;
+ let {industries, products, locations, agproducts, nonags, livestock, landuses} = hash;
+
return Object.create({
industries: industries,
products: products,
locations: locations,
agproducts: agproducts,
+ nonags: nonags,
+ livestock: livestock,
+ landuses: landuses
});
});
},
diff --git a/app/routes/industry/visualization.js b/app/routes/industry/visualization.js
index 63f77e27..aecb9e93 100644
--- a/app/routes/industry/visualization.js
+++ b/app/routes/industry/visualization.js
@@ -11,9 +11,10 @@ export default Ember.Route.extend({
firstYear: computed.alias('featureToggle.first_year'),
lastYear: computed.alias('featureToggle.last_year'),
queryParams: {
- startDate: { refreshModel: true },
- endDate: { refreshModel: true },
- search: { refreshModel: false }
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ search: { refreshModel: false },
+ toolTips: { refreshModel: false },
},
controllerName: 'visualization',
renderTemplate() {
@@ -26,12 +27,13 @@ export default Ember.Route.extend({
set(this, 'visualization_type', visualization_type);
set(this, 'variable', variable);
+
return RSVP.hash(this.get(source_type)).then((hash) => {
if(source_type === 'departments') {
return this.departmentDataMunging(hash);
} else if (source_type === 'occupations') {
return this.occupationsDataMunging(hash);
- } else if (source_type == 'cities') {
+ } else if (source_type === 'cities') {
return this.citiesDataMunging(hash);
}
});
@@ -49,7 +51,8 @@ export default Ember.Route.extend({
let id = get(this, 'industry_id');
return {
model: this.store.find('industry', id),
- departments: $.getJSON(`${apiURL}/data/industry/${id}/participants?level=department`)
+ departments: $.getJSON(`${apiURL}/data/industry/${id}/participants?level=department`),
+ cities: $.getJSON(`${apiURL}/data/industry/${id}/participants/?level=msa`)
};
}),
occupations: computed('industry_id', function() {
@@ -66,8 +69,9 @@ export default Ember.Route.extend({
cities: $.getJSON(`${apiURL}/data/industry/${id}/participants/?level=msa`)
};
}),
+
departmentDataMunging(hash) {
- let {model, departments} = hash;
+ let {model, departments, cities} = hash;
let locationsMetadata = this.modelFor('application').locations;
let data = _.map(departments.data, (d) => {
@@ -83,9 +87,26 @@ export default Ember.Route.extend({
return copy(d);
});
+ let datas = _.map(cities.data, (d) => {
+ let industry = locationsMetadata[d.msa_id];
+ d.avg_wage = d.wages/d.employment;
+ d.name_short_en = industry.name_short_en;
+ d.name_short_es = industry.name_short_es;
+ d.color = industry.color;
+ d.code = industry.code;
+ d.group = industry.group;
+ d.model = 'location';
+ d.id = d.msa_id;
+ d.parent_name_en = locationsMetadata[industry.parent_id].name_short_en;
+ d.parent_name_es = locationsMetadata[industry.parent_id].name_short_es;
+ d.parent_code = locationsMetadata[locationsMetadata[d.msa_id].parent_id].code;
+ return copy(d);
+ });
+
return Ember.Object.create({
entity: model,
data: data,
+ cities:datas
});
},
occupationsDataMunging(hash) {
@@ -150,7 +171,7 @@ export default Ember.Route.extend({
controller.set('drawerChangeGraphIsOpen', false); // Turn off other drawers
controller.set('drawerQuestionsIsOpen', false); // Turn off other drawers
controller.set('searchText', controller.get('search'));
- window.scrollTo(0, 0);
+ controller.set('VCRValue', 1);
},
resetController(controller, isExiting) {
controller.set('variable', null);
@@ -158,7 +179,8 @@ export default Ember.Route.extend({
if (isExiting) {
controller.setProperties({
startDate: this.get('firstYear'),
- endDate: this.get('lastYear')
+ endDate: this.get('lastYear'),
+ VCRValue: 1
});
}
}
diff --git a/app/routes/land-use/visualization.js b/app/routes/land-use/visualization.js
index f5f7b87d..7fd3fe44 100644
--- a/app/routes/land-use/visualization.js
+++ b/app/routes/land-use/visualization.js
@@ -48,7 +48,8 @@ export default Ember.Route.extend({
let id = get(this, 'land_use_id');
return {
model: this.store.find('land-use', id),
- landUses: $.getJSON(`${apiURL}/data/land_use/${id}/locations/?level=department`)
+ landUses: $.getJSON(`${apiURL}/data/land_use/${id}/locations/?level=department`),
+ cities: $.getJSON(`${apiURL}/data/land_use/${id}/locations/?level=municipality`)
};
}),
municipalities: computed('land_use_id', function() {
@@ -59,7 +60,7 @@ export default Ember.Route.extend({
};
}),
departmentsDataMunging(hash) {
- let {model,landUses} = hash;
+ let {model, landUses, cities} = hash;
let locationsMetadata = this.modelFor('application').locations;
let data = _.map(landUses.data, (d) => {
@@ -74,9 +75,25 @@ export default Ember.Route.extend({
);
});
+ let datas = _.map(cities.data, (d) => {
+ return _.merge(
+ locationsMetadata[d.location_id],
+ copy(d),
+ {
+ model: 'landUse',
+ year: this.get("lastYear"),
+ municipality_id: d.location_id,
+ group: locationsMetadata[d.location_id].parent_id,
+ parent_name_en: locationsMetadata[locationsMetadata[d.location_id].parent_id].name_en,
+ parent_name_es: locationsMetadata[locationsMetadata[d.location_id].parent_id].name_es,
+ }
+ );
+ });
+
return Ember.Object.create({
entity: model,
data: data,
+ cities:datas
});
},
municipalitiesDataMunging(hash) {
diff --git a/app/routes/livestock/visualization.js b/app/routes/livestock/visualization.js
index b34acf48..1e6cff20 100644
--- a/app/routes/livestock/visualization.js
+++ b/app/routes/livestock/visualization.js
@@ -48,7 +48,8 @@ export default Ember.Route.extend({
let id = get(this, 'livestock_id');
return {
model: this.store.find('livestock', id),
- livestock: $.getJSON(`${apiURL}/data/livestock/${id}/locations/?level=department`)
+ livestock: $.getJSON(`${apiURL}/data/livestock/${id}/locations/?level=department`),
+ municipalities: $.getJSON(`${apiURL}/data/livestock/${id}/locations/?level=municipality`)
};
}),
municipalities: computed('livestock_id', function() {
@@ -59,7 +60,7 @@ export default Ember.Route.extend({
};
}),
departmentsDataMunging(hash) {
- let {model,livestock} = hash;
+ let {model,livestock, municipalities} = hash;
let locationsMetadata = this.modelFor('application').locations;
let data = _.map(livestock.data, (d) => {
@@ -74,9 +75,25 @@ export default Ember.Route.extend({
);
});
+ let datas = _.map(municipalities.data, (d) => {
+ return _.merge(
+ copy(d),
+ locationsMetadata[d.location_id],
+ {
+ model: 'livestock',
+ year: this.get("lastYear"),
+ municipality_id: d.location_id,
+ group: locationsMetadata[d.location_id].parent_id,
+ parent_name_en: locationsMetadata[locationsMetadata[d.location_id].parent_id].name_en,
+ parent_name_es: locationsMetadata[locationsMetadata[d.location_id].parent_id].name_es,
+ }
+ );
+ });
+
return Ember.Object.create({
entity: model,
data: data,
+ cities:datas
});
},
municipalitiesDataMunging(hash) {
diff --git a/app/routes/location/abstract.js b/app/routes/location/abstract.js
new file mode 100644
index 00000000..e0c74bdb
--- /dev/null
+++ b/app/routes/location/abstract.js
@@ -0,0 +1,305 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+import numeral from 'numeral';
+
+const {apiURL} = ENV;
+const {RSVP, computed, getWithDefault, get, copy} = Ember;
+
+export default Ember.Route.extend({
+// `this.store.find` makes an api call for `params.location_id` and returns a promise
+// in the `then` function call, another API call is made to get the topExports data
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ censusYear: computed.alias('featureToggle.census_year'),
+ agproductLastYear: computed.alias('featureToggle.year_ranges.agproduct.last_year'),
+
+ model: function(params) {
+ return this.store.find('location', params.location_id);
+ },
+ afterModel: function(model) {
+ let level = model.get('level');
+ level = level === 'country' ? 'department' : level;
+
+ let subregion = get(this, `featureToggle.subregions.${model.get('level')}`);
+
+ // TODO: maybe use ember data instead of ajax calls to decorate JSON objects with model functionality?
+ // extract year out later
+ var products = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/products?level=4digit`);
+ var industries = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/industries?level=class`);
+
+ // one of these should be removed in the future because the points should be merged in
+ var dotplot = Ember.$.getJSON(`${apiURL}/data/location?level=${level}`); //dotplots
+
+ var subregions_trade = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/subregions_trade/?level=${subregion}`);
+
+ var occupations = Ember.$.getJSON(`${apiURL}/data/occupation/?level=minor_group`);
+
+ var agproducts = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/agproducts/?level=level3`);
+ var landuses = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/land_uses/?level=level2`);
+
+ var ag_farmsizes = Ember.$.getJSON(`${apiURL}/data/farmsize/1/locations/?level=${level}`);
+ var nonag_farmsizes = Ember.$.getJSON(`${apiURL}/data/farmsize/2/locations/?level=${level}`);
+
+ var partners = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/partners/?level=country`)
+
+ return RSVP.allSettled([products, dotplot, industries, subregions_trade, occupations, agproducts, landuses, ag_farmsizes, nonag_farmsizes, partners]).then((array) => {
+ var productsData = getWithDefault(array[0], 'value.data', []);
+
+ var dotplotData = getWithDefault(array[1], 'value.data', []);//dotplots
+
+ var industriesData = getWithDefault(array[2], 'value.data', []);
+
+ var subregionsTradeData = _.filter(getWithDefault(array[3], 'value.data', []), { 'year': this.get('lastYear')});
+
+ var occupationsData = getWithDefault(array[4], 'value.data', []);
+
+ var agproductsData = getWithDefault(array[5], 'value.data', []);
+ var landusesData = getWithDefault(array[6], 'value.data', []);
+
+ var agFarmsizesData = getWithDefault(array[7], 'value.data', []);
+ var nonagFarmsizesData = getWithDefault(array[8], 'value.data', []);
+
+ var partnersData = getWithDefault(array[9], 'value.data', []);
+
+ var productsDataIndex = _.indexBy(productsData, 'product_id');
+ var industriesDataIndex = _.indexBy(industriesData, 'industry_data');
+
+ let productsMetadata = this.modelFor('application').products;
+ let locationsMetadata = this.modelFor('application').locations;
+ let industriesMetadata = this.modelFor('application').industries;
+ let occupationsMetadata = this.modelFor('application').occupations;
+ let agproductsMetadata = this.modelFor('application').agproducts;
+ let landusesMetadata = this.modelFor('application').landUses;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+
+
+ //get products data for the department
+ let products = _.reduce(productsData, (memo, d) => {
+ if(d.year != this.get('lastYear')) { return memo; }
+ let product = productsMetadata[d.product_id];
+ let productData = productsDataIndex[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product, productData));
+ return memo;
+ }, []);
+
+
+ //get products data for the department
+ let allProducts = _.reduce(productsData, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ let productData = productsDataIndex[d.product_id];
+
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, productData, {year: d.year}, product));
+ return memo;
+ }, []);
+
+
+ let allPartners = _.map(partnersData, (d) => {
+
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ d.parent_name_en = parent.name_en;
+ d.parent_name_es = parent.name_es;
+ d.group = parent.id;
+
+ return _.merge(copy(d), country);
+ });
+
+
+ //get agproducts data for the department
+ let agproducts = _.reduce(agproductsData, (memo, d) => {
+ if(d.year != this.get('agproductLastYear')) { return memo; }
+ let product = agproductsMetadata[d.agproduct_id];
+ let parent = agproductsMetadata[agproductsMetadata[product.parent_id].parent_id];
+ d.group = parent.id;
+ d.parent_name_en = parent.name_en;
+ d.parent_name_es = parent.name_es;
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ //get agproducts data for the department
+ let landuses = _.reduce(landusesData, (memo, d) => {
+ let product = landusesMetadata[d.land_use_id];
+ let parent = landusesMetadata[product.parent_id];
+ d.group = product.name_en;
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ //get industry data for department
+ let industries = _.reduce(industriesData, (memo, d) => {
+ if(d.year != this.get('lastYear')) { return memo; }
+ let industry = industriesMetadata[d.industry_id];
+ if(model.id === '0') { d.rca = 1; }
+ let industryData = industriesDataIndex[d.industry_id];
+ industry.complexity = _.result(_.find(industry.pci_data, { year: d.year}), 'complexity');
+ memo.push(_.merge(d, industry, industryData));
+ return memo;
+ }, []);
+
+ let occupationVacanciesSum = 0;
+ let occupations = _.map(occupationsData, (d) => {
+ occupationVacanciesSum += d.num_vacancies;
+ let occupation = occupationsMetadata[d.occupation_id];
+ return _.merge(d, occupation);
+ });
+
+ occupations.forEach((d) => {
+ d.share = d.num_vacancies/occupationVacanciesSum;
+ });
+
+ //dotplots and dotplotTimeSeries power the dotplots, rankings and etc
+ var dotplot = [];
+ var dotplotTimeSeries= [];
+
+ _.each(dotplotData, (d) => {
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+ if(id == model.id) {
+ dotplotTimeSeries.push(d);
+ }
+ if(d.year === this.get('censusYear')) {
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+
+ let location = _.get(locationsMetadata, id);
+
+ let extra = {
+ name: location.name_en,
+ group: d.code,
+ parent_name_en: location.name_en,
+ parent_name_es: location.name_es,
+ };
+
+ let datum = _.merge(d, location, extra );
+ dotplot.push(datum);
+ }
+ });
+
+ let subregions = [];
+ _.each(subregionsTradeData, (d) => {
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+
+ let location = _.get(locationsMetadata, id);
+ let extra = {
+ name: location.name_en,
+ group: d.code,
+ parent_name_en: location.name_en,
+ parent_name_es: location.name_es,
+ };
+
+ let datum = _.merge(d, location, extra );
+ subregions.push(datum);
+ });
+
+ var eciRank = 1;
+ var populationRank = 1;
+ var gdpRank = 1;
+ var gdpPerCapitaRank = 1;
+
+ // "Datum" contains the hash of data for the year to be displayed.
+ let datum = _.chain(dotplotTimeSeries)
+ .select({ year: this.get('censusYear')})
+ .first()
+ .value();
+
+ if(datum) {
+ _.each(dotplot, (d) => {
+ if(d.eci != null && d.eci > datum.eci) { eciRank ++; }
+ if(d.gdp_real != null && d.gdp_real > datum.gdp_real) { gdpRank ++; }
+ if(d.population != null && d.population > datum.population ) { populationRank ++; }
+ if(d.gdp_pc_real != null && d.gdp_pc_real> datum.gdp_pc_real ) { gdpPerCapitaRank++; }
+ });
+ }
+
+ if(datum !== undefined && (datum.eci === undefined || datum.eci === null)){
+ eciRank = null;
+ }
+
+ model.setProperties({
+ eciRank: eciRank,
+ gdpRank: gdpRank,
+ gdpPerCapitaRank: gdpPerCapitaRank,
+ populationRank: populationRank,
+ });
+
+ var agFarmsizeRank = 1;
+ var agFarmsize = _.chain(agFarmsizesData).filter((d) => d.location_id == model.id).first().get("avg_farmsize").value();
+ _.each(agFarmsizesData, (d) => {
+
+ if(d.avg_farmsize != null && d.avg_farmsize > agFarmsize ) { agFarmsizeRank++; }
+
+ d.name_en = _.get(locationsMetadata, d.location_id).name_en;
+ d.name_es = _.get(locationsMetadata, d.location_id).name_es;
+
+ });
+ agFarmsize = numeral(agFarmsize).format('0.00a');
+
+ model.setProperties({
+ agFarmsize: agFarmsize,
+ agFarmsizeRank: agFarmsizeRank,
+ });
+
+ var nonagFarmsizeRank = 1;
+ var nonagFarmsize = _.chain(nonagFarmsizesData).filter((d) => d.location_id == model.id).first().get("avg_farmsize").value();
+ _.each(nonagFarmsizesData, (d) => {
+
+ if(d.avg_farmsize != null && d.avg_farmsize > nonagFarmsize ) { nonagFarmsizeRank++; }
+
+ d.name_en = _.get(locationsMetadata, d.location_id).name_en;
+ d.name_es = _.get(locationsMetadata, d.location_id).name_es;
+
+ });
+ nonagFarmsize = numeral(nonagFarmsize).format('0.00a');
+
+ model.setProperties({
+ nonagFarmsize: nonagFarmsize,
+ nonagFarmsizeRank: nonagFarmsizeRank,
+ });
+
+ var yieldIndexRank = 1;
+ var yieldIndex = _.chain(dotplotData).filter((d) => ((d.department_id == model.id || d.location_id == model.id) && d.year == this.get("agproductLastYear"))).first().get("yield_index").value();
+
+ var yieldData = _.filter(dotplotData, (d) => d.year == this.get("agproductLastYear") );
+ _.each(yieldData, (d) => {
+ if(d.yield_index != null && d.yield_index > yieldIndex) { yieldIndexRank++; }
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+ d.name_en = _.get(locationsMetadata, id).name_en;
+ d.name_es = _.get(locationsMetadata, id).name_es;
+ });
+ yieldIndex = numeral(yieldIndex).format('0.00a');
+
+ model.setProperties({
+ yieldIndex: yieldIndex,
+ yieldIndexRank: yieldIndexRank,
+ });
+
+
+ model.set('productsData', products);
+ model.set('agproductsData', agproducts);
+ model.set('landusesData', landuses);
+ model.set('industriesData', industries);
+ model.set('agFarmsizesData', agFarmsizesData);
+ model.set('nonagFarmsizesData', nonagFarmsizesData);
+ model.set('yieldData', yieldData);
+ model.set('dotplotData', dotplot);
+ model.set('occupations', occupations);
+ model.set('timeseries', dotplotTimeSeries);
+ model.set('metaData', this.modelFor('application'));
+ model.set('subregions', subregions);
+ model.set('allPartners', allPartners)
+ model.set('allProducts', allProducts)
+
+ return model;
+ });
+ },
+ setupController(controller, model) {
+ this._super(controller, model);
+ this.controllerFor('application').set('entity', model.get('constructor.modelName'));
+ this.controllerFor('application').set('entity_id', model.get('id'));
+ window.scrollTo(0, 0);
+ },
+});
diff --git a/app/routes/location/complexsectors.js b/app/routes/location/complexsectors.js
new file mode 100644
index 00000000..b089907e
--- /dev/null
+++ b/app/routes/location/complexsectors.js
@@ -0,0 +1,67 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ industries_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/industries?level=class`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, industries_col} = hash;
+ let industriesMetadata = this.modelFor('application').industries;
+ var industriesDataIndex = _.indexBy(getWithDefault(industries_col, 'data', []), 'industry_data');
+
+ //get products data for the department
+ let industries = _.reduce(industries_col.data, (memo, d) => {
+ let industry = industriesMetadata[d.industry_id];
+ if(model.id === '0') { d.rca = 1; }
+ let industryData = industriesDataIndex[d.industry_id];
+ industry.complexity = _.result(_.find(industry.pci_data, { year: d.year}), 'complexity');
+ memo.push(_.merge(d, industry, industryData));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ industries_col: industries,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/complexsectorsdetail.js b/app/routes/location/complexsectorsdetail.js
new file mode 100644
index 00000000..d80f3f7b
--- /dev/null
+++ b/app/routes/location/complexsectorsdetail.js
@@ -0,0 +1,69 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ industries_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/industries?level=class`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, industries_col} = hash;
+ let industriesMetadata = this.modelFor('application').industries;
+ var industriesDataIndex = _.indexBy(getWithDefault(industries_col, 'data', []), 'industry_data');
+
+ //get products data for the department
+ let industries = _.reduce(industries_col.data, (memo, d) => {
+ let industry = industriesMetadata[d.industry_id];
+ if(model.id === '0') { d.rca = 1; }
+ let industryData = industriesDataIndex[d.industry_id];
+ industry.complexity = _.result(_.find(industry.pci_data, { year: d.year}), 'complexity');
+ memo.push(_.merge(d, industry, industryData));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ industries_col: industries,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ startDate: this.get('firstYear')
+ endDate: this.get('lastYear')
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/complexsectorsprimaries.js b/app/routes/location/complexsectorsprimaries.js
new file mode 100644
index 00000000..d80f3f7b
--- /dev/null
+++ b/app/routes/location/complexsectorsprimaries.js
@@ -0,0 +1,69 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ industries_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/industries?level=class`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, industries_col} = hash;
+ let industriesMetadata = this.modelFor('application').industries;
+ var industriesDataIndex = _.indexBy(getWithDefault(industries_col, 'data', []), 'industry_data');
+
+ //get products data for the department
+ let industries = _.reduce(industries_col.data, (memo, d) => {
+ let industry = industriesMetadata[d.industry_id];
+ if(model.id === '0') { d.rca = 1; }
+ let industryData = industriesDataIndex[d.industry_id];
+ industry.complexity = _.result(_.find(industry.pci_data, { year: d.year}), 'complexity');
+ memo.push(_.merge(d, industry, industryData));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ industries_col: industries,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ startDate: this.get('firstYear')
+ endDate: this.get('lastYear')
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/complexsectorssecondaries.js b/app/routes/location/complexsectorssecondaries.js
new file mode 100644
index 00000000..d80f3f7b
--- /dev/null
+++ b/app/routes/location/complexsectorssecondaries.js
@@ -0,0 +1,69 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ industries_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/industries?level=class`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, industries_col} = hash;
+ let industriesMetadata = this.modelFor('application').industries;
+ var industriesDataIndex = _.indexBy(getWithDefault(industries_col, 'data', []), 'industry_data');
+
+ //get products data for the department
+ let industries = _.reduce(industries_col.data, (memo, d) => {
+ let industry = industriesMetadata[d.industry_id];
+ if(model.id === '0') { d.rca = 1; }
+ let industryData = industriesDataIndex[d.industry_id];
+ industry.complexity = _.result(_.find(industry.pci_data, { year: d.year}), 'complexity');
+ memo.push(_.merge(d, industry, industryData));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ industries_col: industries,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ startDate: this.get('firstYear')
+ endDate: this.get('lastYear')
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/locationimports.js b/app/routes/location/locationimports.js
new file mode 100644
index 00000000..c64be5f7
--- /dev/null
+++ b/app/routes/location/locationimports.js
@@ -0,0 +1,80 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+import numeral from 'numeral';
+
+const {apiURL} = ENV;
+const {RSVP, computed, getWithDefault, get, copy} = Ember;
+
+export default Ember.Route.extend({
+// `this.store.find` makes an api call for `params.location_id` and returns a promise
+// in the `then` function call, another API call is made to get the topExports data
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ censusYear: computed.alias('featureToggle.census_year'),
+ agproductLastYear: computed.alias('featureToggle.year_ranges.agproduct.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model: function(params) {
+ return this.store.find('location', params.location_id);
+ },
+ afterModel: function(model) {
+ let level = model.get('level');
+ level = level === 'country' ? 'department' : level;
+
+ let subregion = get(this, `featureToggle.subregions.${model.get('level')}`);
+
+ // TODO: maybe use ember data instead of ajax calls to decorate JSON objects with model functionality?
+ // extract year out later
+ var products = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/products?level=4digit`);
+ var partners = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/partners/?level=country`)
+
+ return RSVP.allSettled([products, partners]).then((array) => {
+ var productsData = getWithDefault(array[0], 'value.data', []);
+ var partnersData = getWithDefault(array[1], 'value.data', []);
+
+ var productsDataIndex = _.indexBy(productsData, 'product_id');
+
+ let productsMetadata = this.modelFor('application').products;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+
+
+ //get products data for the department
+ let products = _.reduce(productsData, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+
+ let allPartners = _.map(partnersData, (d) => {
+
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ d.parent_name_en = parent.name_en;
+ d.parent_name_es = parent.name_es;
+ d.group = parent.id;
+
+ return _.merge(copy(d), country);
+ });
+
+ model.set('productsData', products);
+ model.set('allPartners', allPartners);
+
+ return model;
+ });
+ },
+ setupController(controller, model) {
+ this._super(controller, model);
+ //this.controllerFor('application').set('entity', model.get('constructor.modelName'));
+ //this.controllerFor('application').set('entity_id', model.get('id'));
+ window.scrollTo(0, 0);
+ },
+});
diff --git a/app/routes/location/locationwages.js b/app/routes/location/locationwages.js
new file mode 100644
index 00000000..4687a7ef
--- /dev/null
+++ b/app/routes/location/locationwages.js
@@ -0,0 +1,68 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+import numeral from 'numeral';
+
+const {apiURL} = ENV;
+const {RSVP, computed, getWithDefault, get, copy} = Ember;
+
+export default Ember.Route.extend({
+// `this.store.find` makes an api call for `params.location_id` and returns a promise
+// in the `then` function call, another API call is made to get the topExports data
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ censusYear: computed.alias('featureToggle.census_year'),
+ agproductLastYear: computed.alias('featureToggle.year_ranges.agproduct.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model: function(params) {
+ return this.store.find('location', params.location_id);
+ },
+ afterModel: function(model) {
+ let level = model.get('level');
+ level = level === 'country' ? 'department' : level;
+
+ let subregion = get(this, `featureToggle.subregions.${model.get('level')}`);
+
+ // TODO: maybe use ember data instead of ajax calls to decorate JSON objects with model functionality?
+ // extract year out later
+
+ var industries = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/industries?level=class`);
+
+ return RSVP.allSettled([industries]).then((array) => {
+
+ var industriesData = getWithDefault(array[0], 'value.data', []);
+
+ var industriesDataIndex = _.indexBy(industriesData, 'industry_data');
+
+ let industriesMetadata = this.modelFor('application').industries;
+
+
+ //get products data for the department
+ let industries = _.reduce(industriesData, (memo, d) => {
+ let industry = industriesMetadata[d.industry_id];
+ if(model.id === '0') { d.rca = 1; }
+ let industryData = industriesDataIndex[d.industry_id];
+ industry.complexity = _.result(_.find(industry.pci_data, { year: d.year}), 'complexity');
+ memo.push(_.merge(d, industry, industryData));
+ return memo;
+ }, []);
+
+ model.set('industriesData', industries);
+
+ return model;
+ });
+ },
+ setupController(controller, model) {
+ this._super(controller, model);
+ //this.controllerFor('application').set('entity', model.get('constructor.modelName'));
+ //this.controllerFor('application').set('entity_id', model.get('id'));
+ window.scrollTo(0, 0);
+ },
+});
diff --git a/app/routes/location/potential.js b/app/routes/location/potential.js
new file mode 100644
index 00000000..6c9784ec
--- /dev/null
+++ b/app/routes/location/potential.js
@@ -0,0 +1,66 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ industries_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/industries?level=class`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, industries_col} = hash;
+ let industriesMetadata = this.modelFor('application').industries;
+ var industriesDataIndex = _.indexBy(getWithDefault(industries_col, 'data', []), 'industry_data');
+
+ let industries = _.map(industries_col.data, (d) => {
+ let industry = industriesMetadata[d.industry_id];
+ if(model.id === '0') { d.rca = 1; }
+ industry.complexity = _.result(_.find(industry.pci_data, { year: d.year}), 'complexity');
+ return _.merge(copy(d), industry, { avg_wage: d.wages/d.employment});
+ });
+
+ return Ember.Object.create({
+ entity: model,
+ industries_col: industries,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ startDate: this.get('firstYear')
+ endDate: this.get('lastYear')
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/productmap.js b/app/routes/location/productmap.js
new file mode 100644
index 00000000..ae376af1
--- /dev/null
+++ b/app/routes/location/productmap.js
@@ -0,0 +1,65 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ products_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, products_col} = hash;
+ let productsMetadata = this.modelFor('application').products;
+ var productsDataIndex = _.indexBy(getWithDefault(products_col, 'data', []), 'product_id');
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/productmapdecentralized.js b/app/routes/location/productmapdecentralized.js
new file mode 100644
index 00000000..e0c74bdb
--- /dev/null
+++ b/app/routes/location/productmapdecentralized.js
@@ -0,0 +1,305 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+import numeral from 'numeral';
+
+const {apiURL} = ENV;
+const {RSVP, computed, getWithDefault, get, copy} = Ember;
+
+export default Ember.Route.extend({
+// `this.store.find` makes an api call for `params.location_id` and returns a promise
+// in the `then` function call, another API call is made to get the topExports data
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ censusYear: computed.alias('featureToggle.census_year'),
+ agproductLastYear: computed.alias('featureToggle.year_ranges.agproduct.last_year'),
+
+ model: function(params) {
+ return this.store.find('location', params.location_id);
+ },
+ afterModel: function(model) {
+ let level = model.get('level');
+ level = level === 'country' ? 'department' : level;
+
+ let subregion = get(this, `featureToggle.subregions.${model.get('level')}`);
+
+ // TODO: maybe use ember data instead of ajax calls to decorate JSON objects with model functionality?
+ // extract year out later
+ var products = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/products?level=4digit`);
+ var industries = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/industries?level=class`);
+
+ // one of these should be removed in the future because the points should be merged in
+ var dotplot = Ember.$.getJSON(`${apiURL}/data/location?level=${level}`); //dotplots
+
+ var subregions_trade = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/subregions_trade/?level=${subregion}`);
+
+ var occupations = Ember.$.getJSON(`${apiURL}/data/occupation/?level=minor_group`);
+
+ var agproducts = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/agproducts/?level=level3`);
+ var landuses = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/land_uses/?level=level2`);
+
+ var ag_farmsizes = Ember.$.getJSON(`${apiURL}/data/farmsize/1/locations/?level=${level}`);
+ var nonag_farmsizes = Ember.$.getJSON(`${apiURL}/data/farmsize/2/locations/?level=${level}`);
+
+ var partners = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/partners/?level=country`)
+
+ return RSVP.allSettled([products, dotplot, industries, subregions_trade, occupations, agproducts, landuses, ag_farmsizes, nonag_farmsizes, partners]).then((array) => {
+ var productsData = getWithDefault(array[0], 'value.data', []);
+
+ var dotplotData = getWithDefault(array[1], 'value.data', []);//dotplots
+
+ var industriesData = getWithDefault(array[2], 'value.data', []);
+
+ var subregionsTradeData = _.filter(getWithDefault(array[3], 'value.data', []), { 'year': this.get('lastYear')});
+
+ var occupationsData = getWithDefault(array[4], 'value.data', []);
+
+ var agproductsData = getWithDefault(array[5], 'value.data', []);
+ var landusesData = getWithDefault(array[6], 'value.data', []);
+
+ var agFarmsizesData = getWithDefault(array[7], 'value.data', []);
+ var nonagFarmsizesData = getWithDefault(array[8], 'value.data', []);
+
+ var partnersData = getWithDefault(array[9], 'value.data', []);
+
+ var productsDataIndex = _.indexBy(productsData, 'product_id');
+ var industriesDataIndex = _.indexBy(industriesData, 'industry_data');
+
+ let productsMetadata = this.modelFor('application').products;
+ let locationsMetadata = this.modelFor('application').locations;
+ let industriesMetadata = this.modelFor('application').industries;
+ let occupationsMetadata = this.modelFor('application').occupations;
+ let agproductsMetadata = this.modelFor('application').agproducts;
+ let landusesMetadata = this.modelFor('application').landUses;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+
+
+ //get products data for the department
+ let products = _.reduce(productsData, (memo, d) => {
+ if(d.year != this.get('lastYear')) { return memo; }
+ let product = productsMetadata[d.product_id];
+ let productData = productsDataIndex[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product, productData));
+ return memo;
+ }, []);
+
+
+ //get products data for the department
+ let allProducts = _.reduce(productsData, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ let productData = productsDataIndex[d.product_id];
+
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, productData, {year: d.year}, product));
+ return memo;
+ }, []);
+
+
+ let allPartners = _.map(partnersData, (d) => {
+
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ d.parent_name_en = parent.name_en;
+ d.parent_name_es = parent.name_es;
+ d.group = parent.id;
+
+ return _.merge(copy(d), country);
+ });
+
+
+ //get agproducts data for the department
+ let agproducts = _.reduce(agproductsData, (memo, d) => {
+ if(d.year != this.get('agproductLastYear')) { return memo; }
+ let product = agproductsMetadata[d.agproduct_id];
+ let parent = agproductsMetadata[agproductsMetadata[product.parent_id].parent_id];
+ d.group = parent.id;
+ d.parent_name_en = parent.name_en;
+ d.parent_name_es = parent.name_es;
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ //get agproducts data for the department
+ let landuses = _.reduce(landusesData, (memo, d) => {
+ let product = landusesMetadata[d.land_use_id];
+ let parent = landusesMetadata[product.parent_id];
+ d.group = product.name_en;
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ //get industry data for department
+ let industries = _.reduce(industriesData, (memo, d) => {
+ if(d.year != this.get('lastYear')) { return memo; }
+ let industry = industriesMetadata[d.industry_id];
+ if(model.id === '0') { d.rca = 1; }
+ let industryData = industriesDataIndex[d.industry_id];
+ industry.complexity = _.result(_.find(industry.pci_data, { year: d.year}), 'complexity');
+ memo.push(_.merge(d, industry, industryData));
+ return memo;
+ }, []);
+
+ let occupationVacanciesSum = 0;
+ let occupations = _.map(occupationsData, (d) => {
+ occupationVacanciesSum += d.num_vacancies;
+ let occupation = occupationsMetadata[d.occupation_id];
+ return _.merge(d, occupation);
+ });
+
+ occupations.forEach((d) => {
+ d.share = d.num_vacancies/occupationVacanciesSum;
+ });
+
+ //dotplots and dotplotTimeSeries power the dotplots, rankings and etc
+ var dotplot = [];
+ var dotplotTimeSeries= [];
+
+ _.each(dotplotData, (d) => {
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+ if(id == model.id) {
+ dotplotTimeSeries.push(d);
+ }
+ if(d.year === this.get('censusYear')) {
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+
+ let location = _.get(locationsMetadata, id);
+
+ let extra = {
+ name: location.name_en,
+ group: d.code,
+ parent_name_en: location.name_en,
+ parent_name_es: location.name_es,
+ };
+
+ let datum = _.merge(d, location, extra );
+ dotplot.push(datum);
+ }
+ });
+
+ let subregions = [];
+ _.each(subregionsTradeData, (d) => {
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+
+ let location = _.get(locationsMetadata, id);
+ let extra = {
+ name: location.name_en,
+ group: d.code,
+ parent_name_en: location.name_en,
+ parent_name_es: location.name_es,
+ };
+
+ let datum = _.merge(d, location, extra );
+ subregions.push(datum);
+ });
+
+ var eciRank = 1;
+ var populationRank = 1;
+ var gdpRank = 1;
+ var gdpPerCapitaRank = 1;
+
+ // "Datum" contains the hash of data for the year to be displayed.
+ let datum = _.chain(dotplotTimeSeries)
+ .select({ year: this.get('censusYear')})
+ .first()
+ .value();
+
+ if(datum) {
+ _.each(dotplot, (d) => {
+ if(d.eci != null && d.eci > datum.eci) { eciRank ++; }
+ if(d.gdp_real != null && d.gdp_real > datum.gdp_real) { gdpRank ++; }
+ if(d.population != null && d.population > datum.population ) { populationRank ++; }
+ if(d.gdp_pc_real != null && d.gdp_pc_real> datum.gdp_pc_real ) { gdpPerCapitaRank++; }
+ });
+ }
+
+ if(datum !== undefined && (datum.eci === undefined || datum.eci === null)){
+ eciRank = null;
+ }
+
+ model.setProperties({
+ eciRank: eciRank,
+ gdpRank: gdpRank,
+ gdpPerCapitaRank: gdpPerCapitaRank,
+ populationRank: populationRank,
+ });
+
+ var agFarmsizeRank = 1;
+ var agFarmsize = _.chain(agFarmsizesData).filter((d) => d.location_id == model.id).first().get("avg_farmsize").value();
+ _.each(agFarmsizesData, (d) => {
+
+ if(d.avg_farmsize != null && d.avg_farmsize > agFarmsize ) { agFarmsizeRank++; }
+
+ d.name_en = _.get(locationsMetadata, d.location_id).name_en;
+ d.name_es = _.get(locationsMetadata, d.location_id).name_es;
+
+ });
+ agFarmsize = numeral(agFarmsize).format('0.00a');
+
+ model.setProperties({
+ agFarmsize: agFarmsize,
+ agFarmsizeRank: agFarmsizeRank,
+ });
+
+ var nonagFarmsizeRank = 1;
+ var nonagFarmsize = _.chain(nonagFarmsizesData).filter((d) => d.location_id == model.id).first().get("avg_farmsize").value();
+ _.each(nonagFarmsizesData, (d) => {
+
+ if(d.avg_farmsize != null && d.avg_farmsize > nonagFarmsize ) { nonagFarmsizeRank++; }
+
+ d.name_en = _.get(locationsMetadata, d.location_id).name_en;
+ d.name_es = _.get(locationsMetadata, d.location_id).name_es;
+
+ });
+ nonagFarmsize = numeral(nonagFarmsize).format('0.00a');
+
+ model.setProperties({
+ nonagFarmsize: nonagFarmsize,
+ nonagFarmsizeRank: nonagFarmsizeRank,
+ });
+
+ var yieldIndexRank = 1;
+ var yieldIndex = _.chain(dotplotData).filter((d) => ((d.department_id == model.id || d.location_id == model.id) && d.year == this.get("agproductLastYear"))).first().get("yield_index").value();
+
+ var yieldData = _.filter(dotplotData, (d) => d.year == this.get("agproductLastYear") );
+ _.each(yieldData, (d) => {
+ if(d.yield_index != null && d.yield_index > yieldIndex) { yieldIndexRank++; }
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+ d.name_en = _.get(locationsMetadata, id).name_en;
+ d.name_es = _.get(locationsMetadata, id).name_es;
+ });
+ yieldIndex = numeral(yieldIndex).format('0.00a');
+
+ model.setProperties({
+ yieldIndex: yieldIndex,
+ yieldIndexRank: yieldIndexRank,
+ });
+
+
+ model.set('productsData', products);
+ model.set('agproductsData', agproducts);
+ model.set('landusesData', landuses);
+ model.set('industriesData', industries);
+ model.set('agFarmsizesData', agFarmsizesData);
+ model.set('nonagFarmsizesData', nonagFarmsizesData);
+ model.set('yieldData', yieldData);
+ model.set('dotplotData', dotplot);
+ model.set('occupations', occupations);
+ model.set('timeseries', dotplotTimeSeries);
+ model.set('metaData', this.modelFor('application'));
+ model.set('subregions', subregions);
+ model.set('allPartners', allPartners)
+ model.set('allProducts', allProducts)
+
+ return model;
+ });
+ },
+ setupController(controller, model) {
+ this._super(controller, model);
+ this.controllerFor('application').set('entity', model.get('constructor.modelName'));
+ this.controllerFor('application').set('entity_id', model.get('id'));
+ window.scrollTo(0, 0);
+ },
+});
diff --git a/app/routes/location/productmapdetail.js b/app/routes/location/productmapdetail.js
new file mode 100644
index 00000000..66cc4fb0
--- /dev/null
+++ b/app/routes/location/productmapdetail.js
@@ -0,0 +1,67 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ locationProductsService: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ products_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, products_col} = hash;
+ let productsMetadata = this.modelFor('application').products;
+ var productsDataIndex = _.indexBy(getWithDefault(products_col, 'data', []), 'product_id');
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ //this.set("locationProductsService.selected", {})
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/productmappotential.js b/app/routes/location/productmappotential.js
new file mode 100644
index 00000000..ae376af1
--- /dev/null
+++ b/app/routes/location/productmappotential.js
@@ -0,0 +1,65 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ products_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, products_col} = hash;
+ let productsMetadata = this.modelFor('application').products;
+ var productsDataIndex = _.indexBy(getWithDefault(products_col, 'data', []), 'product_id');
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/productmapprimaries.js b/app/routes/location/productmapprimaries.js
new file mode 100644
index 00000000..ae376af1
--- /dev/null
+++ b/app/routes/location/productmapprimaries.js
@@ -0,0 +1,65 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ products_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, products_col} = hash;
+ let productsMetadata = this.modelFor('application').products;
+ var productsDataIndex = _.indexBy(getWithDefault(products_col, 'data', []), 'product_id');
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/productmapsecondaries.js b/app/routes/location/productmapsecondaries.js
new file mode 100644
index 00000000..ae376af1
--- /dev/null
+++ b/app/routes/location/productmapsecondaries.js
@@ -0,0 +1,65 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ products_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, products_col} = hash;
+ let productsMetadata = this.modelFor('application').products;
+ var productsDataIndex = _.indexBy(getWithDefault(products_col, 'data', []), 'product_id');
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/report.js b/app/routes/location/report.js
new file mode 100644
index 00000000..626dfc4e
--- /dev/null
+++ b/app/routes/location/report.js
@@ -0,0 +1,166 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ agcensusLastYear: computed.alias('featureToggle.year_ranges.agcensus.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ industries_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/industries?level=class`),
+ products_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/products?level=4digit`),
+ partners: $.getJSON(`${apiURL}/data/location/${params.location_id}/partners?level=country`),
+ land_uses: $.getJSON(`${apiURL}/data/location/${params.location_id}/land_uses/?level=level2`),
+ farmtypes: $.getJSON(`${apiURL}/data/location/${params.location_id}/farmtypes/?level=level2`),
+ agproducts: $.getJSON(`${apiURL}/data/location/${params.location_id}/agproducts/?level=level3`),
+ nonags: $.getJSON(`${apiURL}/data/location/${params.location_id}/nonags/?level=level3`),
+ livestock: $.getJSON(`${apiURL}/data/location/${params.location_id}/livestock/?level=level1`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, industries_col, products_col, partners, land_uses, farmtypes, agproducts, nonags, livestock} = hash;
+ let industriesMetadata = this.modelFor('application').industries;
+ let productsMetadata = this.modelFor('application').products;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+ let landusesMetadata = this.modelFor('application').landUses;
+ let farmtypesMetadata = this.modelFor('application').farmtypes;
+ let agproductsMetadata = this.modelFor('application').agproducts;
+ let nonagsMetadata = this.modelFor('application').nonags;
+ let livestockMetadata = this.modelFor('application').livestock;
+
+ let industries = _.map(industries_col.data, (d) => {
+ let industry = industriesMetadata[d.industry_id];
+ if(model.id === '0') { d.rca = 1; }
+ industry.complexity = _.result(_.find(industry.pci_data, { year: d.year}), 'complexity');
+ return _.merge(copy(d), industry, { avg_wage: d.wages/d.employment});
+ });
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ let allPartners = _.map(partners.data, (d) => {
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ d.parent_name_en = parent.name_en;
+ d.parent_name_es = parent.name_es;
+ d.group = parent.id;
+
+ return _.merge(copy(d), country);
+ });
+
+ //get agproducts data for the department
+
+ let landuses = _.map(land_uses.data, (d) => {
+ console.log(landusesMetadata)
+ let merged = _.merge(copy(d), landusesMetadata[d.land_use_id]);
+ merged.year = this.get('agcensusLastYear');
+ merged.group = merged.code;
+ return merged;
+ });
+
+
+ let farmtypesData = _.map(farmtypes.data, (d) => {
+ let merged = _.merge(copy(d), farmtypesMetadata[d.farmtype_id]);
+ let parent = farmtypesMetadata[merged.parent_id];
+
+ merged.parent_name_en = parent.name_short_en;
+ merged.parent_name_es = parent.name_short_es;
+ merged.year = this.get('agcensusLastYear');
+ merged.group = merged.code;
+ merged.same_parent = true;
+ return merged;
+ });
+
+ let agproductsData = _.map(agproducts.data, (d) => {
+ let merged = _.merge(copy(d), agproductsMetadata[d.agproduct_id]);
+
+ let parent = agproductsMetadata[merged.parent_id];
+ let grandparent = agproductsMetadata[parent.parent_id];
+ merged.parent_name_en = grandparent.name_short_en;
+ merged.parent_name_es = grandparent.name_short_es;
+ merged.group = grandparent.id;
+
+ return merged;
+ });
+
+ let nonagsData = _.map(nonags.data, (d) => {
+ d.year = this.get('agcensusLastYear');
+ let merged = _.merge(copy(d), nonagsMetadata[d.nonag_id]);
+ merged.group = merged.code;
+ return merged;
+ });
+
+ let livestockData = _.map(livestock.data, (d) => {
+ d.year = this.get('agcensusLastYear');
+ let merged = _.merge(copy(d), livestockMetadata[d.livestock_id]);
+ merged.group = merged.code;
+ return merged;
+ });
+
+
+
+
+
+ return Ember.Object.create({
+ entity: model,
+ industries_col: industries,
+ products_col: products,
+ allPartners: allPartners,
+ landuses: landuses,
+ farmtypesData: farmtypesData,
+ agproductsData: agproductsData,
+ nonagsData: nonagsData,
+ livestockData: livestockData,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ controller.set("startDate", this.get("lastYear"))
+ controller.set("endDate", this.get("lastYear"))
+ controller.set("show1", false)
+ controller.set("show2", false)
+ controller.set("show3", false)
+ controller.set("show4", false)
+ controller.set("show5", false)
+ controller.set("show6", false)
+ controller.set("selectedProducts1", [])
+ controller.set("selectedProducts2", [])
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/ringchart.js b/app/routes/location/ringchart.js
new file mode 100644
index 00000000..52ae91e8
--- /dev/null
+++ b/app/routes/location/ringchart.js
@@ -0,0 +1,66 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ lastSelected: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('location', params.location_id),
+ products_col: $.getJSON(`${apiURL}/data/location/${params.location_id}/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, products_col} = hash;
+ let productsMetadata = this.modelFor('application').products;
+ var productsDataIndex = _.indexBy(getWithDefault(products_col, 'data', []), 'product_id');
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/location/route.js b/app/routes/location/route.js
new file mode 100644
index 00000000..c64be5f7
--- /dev/null
+++ b/app/routes/location/route.js
@@ -0,0 +1,80 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+import numeral from 'numeral';
+
+const {apiURL} = ENV;
+const {RSVP, computed, getWithDefault, get, copy} = Ember;
+
+export default Ember.Route.extend({
+// `this.store.find` makes an api call for `params.location_id` and returns a promise
+// in the `then` function call, another API call is made to get the topExports data
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ censusYear: computed.alias('featureToggle.census_year'),
+ agproductLastYear: computed.alias('featureToggle.year_ranges.agproduct.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model: function(params) {
+ return this.store.find('location', params.location_id);
+ },
+ afterModel: function(model) {
+ let level = model.get('level');
+ level = level === 'country' ? 'department' : level;
+
+ let subregion = get(this, `featureToggle.subregions.${model.get('level')}`);
+
+ // TODO: maybe use ember data instead of ajax calls to decorate JSON objects with model functionality?
+ // extract year out later
+ var products = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/products?level=4digit`);
+ var partners = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/partners/?level=country`)
+
+ return RSVP.allSettled([products, partners]).then((array) => {
+ var productsData = getWithDefault(array[0], 'value.data', []);
+ var partnersData = getWithDefault(array[1], 'value.data', []);
+
+ var productsDataIndex = _.indexBy(productsData, 'product_id');
+
+ let productsMetadata = this.modelFor('application').products;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+
+
+ //get products data for the department
+ let products = _.reduce(productsData, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+
+ let allPartners = _.map(partnersData, (d) => {
+
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ d.parent_name_en = parent.name_en;
+ d.parent_name_es = parent.name_es;
+ d.group = parent.id;
+
+ return _.merge(copy(d), country);
+ });
+
+ model.set('productsData', products);
+ model.set('allPartners', allPartners);
+
+ return model;
+ });
+ },
+ setupController(controller, model) {
+ this._super(controller, model);
+ //this.controllerFor('application').set('entity', model.get('constructor.modelName'));
+ //this.controllerFor('application').set('entity_id', model.get('id'));
+ window.scrollTo(0, 0);
+ },
+});
diff --git a/app/routes/location/ruralactivities.js b/app/routes/location/ruralactivities.js
new file mode 100644
index 00000000..be5d5752
--- /dev/null
+++ b/app/routes/location/ruralactivities.js
@@ -0,0 +1,362 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+import numeral from 'numeral';
+
+const {apiURL} = ENV;
+const {RSVP, computed, getWithDefault, get, copy} = Ember;
+
+export default Ember.Route.extend({
+// `this.store.find` makes an api call for `params.location_id` and returns a promise
+// in the `then` function call, another API call is made to get the topExports data
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ censusYear: computed.alias('featureToggle.census_year'),
+ agproductFirstYear: computed.alias('featureToggle.year_ranges.agproduct.first_year'),
+ agproductLastYear: computed.alias('featureToggle.year_ranges.agproduct.last_year'),
+ agcensusFirstYear: computed.alias('featureToggle.year_ranges.agcensus.first_year'),
+ agcensusLastYear: computed.alias('featureToggle.year_ranges.agcensus.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ ruralOption: { refreshModel: false }
+ },
+
+ model: function(params) {
+ return this.store.find('location', params.location_id);
+ },
+ afterModel: function(model) {
+ let level = model.get('level');
+ level = level === 'country' ? 'department' : level;
+
+ let subregion = get(this, `featureToggle.subregions.${model.get('level')}`);
+
+ // TODO: maybe use ember data instead of ajax calls to decorate JSON objects with model functionality?
+ // extract year out later
+ var products = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/products?level=4digit`);
+ var industries = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/industries?level=class`);
+
+ // one of these should be removed in the future because the points should be merged in
+ var dotplot = Ember.$.getJSON(`${apiURL}/data/location?level=${level}`); //dotplots
+
+ var subregions_trade = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/subregions_trade/?level=${subregion}`);
+
+ var occupations = Ember.$.getJSON(`${apiURL}/data/occupation/?level=minor_group`);
+
+ var agproducts = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/agproducts/?level=level3`);
+ var landuses = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/land_uses/?level=level2`);
+
+ var ag_farmsizes = Ember.$.getJSON(`${apiURL}/data/farmsize/1/locations/?level=${level}`);
+ var nonag_farmsizes = Ember.$.getJSON(`${apiURL}/data/farmsize/2/locations/?level=${level}`);
+
+ var partners = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/partners/?level=country`);
+
+ var farmtypes = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/farmtypes/?level=level2`);
+
+ var nonags = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/nonags/?level=level3`);
+
+ var livestock = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/livestock/?level=level1`);
+
+ return RSVP.allSettled([products, dotplot, industries, subregions_trade, occupations, agproducts, landuses, ag_farmsizes, nonag_farmsizes, partners, farmtypes, nonags, livestock]).then((array) => {
+ var productsData = getWithDefault(array[0], 'value.data', []);
+
+ var dotplotData = getWithDefault(array[1], 'value.data', []);//dotplots
+
+ var industriesData = getWithDefault(array[2], 'value.data', []);
+
+ var subregionsTradeData = _.filter(getWithDefault(array[3], 'value.data', []), { 'year': this.get('lastYear')});
+
+ var occupationsData = getWithDefault(array[4], 'value.data', []);
+
+ var agproductsData = getWithDefault(array[5], 'value.data', []);
+ var landusesData = getWithDefault(array[6], 'value.data', []);
+
+ var agFarmsizesData = getWithDefault(array[7], 'value.data', []);
+ var nonagFarmsizesData = getWithDefault(array[8], 'value.data', []);
+
+ var partnersData = getWithDefault(array[9], 'value.data', []);
+ var farmtypesDataValues = getWithDefault(array[10], 'value.data', []);
+ var nonagsDataValues = getWithDefault(array[11], 'value.data', []);
+ var livestockDataValues = getWithDefault(array[12], 'value.data', []);
+
+ var productsDataIndex = _.indexBy(productsData, 'product_id');
+ var industriesDataIndex = _.indexBy(industriesData, 'industry_data');
+
+ let productsMetadata = this.modelFor('application').products;
+ let locationsMetadata = this.modelFor('application').locations;
+ let industriesMetadata = this.modelFor('application').industries;
+ let occupationsMetadata = this.modelFor('application').occupations;
+ let agproductsMetadata = this.modelFor('application').agproducts;
+ let landusesMetadata = this.modelFor('application').landUses;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+ let farmtypesMetadata = this.modelFor('application').farmtypes;
+ let nonagsMetadata = this.modelFor('application').nonags;
+ let livestockMetadata = this.modelFor('application').livestock;
+
+
+ //get products data for the department
+ let products = _.reduce(productsData, (memo, d) => {
+ if(d.year != this.get('lastYear')) { return memo; }
+ let product = productsMetadata[d.product_id];
+ let productData = productsDataIndex[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product, productData));
+ return memo;
+ }, []);
+
+
+ //get products data for the department
+ let allProducts = _.reduce(productsData, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ let productData = productsDataIndex[d.product_id];
+
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, productData, {year: d.year}, product));
+ return memo;
+ }, []);
+
+
+ let allPartners = _.map(partnersData, (d) => {
+
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ d.parent_name_en = parent.name_en;
+ d.parent_name_es = parent.name_es;
+ d.group = parent.id;
+
+ return _.merge(copy(d), country);
+ });
+
+
+ //get agproducts data for the department
+
+ let agproducts = _.map(agproductsData, (d) => {
+ let merged = _.merge(copy(d), agproductsMetadata[d.agproduct_id]);
+
+ let parent = agproductsMetadata[merged.parent_id];
+ let grandparent = agproductsMetadata[parent.parent_id];
+ merged.parent_name_en = grandparent.name_short_en;
+ merged.parent_name_es = grandparent.name_short_es;
+ merged.group = grandparent.id;
+
+ return merged;
+ });
+
+ //get agproducts data for the department
+
+ let landuses = _.map(landusesData, (d) => {
+ let merged = _.merge(copy(d), landusesMetadata[d.land_use_id]);
+ merged.year = this.get('agcensusLastYear');
+ merged.group = merged.code;
+ return merged;
+ });
+
+ //get industry data for department
+ let industries = _.reduce(industriesData, (memo, d) => {
+ if(d.year != this.get('lastYear')) { return memo; }
+ let industry = industriesMetadata[d.industry_id];
+ if(model.id === '0') { d.rca = 1; }
+ let industryData = industriesDataIndex[d.industry_id];
+ industry.complexity = _.result(_.find(industry.pci_data, { year: d.year}), 'complexity');
+ memo.push(_.merge(d, industry, industryData));
+ return memo;
+ }, []);
+
+ let occupationVacanciesSum = 0;
+ let occupations = _.map(occupationsData, (d) => {
+ occupationVacanciesSum += d.num_vacancies;
+ let occupation = occupationsMetadata[d.occupation_id];
+ return _.merge(d, occupation);
+ });
+
+ occupations.forEach((d) => {
+ d.share = d.num_vacancies/occupationVacanciesSum;
+ });
+
+ //dotplots and dotplotTimeSeries power the dotplots, rankings and etc
+ var dotplot = [];
+ var dotplotTimeSeries= [];
+
+ _.each(dotplotData, (d) => {
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+ if(id == model.id) {
+ dotplotTimeSeries.push(d);
+ }
+ if(d.year === this.get('censusYear')) {
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+
+ let location = _.get(locationsMetadata, id);
+
+ let extra = {
+ name: location.name_en,
+ group: d.code,
+ parent_name_en: location.name_en,
+ parent_name_es: location.name_es,
+ };
+
+ let datum = _.merge(d, location, extra );
+ dotplot.push(datum);
+ }
+ });
+
+ let subregions = [];
+ _.each(subregionsTradeData, (d) => {
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+
+ let location = _.get(locationsMetadata, id);
+ let extra = {
+ name: location.name_en,
+ group: d.code,
+ parent_name_en: location.name_en,
+ parent_name_es: location.name_es,
+ };
+
+ let datum = _.merge(d, location, extra );
+ subregions.push(datum);
+ });
+
+ var eciRank = 1;
+ var populationRank = 1;
+ var gdpRank = 1;
+ var gdpPerCapitaRank = 1;
+
+ // "Datum" contains the hash of data for the year to be displayed.
+ let datum = _.chain(dotplotTimeSeries)
+ .select({ year: this.get('censusYear')})
+ .first()
+ .value();
+
+ if(datum) {
+ _.each(dotplot, (d) => {
+ if(d.eci != null && d.eci > datum.eci) { eciRank ++; }
+ if(d.gdp_real != null && d.gdp_real > datum.gdp_real) { gdpRank ++; }
+ if(d.population != null && d.population > datum.population ) { populationRank ++; }
+ if(d.gdp_pc_real != null && d.gdp_pc_real> datum.gdp_pc_real ) { gdpPerCapitaRank++; }
+ });
+ }
+
+ if(datum !== undefined && (datum.eci === undefined || datum.eci === null)){
+ eciRank = null;
+ }
+
+ model.setProperties({
+ eciRank: eciRank,
+ gdpRank: gdpRank,
+ gdpPerCapitaRank: gdpPerCapitaRank,
+ populationRank: populationRank,
+ });
+
+ var agFarmsizeRank = 1;
+ var agFarmsize = _.chain(agFarmsizesData).filter((d) => d.location_id == model.id).first().get("avg_farmsize").value();
+ _.each(agFarmsizesData, (d) => {
+
+ if(d.avg_farmsize != null && d.avg_farmsize > agFarmsize ) { agFarmsizeRank++; }
+
+ d.name_en = _.get(locationsMetadata, d.location_id).name_en;
+ d.name_es = _.get(locationsMetadata, d.location_id).name_es;
+
+ });
+ agFarmsize = numeral(agFarmsize).format('0.00a');
+
+ model.setProperties({
+ agFarmsize: agFarmsize,
+ agFarmsizeRank: agFarmsizeRank,
+ });
+
+ var nonagFarmsizeRank = 1;
+ var nonagFarmsize = _.chain(nonagFarmsizesData).filter((d) => d.location_id == model.id).first().get("avg_farmsize").value();
+ _.each(nonagFarmsizesData, (d) => {
+
+ if(d.avg_farmsize != null && d.avg_farmsize > nonagFarmsize ) { nonagFarmsizeRank++; }
+
+ d.name_en = _.get(locationsMetadata, d.location_id).name_en;
+ d.name_es = _.get(locationsMetadata, d.location_id).name_es;
+
+ });
+ nonagFarmsize = numeral(nonagFarmsize).format('0.00a');
+
+ model.setProperties({
+ nonagFarmsize: nonagFarmsize,
+ nonagFarmsizeRank: nonagFarmsizeRank,
+ });
+
+ var yieldIndexRank = 1;
+ var yieldIndex = _.chain(dotplotData).filter((d) => ((d.department_id == model.id || d.location_id == model.id) && d.year == this.get("agproductLastYear"))).first().get("yield_index").value();
+
+ var yieldData = _.filter(dotplotData, (d) => d.year == this.get("agproductLastYear") );
+ _.each(yieldData, (d) => {
+ if(d.yield_index != null && d.yield_index > yieldIndex) { yieldIndexRank++; }
+ let id = _.get(d, 'department_id') || _.get(d, 'location_id');
+ d.name_en = _.get(locationsMetadata, id).name_en;
+ d.name_es = _.get(locationsMetadata, id).name_es;
+ });
+ yieldIndex = numeral(yieldIndex).format('0.00a');
+
+ model.setProperties({
+ yieldIndex: yieldIndex,
+ yieldIndexRank: yieldIndexRank,
+ });
+
+ let farmtypesData = _.map(farmtypesDataValues, (d) => {
+ let merged = _.merge(copy(d), farmtypesMetadata[d.farmtype_id]);
+ let parent = farmtypesMetadata[merged.parent_id];
+
+ merged.parent_name_en = parent.name_short_en;
+ merged.parent_name_es = parent.name_short_es;
+ merged.year = this.get('agcensusLastYear');
+ merged.group = merged.code;
+ merged.same_parent = true;
+ return merged;
+ });
+
+ let nonagsData = _.map(nonagsDataValues, (d) => {
+ d.year = this.get('agcensusLastYear');
+ let merged = _.merge(copy(d), nonagsMetadata[d.nonag_id]);
+ merged.group = merged.code;
+ return merged;
+ });
+
+ let livestockData = _.map(livestockDataValues, (d) => {
+ d.year = this.get('agcensusLastYear');
+ let merged = _.merge(copy(d), livestockMetadata[d.livestock_id]);
+ merged.group = merged.code;
+ return merged;
+ });
+
+
+
+
+ model.set('productsData', products);
+ model.set('agproductsData', agproducts);
+ model.set('landusesData', landuses);
+ model.set('industriesData', industries);
+ model.set('agFarmsizesData', agFarmsizesData);
+ model.set('nonagFarmsizesData', nonagFarmsizesData);
+ model.set('yieldData', yieldData);
+ model.set('dotplotData', dotplot);
+ model.set('occupations', occupations);
+ model.set('timeseries', dotplotTimeSeries);
+ model.set('metaData', this.modelFor('application'));
+ model.set('subregions', subregions);
+ model.set('allPartners', allPartners);
+ model.set('allProducts', allProducts);
+ model.set('farmtypesData', farmtypesData);
+ model.set('nonagsData', nonagsData);
+ model.set('livestockData', livestockData);
+
+ return model;
+ });
+ },
+ setupController(controller, model) {
+ controller.setProperties({
+ updatedDate: new Date(),
+ });
+ this._super(controller, model);
+ this.controllerFor('application').set('entity', model.get('constructor.modelName'));
+ this.controllerFor('application').set('entity_id', model.get('id'));
+ window.scrollTo(0, 0);
+ },
+});
diff --git a/app/routes/location/show.js b/app/routes/location/show.js
index 04b08f96..cc98e0aa 100644
--- a/app/routes/location/show.js
+++ b/app/routes/location/show.js
@@ -3,7 +3,7 @@ import ENV from '../../config/environment';
import numeral from 'numeral';
const {apiURL} = ENV;
-const {RSVP, computed, getWithDefault, get} = Ember;
+const {RSVP, computed, getWithDefault, get, copy} = Ember;
export default Ember.Route.extend({
// `this.store.find` makes an api call for `params.location_id` and returns a promise
@@ -43,7 +43,9 @@ export default Ember.Route.extend({
var ag_farmsizes = Ember.$.getJSON(`${apiURL}/data/farmsize/1/locations/?level=${level}`);
var nonag_farmsizes = Ember.$.getJSON(`${apiURL}/data/farmsize/2/locations/?level=${level}`);
- return RSVP.allSettled([products, dotplot, industries, subregions_trade, occupations, agproducts, landuses, ag_farmsizes, nonag_farmsizes]).then((array) => {
+ var partners = Ember.$.getJSON(`${apiURL}/data/location/${model.id}/partners/?level=country`)
+
+ return RSVP.allSettled([products, dotplot, industries, subregions_trade, occupations, agproducts, landuses, ag_farmsizes, nonag_farmsizes, partners]).then((array) => {
var productsData = getWithDefault(array[0], 'value.data', []);
var dotplotData = getWithDefault(array[1], 'value.data', []);//dotplots
@@ -60,6 +62,8 @@ export default Ember.Route.extend({
var agFarmsizesData = getWithDefault(array[7], 'value.data', []);
var nonagFarmsizesData = getWithDefault(array[8], 'value.data', []);
+ var partnersData = getWithDefault(array[9], 'value.data', []);
+
var productsDataIndex = _.indexBy(productsData, 'product_id');
var industriesDataIndex = _.indexBy(industriesData, 'industry_data');
@@ -69,6 +73,8 @@ export default Ember.Route.extend({
let occupationsMetadata = this.modelFor('application').occupations;
let agproductsMetadata = this.modelFor('application').agproducts;
let landusesMetadata = this.modelFor('application').landUses;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+
//get products data for the department
let products = _.reduce(productsData, (memo, d) => {
@@ -80,6 +86,30 @@ export default Ember.Route.extend({
return memo;
}, []);
+
+ //get products data for the department
+ let allProducts = _.reduce(productsData, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ let productData = productsDataIndex[d.product_id];
+
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, productData, {year: d.year}, product));
+ return memo;
+ }, []);
+
+
+ let allPartners = _.map(partnersData, (d) => {
+
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ d.parent_name_en = parent.name_en;
+ d.parent_name_es = parent.name_es;
+ d.group = parent.id;
+
+ return _.merge(copy(d), country);
+ });
+
+
//get agproducts data for the department
let agproducts = _.reduce(agproductsData, (memo, d) => {
if(d.year != this.get('agproductLastYear')) { return memo; }
@@ -260,12 +290,18 @@ export default Ember.Route.extend({
model.set('timeseries', dotplotTimeSeries);
model.set('metaData', this.modelFor('application'));
model.set('subregions', subregions);
+ model.set('allPartners', allPartners)
+ model.set('allProducts', allProducts)
return model;
});
},
setupController(controller, model) {
this._super(controller, model);
+ controller.setProperties({
+ categoriesFilterList: [],
+ categoriesFilterListlastIndustryData: []
+ });
this.controllerFor('application').set('entity', model.get('constructor.modelName'));
this.controllerFor('application').set('entity_id', model.get('id'));
window.scrollTo(0, 0);
diff --git a/app/routes/location/thirdparty.js b/app/routes/location/thirdparty.js
new file mode 100644
index 00000000..bccff9d5
--- /dev/null
+++ b/app/routes/location/thirdparty.js
@@ -0,0 +1,32 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+import numeral from 'numeral';
+
+const {apiURL} = ENV;
+const {RSVP, computed, getWithDefault, get, copy} = Ember;
+
+export default Ember.Route.extend({
+// `this.store.find` makes an api call for `params.location_id` and returns a promise
+// in the `then` function call, another API call is made to get the topExports data
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ censusYear: computed.alias('featureToggle.census_year'),
+ agproductFirstYear: computed.alias('featureToggle.year_ranges.agproduct.first_year'),
+ agproductLastYear: computed.alias('featureToggle.year_ranges.agproduct.last_year'),
+ agcensusFirstYear: computed.alias('featureToggle.year_ranges.agcensus.first_year'),
+ agcensusLastYear: computed.alias('featureToggle.year_ranges.agcensus.last_year'),
+
+ model: function(params) {
+ return this.store.find('location', params.location_id);
+ },
+
+ setupController(controller, model) {
+ this._super(controller, model);
+ this.controllerFor('application').set('entity', model.get('constructor.modelName'));
+ this.controllerFor('application').set('entity_id', model.get('id'));
+ window.scrollTo(0, 0);
+ },
+});
diff --git a/app/routes/location/visualization.js b/app/routes/location/visualization.js
index 49a95005..6315dbc8 100644
--- a/app/routes/location/visualization.js
+++ b/app/routes/location/visualization.js
@@ -239,8 +239,13 @@ export default Ember.Route.extend({
let data = _.map(farmtypes.data, (d) => {
let merged = _.merge(copy(d), farmtypesMetadata[d.farmtype_id]);
+ let parent = farmtypesMetadata[merged.parent_id];
+
+ merged.parent_name_en = parent.name_short_en;
+ merged.parent_name_es = parent.name_short_es;
merged.year = this.get('agcensusLastYear');
merged.group = merged.code;
+ merged.same_parent = true;
return merged;
});
@@ -254,6 +259,7 @@ export default Ember.Route.extend({
controller.set('drawerChangeGraphIsOpen', false); // Turn off other drawers
controller.set('drawerQuestionsIsOpen', false); // Turn off other drawers
controller.set('searchText', controller.get('search'));
+ controller.set('VCRValue', 1);
window.scrollTo(0, 0);
},
resetController(controller, isExiting) {
diff --git a/app/routes/nonag/visualization.js b/app/routes/nonag/visualization.js
index 1626b6aa..7fc8f18c 100644
--- a/app/routes/nonag/visualization.js
+++ b/app/routes/nonag/visualization.js
@@ -48,7 +48,8 @@ export default Ember.Route.extend({
let id = get(this, 'nonag_id');
return {
model: this.store.find('nonag', id),
- nonags: $.getJSON(`${apiURL}/data/nonag/${id}/locations/?level=department`)
+ nonags: $.getJSON(`${apiURL}/data/nonag/${id}/locations/?level=department`),
+ municipalities: $.getJSON(`${apiURL}/data/nonag/${id}/locations/?level=municipality`)
};
}),
municipalities: computed('nonag_id', function() {
@@ -59,7 +60,7 @@ export default Ember.Route.extend({
};
}),
departmentsDataMunging(hash) {
- let {model,nonags} = hash;
+ let {model,nonags, municipalities} = hash;
let locationsMetadata = this.modelFor('application').locations;
let data = _.map(nonags.data, (d) => {
@@ -74,9 +75,25 @@ export default Ember.Route.extend({
);
});
+ let datas = _.map(municipalities.data, (d) => {
+ return _.merge(
+ copy(d),
+ locationsMetadata[d.location_id],
+ {
+ model: 'nonag',
+ year: this.get("lastYear"),
+ municipality_id: d.location_id,
+ group: locationsMetadata[d.location_id].parent_id,
+ parent_name_en: locationsMetadata[locationsMetadata[d.location_id].parent_id].name_en,
+ parent_name_es: locationsMetadata[locationsMetadata[d.location_id].parent_id].name_es,
+ }
+ );
+ });
+
return Ember.Object.create({
entity: model,
data: data,
+ cities:datas
});
},
municipalitiesDataMunging(hash) {
diff --git a/app/routes/product/abstract.js b/app/routes/product/abstract.js
new file mode 100644
index 00000000..5c9f791d
--- /dev/null
+++ b/app/routes/product/abstract.js
@@ -0,0 +1,97 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ departmentCityFilterService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ product_id: null,
+
+ model(params) {
+ let {product_id} = params;
+ set(this, 'product_id', product_id);
+
+ let hash = {
+ model: this.store.find('product', product_id),
+ locations: $.getJSON(`${apiURL}/data/product/${product_id}/exporters?level=department`),
+ cities: $.getJSON(`${apiURL}/data/product/${product_id}/exporters?level=msa`),
+ partners: $.getJSON(`${apiURL}/data/product/${product_id}/partners?level=country`)
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, locations, cities, partners} = hash;
+ let locationsMetadata = this.modelFor('application').locations;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+ let productsMetadata = this.modelFor('application').products;
+
+ let locationsData = _.map(locations.data, (d) => {
+ let location = locationsMetadata[d.department_id];
+ let department = copy(d);
+ return _.merge(department, location, {
+ model: 'location',
+ product_name_short_es: productsMetadata[d.product_id].name_short_es,
+ product_name_short_en: productsMetadata[d.product_id].name_short_en,
+ product_code: productsMetadata[d.product_id].code
+ });
+ });
+
+ let citiesData = _.map(cities.data, (d) => {
+ let location = locationsMetadata[d.msa_id];
+ let city = copy(d);
+ let result = _.merge(
+ city, location,
+ {
+ model: 'location',
+ parent_name_en: locationsMetadata[location.parent_id].name_short_en,
+ parent_name_es: locationsMetadata[location.parent_id].name_short_es,
+ product_name_short_es: productsMetadata[d.product_id].name_short_es,
+ product_name_short_en: productsMetadata[d.product_id].name_short_en,
+ product_code: productsMetadata[d.product_id].code
+ }
+ );
+ return result;
+ });
+
+ let partnersData = _.map(partners.data, (d) => {
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ let partner = copy(d);
+ partner.parent_name_en = parent.name_en;
+ partner.parent_name_es = parent.name_es;
+ partner.group = parent.id;
+ d.model = null;
+ return _.merge(partner, parent, country, {
+ model: 'location',
+ product_name_short_es: productsMetadata[d.product_id].name_short_es,
+ product_name_short_en: productsMetadata[d.product_id].name_short_en,
+ product_code: productsMetadata[d.product_id].code
+ });
+ });
+
+ return Ember.Object.create({
+ entity: model,
+ locationsData: locationsData,
+ citiesData: citiesData,
+ partnersData: partnersData
+ });
+ },
+ setupController(controller, model) {
+ this.set("departmentCityFilterService.id", 0);
+ this.set("departmentCityFilterService.name", "Colombia");
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+});
diff --git a/app/routes/product/complexmap.js b/app/routes/product/complexmap.js
new file mode 100644
index 00000000..8f462d34
--- /dev/null
+++ b/app/routes/product/complexmap.js
@@ -0,0 +1,68 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ product_id: null,
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+ let {product_id} = params;
+ set(this, 'product_id', product_id);
+
+ let hash = {
+ model: this.store.find('product', product_id),
+ products_col: $.getJSON(`${apiURL}/data/location/0/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, products_col} = hash;
+ let productsMetadata = this.modelFor('application').products;
+ var productsDataIndex = _.indexBy(getWithDefault(products_col, 'data', []), 'product_id');
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/product/complexmapprimaries.js b/app/routes/product/complexmapprimaries.js
new file mode 100644
index 00000000..4327f696
--- /dev/null
+++ b/app/routes/product/complexmapprimaries.js
@@ -0,0 +1,67 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ product_id: null,
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+ let {product_id} = params;
+ set(this, 'product_id', product_id);
+
+ let hash = {
+ model: this.store.find('product', product_id),
+ products_col: $.getJSON(`${apiURL}/data/location/0/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, products_col} = hash;
+ let productsMetadata = this.modelFor('application').products;
+ var productsDataIndex = _.indexBy(getWithDefault(products_col, 'data', []), 'product_id');
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/product/complexmapsecondaries.js b/app/routes/product/complexmapsecondaries.js
new file mode 100644
index 00000000..8f462d34
--- /dev/null
+++ b/app/routes/product/complexmapsecondaries.js
@@ -0,0 +1,68 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ product_id: null,
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+ let {product_id} = params;
+ set(this, 'product_id', product_id);
+
+ let hash = {
+ model: this.store.find('product', product_id),
+ products_col: $.getJSON(`${apiURL}/data/location/0/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, products_col} = hash;
+ let productsMetadata = this.modelFor('application').products;
+ var productsDataIndex = _.indexBy(getWithDefault(products_col, 'data', []), 'product_id');
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/product/exports.js b/app/routes/product/exports.js
new file mode 100644
index 00000000..4ed7f82c
--- /dev/null
+++ b/app/routes/product/exports.js
@@ -0,0 +1,74 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ product_id: null,
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+ let {product_id} = params;
+ set(this, 'product_id', product_id);
+
+ let hash = {
+ model: this.store.find('product', product_id),
+ partners: $.getJSON(`${apiURL}/data/location/${product_id}/partners/?level=country`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, partners} = hash;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+
+ let allPartners = _.map(partners.data, (d) => {
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ d.parent_name_en = parent.name_en;
+ d.parent_name_es = parent.name_es;
+ d.group = parent.id;
+
+ return _.merge(copy(d), country);
+ });
+
+ return Ember.Object.create({
+ entity: model,
+ partners: allPartners,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ },
+ actions: {
+ refreshRoute: function() {
+ this.refresh();
+ }
+ }
+});
diff --git a/app/routes/product/report.js b/app/routes/product/report.js
new file mode 100644
index 00000000..9ca34966
--- /dev/null
+++ b/app/routes/product/report.js
@@ -0,0 +1,129 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ departmentCityFilterService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ agcensusLastYear: computed.alias('featureToggle.year_ranges.agcensus.last_year'),
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+
+ let hash = {
+ model: this.store.find('product', params.product_id),
+ locations: $.getJSON(`${apiURL}/data/product/${params.product_id}/exporters?level=department`),
+ cities: $.getJSON(`${apiURL}/data/product/${params.product_id}/exporters?level=msa`),
+ partners: $.getJSON(`${apiURL}/data/product/${params.product_id}/partners?level=country`),
+ products_col: $.getJSON(`${apiURL}/data/location/${this.get("departmentCityFilterService.id")}/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, locations, cities, partners, products_col} = hash;
+ let locationsMetadata = this.modelFor('application').locations;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+ let productsMetadata = this.modelFor('application').products;
+
+ let locationsData = _.map(locations.data, (d) => {
+ let location = locationsMetadata[d.department_id];
+ let department = copy(d);
+ return _.merge(department, location, {
+ model: 'location',
+ product_name_short_es: productsMetadata[d.product_id].name_short_es,
+ product_name_short_en: productsMetadata[d.product_id].name_short_en,
+ product_code: productsMetadata[d.product_id].code
+ });
+ });
+
+ let citiesData = _.map(cities.data, (d) => {
+ let location = locationsMetadata[d.msa_id];
+ let city = copy(d);
+ let result = _.merge(
+ city, location,
+ {
+ model: 'location',
+ parent_name_en: locationsMetadata[location.parent_id].name_short_en,
+ parent_name_es: locationsMetadata[location.parent_id].name_short_es,
+ product_name_short_es: productsMetadata[d.product_id].name_short_es,
+ product_name_short_en: productsMetadata[d.product_id].name_short_en,
+ product_code: productsMetadata[d.product_id].code
+ }
+ );
+ return result;
+ });
+
+ let partnersData = _.map(partners.data, (d) => {
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ let partner = copy(d);
+ partner.parent_name_en = parent.name_en;
+ partner.parent_name_es = parent.name_es;
+ partner.group = parent.id;
+ d.model = null;
+ return _.merge(partner, parent, country, {
+ model: 'location',
+ product_name_short_es: productsMetadata[d.product_id].name_short_es,
+ product_name_short_en: productsMetadata[d.product_id].name_short_en,
+ product_code: productsMetadata[d.product_id].code
+ });
+ });
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ locationsData: locationsData,
+ citiesData: citiesData,
+ partnersData: partnersData,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ controller.set("startDate", this.get("lastYear"))
+ controller.set("endDate", this.get("lastYear"))
+ controller.set("VCRValue", 1)
+ controller.set("show1", false)
+ controller.set("show2", false)
+ controller.set("show3", false)
+ controller.set("show4", false)
+ controller.set("show5", false)
+ controller.set("show6", false)
+ controller.set("selectedProducts1", [])
+ controller.set("selectedProducts2", [])
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ });
+ }
+ }
+});
diff --git a/app/routes/product/ringchart.js b/app/routes/product/ringchart.js
new file mode 100644
index 00000000..212ae29d
--- /dev/null
+++ b/app/routes/product/ringchart.js
@@ -0,0 +1,75 @@
+import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set, getWithDefault} = Ember;
+
+export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+ buildermodSearchService: Ember.inject.service(),
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ product_id: null,
+
+ queryParams: {
+ startDate: { refreshModel: false },
+ endDate: { refreshModel: false },
+ },
+
+ model(params) {
+ let {product_id} = params;
+ set(this, 'product_id', product_id);
+
+ let hash = {
+ model: this.store.find('product', product_id),
+ products_col: $.getJSON(`${apiURL}/data/location/0/products?level=4digit`),
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, products_col} = hash;
+ let productsMetadata = this.modelFor('application').products;
+ var productsDataIndex = _.indexBy(getWithDefault(products_col, 'data', []), 'product_id');
+
+ //get products data for the department
+ let products = _.reduce(products_col.data, (memo, d) => {
+ let product = productsMetadata[d.product_id];
+ product.complexity = _.result(_.find(product.pci_data, { year: d.year }), 'pci');
+ memo.push(_.merge(d, product));
+ return memo;
+ }, []);
+
+ return Ember.Object.create({
+ entity: model,
+ products_col: products,
+ metaData: this.modelFor('application')
+ });
+ },
+ setupController(controller, model) {
+ //this.set('buildermodSearchService.search', null);
+ this._super(controller, model);
+ controller.set('center', this.get('product_id'));
+ window.scrollTo(0, 0);
+ },
+ resetController(controller, isExiting) {
+
+ if (isExiting) {
+ controller.setProperties({
+ center: this.get('product_id'),
+ });
+ }
+ },
+ actions: {
+ refreshRoute: function() {
+ this.refresh();
+ }
+ }
+});
diff --git a/app/routes/product/show.js b/app/routes/product/show.js
index cf64e851..1c01d790 100644
--- a/app/routes/product/show.js
+++ b/app/routes/product/show.js
@@ -1,8 +1,78 @@
import Ember from 'ember';
+import ENV from '../../config/environment';
+
+const {apiURL} = ENV;
+
+const {RSVP, computed, copy, get, $, set} = Ember;
export default Ember.Route.extend({
+
+ i18n: Ember.inject.service(),
+ featureToggle: Ember.inject.service(),
+
+ firstYear: computed.alias('featureToggle.first_year'),
+ lastYear: computed.alias('featureToggle.last_year'),
+ product_id: null,
+
model(params) {
- return this.store.find('product', params.product_id);
+ let {product_id} = params;
+ set(this, 'product_id', product_id);
+
+ let hash = {
+ model: this.store.find('product', product_id),
+ locations: $.getJSON(`${apiURL}/data/product/${product_id}/exporters?level=department`),
+ cities: $.getJSON(`${apiURL}/data/product/${product_id}/exporters?level=msa`),
+ partners: $.getJSON(`${apiURL}/data/product/${product_id}/partners?level=country`)
+ }
+
+ return RSVP.hash(hash).then((hash) => {
+ return this.departmentsDataMunging(hash);
+ });
+
+ //return this.store.find('product', params.product_id);
+ },
+ departmentsDataMunging(hash) {
+ let {model, locations, cities, partners} = hash;
+ let locationsMetadata = this.modelFor('application').locations;
+ let partnersMetadata = this.modelFor('application').partnerCountries;
+
+ let locationsData = _.map(locations.data, (d) => {
+ let location = locationsMetadata[d.department_id];
+ let department = copy(d);
+ return _.merge(department, location, {model: 'location'});
+ });
+
+ let citiesData = _.map(cities.data, (d) => {
+ let location = locationsMetadata[d.msa_id];
+ let city = copy(d);
+ let result = _.merge(
+ city, location,
+ {
+ model: 'location',
+ parent_name_en: locationsMetadata[location.parent_id].name_short_en,
+ parent_name_es: locationsMetadata[location.parent_id].name_short_es,
+ }
+ );
+ return result;
+ });
+
+ let partnersData = _.map(partners.data, (d) => {
+ let country = partnersMetadata[d.country_id];
+ let parent = partnersMetadata[country.parent_id];
+ let partner = copy(d);
+ partner.parent_name_en = parent.name_en;
+ partner.parent_name_es = parent.name_es;
+ partner.group = parent.id;
+ d.model = null;
+ return _.merge(partner, parent, country);
+ });
+
+ return Ember.Object.create({
+ entity: model,
+ locationsData: locationsData,
+ citiesData: citiesData,
+ partnersData: partnersData
+ });
},
setupController(controller, model) {
this._super(controller, model);
diff --git a/app/routes/product/visualization.js b/app/routes/product/visualization.js
index e05ca752..cabf07b4 100644
--- a/app/routes/product/visualization.js
+++ b/app/routes/product/visualization.js
@@ -51,7 +51,8 @@ export default Ember.Route.extend({
let id = get(this, 'product_id');
return {
model: this.store.find('product', id),
- locations: $.getJSON(`${apiURL}/data/product/${id}/exporters?level=department`)
+ locations: $.getJSON(`${apiURL}/data/product/${id}/exporters?level=department`),
+ cities: $.getJSON(`${apiURL}/data/product/${id}/exporters?level=msa`)
};
}),
partners: computed('product_id', function() {
@@ -69,7 +70,7 @@ export default Ember.Route.extend({
};
}),
departmentsDataMunging(hash) {
- let {model,locations} = hash;
+ let {model,locations, cities} = hash;
let locationsMetadata = this.modelFor('application').locations;
let data = _.map(locations.data, (d) => {
@@ -78,9 +79,24 @@ export default Ember.Route.extend({
return _.merge(department, location, {model: 'location'});
});
+ let datas = _.map(cities.data, (d) => {
+ let location = locationsMetadata[d.msa_id];
+ let city = copy(d);
+ let result = _.merge(
+ city, location,
+ {
+ model: 'location',
+ parent_name_en: locationsMetadata[location.parent_id].name_short_en,
+ parent_name_es: locationsMetadata[location.parent_id].name_short_es,
+ }
+ );
+ return result;
+ });
+
return Ember.Object.create({
entity: model,
data: data,
+ cities: datas
});
},
citiesDataMunging(hash) {
@@ -114,9 +130,11 @@ export default Ember.Route.extend({
let country = partnersMetadata[d.country_id];
let parent = partnersMetadata[country.parent_id];
let partner = copy(d);
+
partner.parent_name_en = parent.name_en;
partner.parent_name_es = parent.name_es;
partner.group = parent.id;
+ partner.color = parent.color;
d.model = null;
return _.merge(partner, parent, country);
});
diff --git a/app/services/buildermod-search-service.js b/app/services/buildermod-search-service.js
new file mode 100644
index 00000000..002a01af
--- /dev/null
+++ b/app/services/buildermod-search-service.js
@@ -0,0 +1,6 @@
+import Ember from 'ember';
+
+export default Ember.Service.extend({
+ search: null,
+ id: null
+});
diff --git a/app/services/department-city-filter-service.js b/app/services/department-city-filter-service.js
new file mode 100644
index 00000000..3c083700
--- /dev/null
+++ b/app/services/department-city-filter-service.js
@@ -0,0 +1,8 @@
+import Ember from 'ember';
+
+export default Ember.Service.extend({
+ name: "Colombia",
+ id: 0,
+ data: null,
+ date: null,
+});
diff --git a/app/services/feature-toggle.js b/app/services/feature-toggle.js
index 3a1be214..6a354d57 100644
--- a/app/services/feature-toggle.js
+++ b/app/services/feature-toggle.js
@@ -6,6 +6,7 @@ const { get, set, computed } = Ember;
export default Ember.Service.extend({
locale: ENV.defaultLocale,
+ agroUrl: ENV.agroUrl,
country: computed('locale', function() {
return get(this, 'locale').split('-')[1];
}),
diff --git a/app/services/location-products-service.js b/app/services/location-products-service.js
new file mode 100644
index 00000000..d7662319
--- /dev/null
+++ b/app/services/location-products-service.js
@@ -0,0 +1,5 @@
+import Ember from 'ember';
+
+export default Ember.Service.extend({
+ selected: {},
+});
diff --git a/app/services/location-sectors-service.js b/app/services/location-sectors-service.js
new file mode 100644
index 00000000..d7662319
--- /dev/null
+++ b/app/services/location-sectors-service.js
@@ -0,0 +1,5 @@
+import Ember from 'ember';
+
+export default Ember.Service.extend({
+ selected: {},
+});
diff --git a/app/services/locations-selections-service.js b/app/services/locations-selections-service.js
new file mode 100644
index 00000000..5b57d474
--- /dev/null
+++ b/app/services/locations-selections-service.js
@@ -0,0 +1,6 @@
+import Ember from 'ember';
+
+export default Ember.Service.extend({
+ selectedProducts: {},
+ lastSelected: null
+});
diff --git a/app/services/map-service.js b/app/services/map-service.js
new file mode 100644
index 00000000..98b1f0a9
--- /dev/null
+++ b/app/services/map-service.js
@@ -0,0 +1,5 @@
+import Ember from 'ember';
+
+export default Ember.Service.extend({
+ range: null,
+});
diff --git a/app/services/rca-filter-service.js b/app/services/rca-filter-service.js
new file mode 100644
index 00000000..edd5cac3
--- /dev/null
+++ b/app/services/rca-filter-service.js
@@ -0,0 +1,6 @@
+import Ember from 'ember';
+
+export default Ember.Service.extend({
+ updated: null,
+ value: 1,
+});
diff --git a/app/services/treemap-service.js b/app/services/treemap-service.js
new file mode 100644
index 00000000..62de432e
--- /dev/null
+++ b/app/services/treemap-service.js
@@ -0,0 +1,8 @@
+import Ember from 'ember';
+
+export default Ember.Service.extend({
+ search: null,
+ filter_update: null,
+ filter_updated_data: null,
+ reset_filter:null,
+});
diff --git a/app/services/vistk-network-service.js b/app/services/vistk-network-service.js
new file mode 100644
index 00000000..c1022350
--- /dev/null
+++ b/app/services/vistk-network-service.js
@@ -0,0 +1,9 @@
+import Ember from 'ember';
+
+export default Ember.Service.extend({
+ selected: [],
+ updated: null,
+ data: null,
+ VCRValue: 1,
+ categoriesFilter: []
+});
diff --git a/app/services/vistk-scatterplot-service.js b/app/services/vistk-scatterplot-service.js
new file mode 100644
index 00000000..c1022350
--- /dev/null
+++ b/app/services/vistk-scatterplot-service.js
@@ -0,0 +1,9 @@
+import Ember from 'ember';
+
+export default Ember.Service.extend({
+ selected: [],
+ updated: null,
+ data: null,
+ VCRValue: 1,
+ categoriesFilter: []
+});
diff --git a/app/styles/components/_components/_button.scss b/app/styles/components/_components/_button.scss
index f6546b8a..37d1836a 100755
--- a/app/styles/components/_components/_button.scss
+++ b/app/styles/components/_components/_button.scss
@@ -53,12 +53,13 @@ button::-moz-focus-inner {
}
.btn--search {
- background: $colorRed;
+ background: none;
color: $colorWhite;
- box-shadow: inset 0 -5px $colorRedDark;
+ border: solid 1px $colorWhite;
width: 10rem;
&:hover {
- background: $colorRedDark;
+ color: $colorWhite;
+ opacity: 0.8;
}
}
@@ -75,3 +76,27 @@ button::-moz-focus-inner {
.btn--text {
text-align: right;
}
+
+.btn-outline-secondary{
+ color: $colorSecondary;
+ border-color: $colorSecondary;
+ font-size: 1.8rem;
+}
+
+.btn-light{
+ font-size: 1.8rem;
+ padding: 4px;
+ color: #6c757d;
+}
+
+.btn-outline-secondary:not(:disabled):not(.disabled).active, .btn-outline-secondary:not(:disabled):not(.disabled):active, .show>.btn-outline-secondary.dropdown-toggle{
+ color: $colorBase;
+ background-color: $colorSecondary;
+ border-color: $colorSecondary;
+}
+
+.btn-outline-secondary:hover{
+ color: $colorBase;
+ background-color: $colorSecondary;
+ border-color: $colorSecondary;
+}
diff --git a/app/styles/components/_components/_datatables.scss b/app/styles/components/_components/_datatables.scss
new file mode 100644
index 00000000..596898a3
--- /dev/null
+++ b/app/styles/components/_components/_datatables.scss
@@ -0,0 +1,75 @@
+.dataTables_filter label{
+ display: inline-block;
+}
+
+table.dataTable.dtr-inline.collapsed>tbody>tr>td.dtr-control, table.dataTable.dtr-inline.collapsed>tbody>tr>th.dtr-control{
+ padding-left: 50px;
+}
+
+.table-hover tbody tr:hover{
+ color: $colorBase;
+ background-color: $colorSecondary;
+ cursor: pointer;
+}
+
+table.dataTable>tbody>tr.child:hover{
+ color: white;
+}
+
+.dataTables_filter, .dataTables_info{
+ color: white;
+}
+
+.datlas thead{
+ background-color: $colorSecondary;
+ color: $colorBase;
+}
+
+
+.datlas th, .datlas td{
+ border: none;
+}
+
+.even{
+ background-color: $colorThree;
+}
+
+
+.table th, .table td{
+ padding: 2rem;
+}
+
+table.dataTable.dtr-inline.collapsed>tbody>tr>td.dtr-control:before, table.dataTable.dtr-inline.collapsed>tbody>tr>th.dtr-control:before{
+ background-color: $colorSecondary;
+ left: 15px;
+}
+
+
+.page-item.active .page-link{
+ background-color: $colorBase;
+ border-color: $colorBase;
+}
+
+.page-link, .page-link:hover{
+ color: $colorBase;
+ background-color: $colorThree;
+ border-color: $colorBase;
+}
+
+.page-item.disabled .page-link{
+ color: $colorBase;
+ background-color: $colorThree;
+ border-color: $colorBase;
+}
+
+.form-control-sm{
+ font-size: 1.8rem;
+}
+
+.dt-bootstrap4{
+ text-align: right;
+}
+
+.dt-buttons{
+ margin-bottom: 3rem !important;
+}
diff --git a/app/styles/components/_components/_form.scss b/app/styles/components/_components/_form.scss
index 87b56ce8..18340179 100755
--- a/app/styles/components/_components/_form.scss
+++ b/app/styles/components/_components/_form.scss
@@ -13,3 +13,7 @@ fieldset {
label {
display: block;
}
+
+.form-filter{
+ font-size: $fontBase !important;
+}
diff --git a/app/styles/components/_components/_link.scss b/app/styles/components/_components/_link.scss
index a8e76bd5..259a5c6c 100755
--- a/app/styles/components/_components/_link.scss
+++ b/app/styles/components/_components/_link.scss
@@ -9,12 +9,12 @@ a {
}
.link--stream {
- color: $colorGrayDark;
+ color: #C2C4FF;
font-family: $sans;
font-weight: 600;
font-size: $fontBase-decrement; // A bit smaller to make x-heights match
&:hover, &:focus, &:active {
- color: $colorBlack;
+ color: #FFCD00;
}
}
@@ -29,4 +29,13 @@ a {
.link--inactive {
color: $colorGrayLighter;
pointer-events: none;
-}
\ No newline at end of file
+}
+
+a{
+ color: $colorWhite;
+}
+
+a:hover{
+ color: $colorYellow;
+ text-decoration: none;
+}
diff --git a/app/styles/components/_components/_modal.scss b/app/styles/components/_components/_modal.scss
new file mode 100644
index 00000000..8f493db7
--- /dev/null
+++ b/app/styles/components/_components/_modal.scss
@@ -0,0 +1,17 @@
+
+.modal-content{
+ background-color: $colorBase;
+}
+
+.modal-header, .modal-footer{
+ border: none;
+}
+
+.rect-principal{
+ fill: $colorBase;
+}
+
+.close_modal{
+ color: $colorSecondary;
+ text-shadow: none;
+}
diff --git a/app/styles/components/_components/_search.scss b/app/styles/components/_components/_search.scss
index 0b3c930f..9b592a6f 100755
--- a/app/styles/components/_components/_search.scss
+++ b/app/styles/components/_components/_search.scss
@@ -6,13 +6,14 @@
.search__wrap {
display: inline-block;
- width: 60%;
+ width:100%;
position: relative;
.btn--search, .btn--buildermod {
position: absolute;
top: 0;
right: 0;
+
}
}
@@ -24,14 +25,11 @@
}
.search {
- transition: background $animationTime $animationEasing;
- background: $colorGrayLightest;
font-size: $fontSmall;
font-weight: 300;
padding: $baseSpace/2 $baseSpace;
- width: 100%;
- height: 100%;
font-family: $sans;
+ height: auto;
&:active, &:focus {
outline: 0;
@@ -40,7 +38,6 @@
}
}
&::-webkit-input-placeholder {
- transition: color $animationTime $animationEasing;
color: $colorGrayLight;
font-size: $fontSmall;
}
@@ -77,3 +74,8 @@
.search:invalid ~ .search__reset {
display: none;
}
+
+.seach__placeholder__title{
+ font-size: 6rem;
+ color: $colorSecondary;
+}
diff --git a/app/styles/components/_components/_table.scss b/app/styles/components/_components/_table.scss
index f30e56fa..a31c0078 100755
--- a/app/styles/components/_components/_table.scss
+++ b/app/styles/components/_components/_table.scss
@@ -59,5 +59,35 @@
font-weight: 900;
}
+.table__row--header{
+ background-color: $colorSecondary;
+}
+
+
+.datlas-table th, .datlas-table td{
+ vertical-align: middle;
+ border: none;
+}
+.datlas-table .even{
+ background-color: $colorThree;
+}
+
+.select2-container{
+ flex: 1 1 auto !important;
+}
+.table_cell_rank{
+ padding: 3px 8px;
+ border-radius: 1px;
+ background-color: $colorThree;
+}
+
+
+.table_cell_rank.value.top{
+ background-color: $colorRed;
+}
+
+.table_cell_rank.value.top:hover{
+ background-color: $colorRedDark;
+}
diff --git a/app/styles/components/_components/_tooltip.scss b/app/styles/components/_components/_tooltip.scss
index 58489cdd..a86e133d 100755
--- a/app/styles/components/_components/_tooltip.scss
+++ b/app/styles/components/_components/_tooltip.scss
@@ -21,6 +21,8 @@
overflow: initial !important;
box-shadow: -1px -1px 5px rgba(0,0,0,0.2);
transform: translate(-50%, calc(-100% - 10px));
+ opacity: 1;
+ color: $colorBlack;
&:after {
top: 100%;
left: 50%;
@@ -36,3 +38,78 @@
margin-left: -10px;
}
}
+
+.tooltip-category{
+ position: absolute;
+ top: 5px;
+ left: 50%;
+ background: $colorSecondary;
+ height: auto;
+ max-width: none;
+}
+
+.tooltip-category:after{
+ border-top-color: $colorSecondary;
+}
+
+.text-principal{
+ color: $colorBase;
+}
+
+
+.tooltip_network {
+ background: $colorWhite;
+ height: 110%;
+ padding: $baseSpace/2;
+ z-index: $zIndex-9;
+ min-width: 15rem;
+ max-width: 25rem;
+ font-size: $fontTiny;
+ overflow: initial !important;
+ box-shadow: -1px -1px 5px rgba(0,0,0,0.2);
+ transform: translate(-50%, calc(-100% - 10px));
+ opacity: 0.5;
+ color: $colorBlack;
+ pointer-events: none;
+
+ &:after {
+ top: 100%;
+ left: 50%;
+ border: solid transparent;
+ content: '';
+ height: 0;
+ width: 0;
+ position: absolute;
+ pointer-events: none;
+ border-color: rgba(255, 255, 255, 0);
+ border-top-color: $colorWhite;
+ border-width: 10px;
+ margin-left: -10px;
+ }
+}
+
+
+.irs--sharp .irs-min, .irs--sharp .irs-max{
+ background-color: $colorSecondary;
+}
+
+.irs--sharp .irs-bar{
+ background-color: $colorSecondary;
+}
+
+.irs--sharp .irs-from, .irs--sharp .irs-to, .irs--sharp .irs-single{
+ background-color: $colorSecondary;
+ color: $colorBase;
+}
+
+.irs--sharp .irs-from:before, .irs--sharp .irs-to:before, .irs--sharp .irs-single:before{
+ border-top-color: $colorSecondary;
+}
+
+.irs--sharp .irs-handle{
+ background-color: $colorSecondary;
+}
+
+.irs--sharp .irs-handle>i:first-child{
+ border-top-color: $colorSecondary;
+}
diff --git a/app/styles/components/_components/_treemap.scss b/app/styles/components/_components/_treemap.scss
new file mode 100644
index 00000000..f5dd41cf
--- /dev/null
+++ b/app/styles/components/_components/_treemap.scss
@@ -0,0 +1,83 @@
+#chart {
+ background: #fff;
+ font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
+}
+
+.title {
+ font-weight: bold;
+ font-size: 24px;
+ text-align: center;
+ margin-top: 6px;
+ margin-bottom: 6px;
+}
+text {
+ pointer-events: none;
+}
+
+.grandparent text {
+ font-weight: bold;
+ font-size: 1.6rem;
+}
+
+rect {
+ fill: none;
+ stroke: #fff;
+}
+
+rect.parent,
+.grandparent rect {
+ stroke-width: 3px;
+}
+
+rect.parent {
+ pointer-events: none;
+}
+
+.grandparent rect {
+ fill: orange;
+}
+
+.grandparent:hover rect {
+ fill: #ee9700;
+}
+
+.children rect.parent,
+.grandparent rect {
+ cursor: pointer;
+}
+
+.children rect.parent {
+ fill: #bbb;
+ fill-opacity: 0.5;
+}
+
+.children:hover rect.child {
+ fill: #bbb;
+}
+
+tspan{
+ fill: white;
+}
+
+rect{
+ stroke: #292A48;
+}
+
+.tspan-treemap{
+ font-size: 1rem;
+}
+
+.tab-content > .tab-pane:not(.active),
+.pill-content > .pill-pane:not(.active) {
+ display: block;
+ height: 0;
+ overflow-y: hidden;
+}
+
+.depth rect, .grandparent rect {
+ stroke: $colorBase;
+}
+
+text.ctext{
+ font-size: 1rem;
+}
diff --git a/app/styles/components/_components/_typography.scss b/app/styles/components/_components/_typography.scss
index db571215..a332211b 100755
--- a/app/styles/components/_components/_typography.scss
+++ b/app/styles/components/_components/_typography.scss
@@ -9,13 +9,16 @@ body {
font-size: $fontBase;
font-weight: 500;
color: $colorGrayDark;
- font-family: $serif;
+ font-family: $sans;
+ margin: 0;
+ padding: 0;
+ width: 100%;
}
h1, h2, h3, h4, h5, p {
margin: 0;
padding: 0;
- color: $colorBlack;
+ color: $colorWhite;
}
@@ -37,4 +40,4 @@ li > p {
.fontSerif { font-family: $serif; font-style: normal !important; }
.fontSansAlt { font-family: $sansAlt; font-style: normal !important; }
.fontSansSC { font-family: $sansSC; text-transform: lowercase; font-style: normal !important; }
-.fontSerifSC { font-family: $serifSC; text-transform: lowercase; font-style: normal !important; }
\ No newline at end of file
+.fontSerifSC { font-family: $serifSC; text-transform: lowercase; font-style: normal !important; }
diff --git a/app/styles/components/_font-face.scss b/app/styles/components/_font-face.scss
index 1f99f897..ef794980 100755
--- a/app/styles/components/_font-face.scss
+++ b/app/styles/components/_font-face.scss
@@ -14,6 +14,11 @@
font-style: normal;
}
+@font-face {
+ font-family: "RF Rufo";
+ src: url('font/RF_Rufo/RFRufo-Bold.ttf');
+}
+
[class^="icon-cidcon_"]::before, [class*=" icon-cidcon_"]::before {
font-family: 'cidcons';
font-style: normal;
diff --git a/app/styles/components/_modules/_builder-questions.scss b/app/styles/components/_modules/_builder-questions.scss
index 3ebf67ed..2b4bcf87 100755
--- a/app/styles/components/_modules/_builder-questions.scss
+++ b/app/styles/components/_modules/_builder-questions.scss
@@ -92,7 +92,7 @@
&.icon-cidcon_geo { }
&.icon-cidcon_multiples { left: 30px;}
&.icon-cidcon_treemap, &.icon-cidcon_scatter, &.icon-cidcon_similarity { left: 60px;}
-
+
}
.builder__questions__label {
@@ -101,11 +101,7 @@
}
.builder__questions__question {
- font-weight: 400;
- color: $colorGray;
- font-size: $fontSmall;
- display: inline-block;
- font-family: $sans;
+ color: black;
}
.builder__icon--placeholder:before {
@@ -118,3 +114,16 @@
.buildermod__tool--questions {
border-left-color: $colorBrown300;
}
+
+.new__buildermod__questions{
+ background-color: $colorSecondary;
+ color: black;
+}
+
+.question__title{
+ color: black;
+}
+
+.new__builder__questions__header {
+ color: black;
+}
diff --git a/app/styles/components/_modules/_builder.scss b/app/styles/components/_modules/_builder.scss
index 4586109b..8626beb2 100755
--- a/app/styles/components/_modules/_builder.scss
+++ b/app/styles/components/_modules/_builder.scss
@@ -5,7 +5,8 @@
**/
.builder {
- background: white;
+ background: $colorBase;
+ color: $colorWhite;
}
.builder__recirc {
diff --git a/app/styles/components/_modules/_buildermod.scss b/app/styles/components/_modules/_buildermod.scss
index 15da5ba6..9eefe513 100755
--- a/app/styles/components/_modules/_buildermod.scss
+++ b/app/styles/components/_modules/_buildermod.scss
@@ -73,7 +73,6 @@
.buildermod__viz {
position: relative;
- min-height: 500px;
&--white {
background: $colorWhite;
}
diff --git a/app/styles/components/_modules/_ember-table.scss b/app/styles/components/_modules/_ember-table.scss
index 1f7b9678..10032ef1 100755
--- a/app/styles/components/_modules/_ember-table.scss
+++ b/app/styles/components/_modules/_ember-table.scss
@@ -10,7 +10,7 @@
}
.ember-table-tables-container {
- background: $colorGrayLightest;
+ background: $colorBase;
border: none;
margin-bottom: $baseSpace / 2;
}
diff --git a/app/styles/components/_modules/_header-nav.scss b/app/styles/components/_modules/_header-nav.scss
new file mode 100644
index 00000000..5696dcee
--- /dev/null
+++ b/app/styles/components/_modules/_header-nav.scss
@@ -0,0 +1,5 @@
+.header__nav__title{
+ color: $colorYellow;
+ text-transform: uppercase;
+ font-size: 4rem;
+}
diff --git a/app/styles/components/_modules/_index.scss b/app/styles/components/_modules/_index.scss
index 0b410709..9d490443 100755
--- a/app/styles/components/_modules/_index.scss
+++ b/app/styles/components/_modules/_index.scss
@@ -7,9 +7,8 @@
.index {
// background: $colorBrown200;
}
-
.index__section {
- padding: 0 $baseSpace * 3;
+ padding: 0;
display: relative;
}
@@ -44,7 +43,6 @@
.stream__head.index__head {
margin-bottom: $baseSpace;
max-width: 100rem;
- font-size: $fontXLarge;
}
.index__search__wrap {
@@ -186,8 +184,9 @@
// Research featured in media grid
.index__featuredin__wrap {
margin: 0 $baseSpace*3;
- background: $colorBrown300;
+ background: $colorBase;
padding: $baseSpace * 2;
+ margin-top: 5rem !important;
}
.index__featuredin__list {
@@ -221,7 +220,10 @@
margin: 0 auto;
.section__head {
- margin: $baseSpace*1.75 0 $baseSpace 0;
+ margin: $baseSpace*3 0 $baseSpace*3 0;
+ color: $colorYellow;
+ text-transform: uppercase;
+ font-size: 4rem;
}
}
@@ -329,7 +331,7 @@
.index__questions__link {
font-size: $fontSmall;
display: block;
-
+
&.index__questions__link--viewall {
font-style: italic;
font-weight: 400;
@@ -405,3 +407,115 @@
.index__featuredin__wrap {
margin: 0;
}
+
+.title_yellow{
+ color: $colorYellow;
+ text-transform: uppercase;
+ font-size: 4rem;
+}
+
+.text_yellow{
+ color: $colorYellow;
+}
+
+.title_white{
+ color: $colorWhite;
+ text-transform: uppercase;
+ font-size: 4rem;
+}
+
+.stream__section__subhead__wrap__white{
+ color: $colorWhite;
+ text-transform: uppercase;
+ padding-right: 1rem;
+}
+
+.update__sections__head__wrap__white{
+ color: $colorWhite;
+ text-transform: uppercase;
+ font-size: 3rem;
+}
+
+.dropdown-update .ui-selectmenu-button{
+ box-shadow: none;
+ width: 100% !important;
+ background: none;
+ color: $colorWhite;
+ border: solid 1px $colorWhite;
+ border-radius: 3px;
+}
+
+.ui-selectmenu-button.ui-state-hover{
+ background: none !important;
+ color: $colorWhite;
+ opacity: 0.8;
+}
+
+.ui-menu-item{
+ background: $colorBase !important;
+ color: $colorWhite !important;
+}
+
+.section__message_dropbox{
+ color: $colorYellow;
+}
+
+.section__card-cian-sophistication_route{
+ background: $colorSecondary;
+ padding: 4rem;
+}
+
+.section__card-cian-sophistication_route > h1,p{
+ color: $colorBlack;
+}
+
+.section__card-yellow > h1{
+ color: $colorBlack;
+}
+
+.section__card-yellow{
+ background: $colorYellow;
+ padding: 4rem;
+}
+
+.bordered-div-yellow{
+ border: solid 1px $colorYellow;
+}
+
+.section__card__wrap__yellow{
+ color: $colorYellow;
+ text-transform: uppercase;
+ font-size: 8rem;
+}
+
+.section__card__wrap__white{
+ color: $colorWhite;
+ text-transform: uppercase;
+ font-size: 8rem;
+}
+
+.section__card__profile{
+ margin-top: 5rem;
+ margin-left: 3rem;
+ button{
+ margin-top: 4rem;
+ }
+}
+
+.btn-large{
+ font-size: 3rem;
+}
+
+.tippy-box[data-theme~='datlas'] {
+ background-color: $colorSecondary;
+ color: $colorBase;
+ font-size: 2rem;
+}
+
+.tippy-arrow{
+ color: $colorSecondary;
+}
+
+.index_button{
+ font-size: 2rem;
+}
diff --git a/app/styles/components/_modules/_layout.scss b/app/styles/components/_modules/_layout.scss
index 62dc6afa..e6dc9093 100755
--- a/app/styles/components/_modules/_layout.scss
+++ b/app/styles/components/_modules/_layout.scss
@@ -5,9 +5,10 @@
**/
.body {
- // height: 100%;
- background: white;
- border-bottom: 5px solid $colorRed;
+ width: 100%;
+ background: $colorBase;
+ padding:0;
+ margin: 0;
}
.stream {
@@ -31,3 +32,17 @@
.stream__article--no--indent {
margin: $baseSpace*3;
}
+
+.row-without-margin{
+ margin: 0;
+}
+
+.select2-selection--single {
+ overflow: hidden;
+ text-overflow: ellipsis;
+ white-space: nowrap;
+}
+
+.select2-drop li {
+ white-space: pre-line;
+}
diff --git a/app/styles/components/_modules/_pageheader.scss b/app/styles/components/_modules/_pageheader.scss
index 293c8cb0..21e3795a 100755
--- a/app/styles/components/_modules/_pageheader.scss
+++ b/app/styles/components/_modules/_pageheader.scss
@@ -5,26 +5,35 @@
**/
.header--pageheader {
- background: $colorRed;
- padding: 0 $baseSpace;
+ background: $colorBase;
+ color: $colorWhite;
+}
+.navbar_button{
+ background: $colorBase;
+}
+.navbar{
+ border-radius: 0.5rem;
}
-
.pageheader__wrap {
- padding: $baseSpace/2 0;
position: relative;
- max-width: $xlarge;
margin: auto;
+ padding:4vw;
+ padding-top: 10vh;
+ padding-bottom: 5vh;
}
-
// Branding
.branding {
- height: 30px;
+ height:7vh;
}
.branding__logo {
- width: 12rem;
- margin-top: -5px;
+ height: 100%;
+ padding: 0;
+}
+.branding__logo__social_network {
+ height: 3vh;
+ width: 3vw;
}
.branding__slogan {
@@ -120,7 +129,7 @@
left: 2px;
bottom: 2px;
right: 2px;
- background-color: $colorRed;
+ background-color: $colorBase;
border-radius: $baseSpace / 2;
}
&:after {
@@ -216,11 +225,11 @@
.index__header__wrap {
padding: $baseSpace*1.5 0 0 0;
- max-width: $baseSpace*20;
+ max-width: fit-content;
}
.stream__head {
- color: $colorRed;
+ color: $colorWhite;
letter-spacing: 0;
font-size: $fontXLarge;
margin: $fontXLarge/3 0 $fontXLarge/3 0;
@@ -268,7 +277,7 @@
background-color: $colorRed;
}
-.header--pageheader--home .pageheader__home__cap { display: block; }
+.header--pageheader--home .pageheader__home__cap { display: none; }
.stream__section .pageheader__home__cap {
display: block;
@@ -296,4 +305,44 @@
background: $colorWhite;
}
+.bordered-div{
+ border: solid 1px $colorWhite;
+}
+.social_network_marging{
+ height: 100%;
+}
+.pageheader__menu__item{
+ color: $colorWhite;
+ text-transform: uppercase;
+ &:hover {
+ opacity: 0.8;
+ color: $colorWhite;
+ text-decoration: none;
+ }
+}
+
+.index__header__wrap .index__header .stream__head{
+ color: $colorYellow;
+ text-transform: uppercase;
+}
+
+.index__header__wrap .index__header .stream__subhead{
+ color: $colorWhite;
+ text-transform: uppercase;
+ font-size: $fontLarge;
+}
+
+.btn btn-outline-warning{
+ color: $colorYellow;
+ border-color: $colorYellow;
+}
+.navbar{
+ padding: 0;
+}
+
+@media (min-width: 768px){
+ .border-div-navbar {
+ border: 1px solid $colorWhite;
+ }
+}
diff --git a/app/styles/components/_modules/_results.scss b/app/styles/components/_modules/_results.scss
index d396fabb..2ec9fc6b 100755
--- a/app/styles/components/_modules/_results.scss
+++ b/app/styles/components/_modules/_results.scss
@@ -11,7 +11,7 @@
.results__head {
font-size: $fontXLarge;
- color: $colorRed;
+ color: $colorWhite;
margin-bottom: $baseSpace*2;
margin-top: $baseSpace;
line-height: 100%;
@@ -20,7 +20,7 @@
}
.results__subhead {
- color: $colorBlack;
+ color: $colorWhite;
font-size: $fontLarge;
@include offset-text;
margin-top: $baseSpace;
@@ -55,7 +55,7 @@
}
.results__breadcrumb {
- color: $colorBlack;
+ color: $colorWhite;
font-size: $fontSmall;
@include offset-text;
@@ -65,7 +65,7 @@
&:after {
content: '/';
margin-left: $baseSpace / 3;
- color: $colorGray;
+ color: $colorWhite;
}
&:last-of-type {
margin-right: 0;
@@ -76,7 +76,7 @@
}
.results__name {
- color: $colorBlack;
+ color: $colorWhite;
font-weight: 700;
@include offset-text;
}
@@ -93,7 +93,7 @@
.results__copy--postscript {
margin: $baseSpace*2 0;
text-align: left;
- color: $colorGray;
+ color: $colorWhite;
@include offset-text;
padding: $baseSpace/2 0;
border-top: 1px solid $colorGrayLight;
@@ -104,7 +104,7 @@
.results__reference {
margin-top: 10rem;
padding-top: 4rem;
- border-top: 1px solid $colorGrayLight;
+ border-top: 1px solid $colorWhite;
}
.results__reference__menu {
diff --git a/app/styles/components/_modules/_stream-header.scss b/app/styles/components/_modules/_stream-header.scss
index 0b7f20d1..9ec3b163 100755
--- a/app/styles/components/_modules/_stream-header.scss
+++ b/app/styles/components/_modules/_stream-header.scss
@@ -44,7 +44,7 @@
line-height: 100%;
-moz-osx-font-smoothing: grayscale;
margin-bottom: $baseSpace;
- color: $colorRed;
+ color: $colorWhite;
margin-top: $baseSpace/2;
}
@@ -67,14 +67,9 @@
}
.breadcrumb {
- color: $colorGrayLight;
- font-size: $fontSmall;
- font-family: $sansSC;
- text-transform: lowercase;
- font-weight: 400;
- cursor: pointer;
- display: inline-block;
- margin-right: $baseSpace / 3;
+
+ background-color: $colorBase;
+ padding: 0;
&:active, &:focus, &:hover {
color: $colorGrayDark;
@@ -97,6 +92,14 @@
}
}
+.breadcrumb-item.active {
+ color: $colorYellow;
+}
+
+.breadcrumb-item a{
+ color: $colorSecondary;
+}
+
.breadcrumb__link {
color: $colorGray;
}
@@ -246,3 +249,54 @@
font-family: $sansAlt;
color: $colorRed;
}
+
+.stream-header__title{
+ color: $colorSecondary;
+ text-transform: uppercase;
+}
+
+.stream-header__subtitle{
+ color: $colorYellow;
+ text-transform: uppercase;
+}
+
+@media (min-width: 768px){
+ .pl-md-x10{
+ padding-left: ($spacer * 10) !important;
+ }
+
+ .pr-md-x10{
+ padding-right: ($spacer * 10) !important;
+ }
+
+ .pt-md-x10{
+ padding-top: ($spacer * 10) !important;
+ }
+
+ .px-md-x10{
+ padding: 0 ($spacer * 10);
+ }
+}
+
+@media (min-width: 768px){
+ .ml-md-x10{
+ margin-left: ($spacer * 10) !important;
+ }
+
+ .mr-md-x10{
+ margin-right: ($spacer * 10) !important;
+ }
+
+ .mt-md-x10{
+ margin-top: ($spacer * 10) !important;
+ }
+
+ .mx-md-x10{
+ margin: 0 ($spacer * 10);
+ }
+}
+
+.center-pills {
+ display: flex;
+ justify-content: center;
+}
diff --git a/app/styles/components/_modules/_stream-section.scss b/app/styles/components/_modules/_stream-section.scss
index 12922faf..b3cad720 100755
--- a/app/styles/components/_modules/_stream-section.scss
+++ b/app/styles/components/_modules/_stream-section.scss
@@ -47,8 +47,9 @@
}
.stream__section__wrap {
- max-width: $xlarge;
+ max-width: 100%;
margin: 0 auto;
position: relative;
+ margin-top: 8rem;
}
diff --git a/app/styles/components/_variables.scss b/app/styles/components/_variables.scss
index 35e027bf..d05438da 100755
--- a/app/styles/components/_variables.scss
+++ b/app/styles/components/_variables.scss
@@ -7,7 +7,7 @@
/* ========== Type Palette ========== */
$icon: 'FontAwesome';
-$sans: 'Source Sans Pro', sans-serif; // 'Alegreya Sans', Arial, sans-serif;
+$sans: 'RF Rufo', sans-serif; // 'Alegreya Sans', Arial, sans-serif;
$sansAlt: $sans;
$sansSC: 'Alegreya Sans SC', Arial, sans-serif;
$serif: 'Alegreya', 'Times New Roman', Georgia, serif; // 'Bitter', serif; // 'Source Serif Pro', Georgia, serif;
@@ -15,6 +15,11 @@ $serifSC: 'Alegreya SC', Georgia, serif;
/* ========== Color Palettes ========== */
+$colorBase: #292A48;
+$colorYellow: #FFCD00;
+$colorSecondary: #C2C4FF;
+$colorThree: #7C7EAC;
+
$colorBlack: rgb( 25, 25, 20 );
$colorGrayDark: rgb( 83, 83, 79 );
$colorGray: rgb( 140, 140, 138 );
@@ -72,11 +77,25 @@ $colorRedQ3-5: rgb(222,45,38);
$colorRedQ4-5: rgb(165,15,21);
//Map Green Scale
-$colorGreenQ0-5: rgb(237,248,233);
-$colorGreenQ1-5: rgb(186,228,179);
-$colorGreenQ2-5: rgb(116,196,118);
-$colorGreenQ3-5: rgb(49,163,84);
-$colorGreenQ4-5: rgb(0,109,44);
+$colorGreenQ0-5: rgb(255,224,178);
+$colorGreenQ1-5: rgb(255,183,77);
+$colorGreenQ2-5: rgb(255,152,0);
+$colorGreenQ3-5: rgb(245,124,0);
+$colorGreenQ4-5: rgb(230,81,0);
+
+//Map alter Blue Scale
+$colorBlueQ0-5: #BBDEFB;
+$colorBlueQ1-5: #64B5F6;
+$colorBlueQ2-5: #2196F3;
+$colorBlueQ3-5: #1976D2;
+$colorBlueQ4-5: #0D47A1;
+
+//Map alter Pink Scale
+$colorPinkQ0-5: #F8BBD0;
+$colorPinkQ1-5: #F06292;
+$colorPinkQ2-5: #E91E63;
+$colorPinkQ3-5: #C2185B;
+$colorPinkQ4-5: #880E4F;
$colorNavy200: rgb( 204, 204, 214 );
$colorNavy400: rgb( 154, 153, 172 );
@@ -126,6 +145,7 @@ $fontIcon: 'icons' !default;
// Defining font sizes
$fontXTiny: 1rem !default;
+$fontMTiny: 1.1rem !default;
$fontTiny: 1.3rem !default;
$fontSmall: 1.6rem !default;
$fontBase: 2rem !default;
@@ -174,3 +194,6 @@ $zIndex-7: 700;
$zIndex-8: 800;
$zIndex-9: 900;
$zIndex-10: 1001;
+
+
+$spacer: 1rem;
diff --git a/app/styles/components/_visualizations/_area-chart-multiples.scss b/app/styles/components/_visualizations/_area-chart-multiples.scss
index 0f6525e2..e97ffbbc 100755
--- a/app/styles/components/_visualizations/_area-chart-multiples.scss
+++ b/app/styles/components/_visualizations/_area-chart-multiples.scss
@@ -44,6 +44,12 @@
}
.chart__title {
+ color: $colorBase;
+ text-align: center !important;
+ background-color: $colorSecondary;
+ padding: 5px;
+ writing-mode: vertical-lr;
+ transform: rotate(180deg);
font-weight: 500;
font-size: $fontSmall;
position: relative;
@@ -64,9 +70,9 @@
}
.chart__wrap {
- font-size: $fontTiny;
+ font-size: $fontMTiny;
text {
- fill: $colorGrayDark;
+ fill: white;
}
}
@@ -88,7 +94,7 @@
}
.background {
- fill: $colorBrown300;
+ fill: $colorBase;
pointer-events: all;
}
@@ -114,7 +120,7 @@
.axis--y {
line {
- stroke: $colorBrown500;
+ stroke: $colorWhite;
fill: none;
shape-rendering: crispEdges;
pointer-events: none;
@@ -125,6 +131,10 @@
fill: #ee4036;
}
+.marker_fixed{
+ fill: #80D8FF;
+}
+
.caption, .year, .marker {
pointer-events: none;
}
@@ -132,3 +142,19 @@
.hidden {
opacity: 0;
}
+
+.tooltip-max_value, .tooltip-value{
+ fill: white;
+}
+
+.max_value{
+ fill: black !important;
+}
+
+rect{
+ stroke: none;
+}
+
+.caption{
+ fill: black !important;
+}
diff --git a/app/styles/components/_visualizations/_dotplot.scss b/app/styles/components/_visualizations/_dotplot.scss
index 66fbc02d..6501212c 100755
--- a/app/styles/components/_visualizations/_dotplot.scss
+++ b/app/styles/components/_visualizations/_dotplot.scss
@@ -9,7 +9,7 @@
position: relative;
.items__mark__diamond {
- fill: $colorGray;
+ fill: $colorWhite;
opacity: .3;
}
@@ -34,7 +34,7 @@
}
.axis > .domain {
- stroke: $colorGray;
+ stroke: $colorWhite;
stroke-dasharray: 1,1;
stroke-width: .5px;
}
@@ -44,4 +44,12 @@
font-size: 1.4rem;
}
+ text {
+ fill: $colorWhite;
+ }
+
+}
+
+.dotplot--div{
+ width: 40vw;
}
diff --git a/app/styles/components/_visualizations/_geo.scss b/app/styles/components/_visualizations/_geo.scss
index f3cd7943..df10105b 100755
--- a/app/styles/components/_visualizations/_geo.scss
+++ b/app/styles/components/_visualizations/_geo.scss
@@ -6,15 +6,16 @@
// Nested here instead of giving ever el a class in the js
.geo__wrap {
- height: $minBuildermodHeight;
+ height: 80rem;
padding: 0;
- border: 1px solid $colorGrayLight;
+ background: $colorBase;
svg {
position: relative;
}
.leaflet-control-attribution {
+ display: none;
padding: 5px 7px;
background: $colorWhite;
color: $colorGrayLighter;
@@ -27,48 +28,110 @@
}
.geo__department {
- fill: #000;
- stroke: $colorGrayLight;
- stroke-width: 2px;
+ fill: $colorWhite;
+ stroke: $colorWhite;
+ stroke-width: 1px;
}
// If the value of the data is exactly 0
.q0 {
- fill: $colorWhite;
+ fill: $colorSecondary;
}
// The scale if the value is positive
- .q0-5 {
+ .q0-5.s0 {
fill: $colorGreenQ0-5;
}
- .q1-5 {
+ .q0-5.s1 {
+ fill: $colorBlueQ0-5;
+ }
+ .q0-5.s2 {
+ fill: $colorPinkQ0-5;
+ }
+ .q1-5.s0 {
fill: $colorGreenQ1-5;
}
- .q2-5 {
+ .q1-5.s1 {
+ fill: $colorBlueQ1-5;
+ }
+ .q1-5.s2 {
+ fill: $colorPinkQ1-5;
+ }
+ .q2-5.s0 {
fill: $colorGreenQ2-5;
}
- .q3-5 {
+ .q2-5.s1 {
+ fill: $colorBlueQ2-5;
+ }
+ .q2-5.s2 {
+ fill: $colorPinkQ2-5;
+ }
+ .q3-5.s0 {
fill: $colorGreenQ3-5;
}
- .q4-5 {
+ .q3-5.s1 {
+ fill: $colorBlueQ3-5;
+ }
+ .q3-5.s2 {
+ fill: $colorPinkQ3-5;
+ }
+ .q4-5.s0 {
fill: $colorGreenQ4-5;
}
+ .q4-5.s1 {
+ fill: $colorBlueQ4-5;
+ }
+ .q4-5.s2 {
+ fill: $colorPinkQ4-5;
+ }
+}
+
+.q0-5.s0 {
+ color: $colorGreenQ0-5;
+}
+.q0-5.s1 {
+ color: $colorBlueQ0-5;
+}
+.q0-5.s2 {
+ color: $colorPinkQ0-5;
+}
+.q1-5.s0 {
+ color: $colorGreenQ1-5;
+}
+.q1-5.s1 {
+ color: $colorBlueQ1-5;
+}
+.q1-5.s2 {
+ color: $colorPinkQ1-5;
+}
+.q2-5.s0 {
+ color: $colorGreenQ2-5;
+}
+.q2-5.s1 {
+ color: $colorBlueQ2-5;
+}
+.q2-5.s2 {
+ color: $colorPinkQ2-5;
}
-.q0-5 {
- color: $colorGreenQ0-5;
+.q3-5.s0 {
+ color: $colorGreenQ3-5;
+}
+.q3-5.s1 {
+ color: $colorBlueQ3-5;
}
-.q1-5 {
- color: $colorGreenQ1-5;
+.q3-5.s2 {
+ color: $colorPinkQ3-5;
}
-.q2-5 {
- color: $colorGreenQ2-5;
+
+.q4-5.s0 {
+ color: $colorGreenQ4-5;
}
-.q3-5 {
- color: $colorGreenQ3-5;
+.q4-5.s1 {
+ color: $colorBlueQ4-5;
}
-.q4-5 {
- color: $colorGreenQ4-5;
+.q4-5.s2 {
+ color: $colorPinkQ4-5;
}
@@ -94,7 +157,6 @@
}
.leaflet-left .leaflet-control {
- box-shadow: -1px 2px 2px $colorGrayLighter;
margin: 0 0 $baseSpace*1.5 $baseSpace*1.5;
}
@@ -107,3 +169,7 @@
font-weight: 300;
color: $colorGrayLight;
}
+
+.geo_background{
+ background: $colorBase;
+}
diff --git a/app/styles/components/_visualizations/_network.scss b/app/styles/components/_visualizations/_network.scss
index 319545f3..658df04a 100755
--- a/app/styles/components/_visualizations/_network.scss
+++ b/app/styles/components/_visualizations/_network.scss
@@ -27,6 +27,12 @@
stroke: red;
}
+.connect__line.selected__secondary {
+ stroke-width: 3px;
+ stroke-opacity: 1;
+ stroke: $colorYellow;
+}
+
.connect__line.highlighted__adjacent {
stroke-width: 2px;
stroke-opacity: 1;
diff --git a/app/styles/components/_visualizations/_scatterplot.scss b/app/styles/components/_visualizations/_scatterplot.scss
index 4af81d44..99a82048 100755
--- a/app/styles/components/_visualizations/_scatterplot.scss
+++ b/app/styles/components/_visualizations/_scatterplot.scss
@@ -26,9 +26,18 @@
.mark__line_horizontal {
fill: none;
- stroke: #000;
+ stroke: $colorYellow;
stroke-width: 1.5px;
stroke-dasharray: 5,5;
opacity: 1;
}
}
+
+.axis{
+ fill: white;
+}
+
+.items__mark__text{
+ fill: $colorThree;
+}
+
diff --git a/app/styles/components/components.scss b/app/styles/components/components.scss
index 30789d2a..76cfea00 100755
--- a/app/styles/components/components.scss
+++ b/app/styles/components/components.scss
@@ -27,6 +27,9 @@
@import '_components/_tooltip';
@import '_components/_spinner';
@import '_components/_columns';
+@import '_components/_treemap';
+@import '_components/_datatables';
+@import '_components/_modal';
// Modules
@import '_modules/_layout';
@@ -55,6 +58,7 @@
@import '_modules/_results';
@import '_modules/_explanation';
@import '_modules/_select-dropdown';
+@import '_modules/_header-nav';
// Visualizations
@import '_visualizations/_dotplot';
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl-100.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl-100.otf
new file mode 100644
index 00000000..dbf12a5f
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl-100.otf differ
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl-100Italic.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl-100Italic.otf
new file mode 100644
index 00000000..fb8a41db
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl-100Italic.otf differ
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl-300.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl-300.otf
new file mode 100644
index 00000000..1d778503
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl-300.otf differ
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl-300Italic.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl-300Italic.otf
new file mode 100644
index 00000000..aae678e3
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl-300Italic.otf differ
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl-500.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl-500.otf
new file mode 100644
index 00000000..e4a14db4
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl-500.otf differ
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl-500Italic.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl-500Italic.otf
new file mode 100644
index 00000000..08babf7a
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl-500Italic.otf differ
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl-700.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl-700.otf
new file mode 100644
index 00000000..d8f19f03
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl-700.otf differ
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl-700Italic.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl-700Italic.otf
new file mode 100644
index 00000000..84ae7a4f
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl-700Italic.otf differ
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl-900.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl-900.otf
new file mode 100644
index 00000000..e138bf24
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl-900.otf differ
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl-900Italic.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl-900Italic.otf
new file mode 100644
index 00000000..59b259ef
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl-900Italic.otf differ
diff --git a/app/styles/components/font/MuseoSans/MuseoSansCyrl_500.otf b/app/styles/components/font/MuseoSans/MuseoSansCyrl_500.otf
new file mode 100644
index 00000000..e5e860a4
Binary files /dev/null and b/app/styles/components/font/MuseoSans/MuseoSansCyrl_500.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_100.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_100.otf
new file mode 100644
index 00000000..db81c194
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_100.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_1000.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_1000.otf
new file mode 100644
index 00000000..3c104e44
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_1000.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_1000italic.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_1000italic.otf
new file mode 100644
index 00000000..cb4837c1
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_1000italic.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_100italic.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_100italic.otf
new file mode 100644
index 00000000..8201da91
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_100italic.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_300.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_300.otf
new file mode 100644
index 00000000..984be3d8
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_300.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_300italic.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_300italic.otf
new file mode 100644
index 00000000..c952686c
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_300italic.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_500.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_500.otf
new file mode 100644
index 00000000..84ceaca5
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_500.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_500italic.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_500italic.otf
new file mode 100644
index 00000000..a8c055fd
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_500italic.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_700.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_700.otf
new file mode 100644
index 00000000..28188621
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_700.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_700italic.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_700italic.otf
new file mode 100644
index 00000000..d1654c4f
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_700italic.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_900.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_900.otf
new file mode 100644
index 00000000..978ed5a6
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_900.otf differ
diff --git a/app/styles/components/font/MuseoSlab/Museo_Slab_900italic.otf b/app/styles/components/font/MuseoSlab/Museo_Slab_900italic.otf
new file mode 100644
index 00000000..92ea0149
Binary files /dev/null and b/app/styles/components/font/MuseoSlab/Museo_Slab_900italic.otf differ
diff --git a/app/styles/components/font/RF_Rufo/RFRufo-Bold.ttf b/app/styles/components/font/RF_Rufo/RFRufo-Bold.ttf
new file mode 100644
index 00000000..e78a1f02
Binary files /dev/null and b/app/styles/components/font/RF_Rufo/RFRufo-Bold.ttf differ
diff --git a/app/styles/components/font/RF_Rufo/RFRufo-Light.ttf b/app/styles/components/font/RF_Rufo/RFRufo-Light.ttf
new file mode 100644
index 00000000..2bf06277
Binary files /dev/null and b/app/styles/components/font/RF_Rufo/RFRufo-Light.ttf differ
diff --git a/app/styles/components/font/RF_Rufo/RFRufo-Regular.ttf b/app/styles/components/font/RF_Rufo/RFRufo-Regular.ttf
new file mode 100644
index 00000000..91707e26
Binary files /dev/null and b/app/styles/components/font/RF_Rufo/RFRufo-Regular.ttf differ
diff --git a/app/templates/about/glossary.hbs b/app/templates/about/glossary.hbs
index d2e90d3d..93a437c9 100755
--- a/app/templates/about/glossary.hbs
+++ b/app/templates/about/glossary.hbs
@@ -1,5 +1,7 @@
-{{ t 'glossary.head' }}
-
- {{ t 'about.project_description.intro.p1' }} -
-- {{ t 'about.project_description.intro.p2' }} -
-- {{ t 'about.project_description.intro.p3' }} -
-- {{ t 'about.project_description.intro.p4' }} -
-+ {{ t 'about.project_description.intro.p1' }} +
++ {{ t 'about.project_description.intro.p2' }} +
++ {{ t 'about.project_description.intro.p3' }} +
++ {{ t 'about.project_description.intro.p4' }} +
+- {{{ t 'about.project_description.cid.p1' }}} -
-- {{{ t 'about.project_description.cid.p2' }}} -
-+ {{{ t 'about.project_description.cid.p1' }}} +
++ {{{ t 'about.project_description.cid.p2' }}} +
+- {{{ t 'about.project_description.founders.p' }}} -
-- {{{ t 'about.project_description.founder1.p' }}} -
-- {{{ t 'about.project_description.founder2.p' }}} -
-- {{{ t 'about.project_description.founder3.p' }}} -
-+ {{{ t 'about.project_description.founders.p' }}} +
++ {{{ t 'about.project_description.founder1.p' }}} +
++ {{{ t 'about.project_description.founder2.p' }}} +
++ {{{ t 'about.project_description.founder3.p' }}} +
+- {{ t 'about.project_description.team.p' }} -
-+ {{ t 'about.project_description.team.p' }} +
+- {{ t 'about.project_description.contact.link' }} -
-+ {{ t 'about.project_description.contact.link' }} +
+- {{{ t 'about.project_description.letter.p' }}} -
-+ {{{ t 'about.project_description.letter.p' }}} +
+DEPARTAMENTO
+ + +CIUDAD
+ + +{{name}}
+