forked from DmitryUlyanov/texture_nets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.lua
205 lines (155 loc) · 5.59 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
require 'torch'
require 'nn'
require 'image'
require 'optim'
require 'src/utils'
require 'src/descriptor_net'
local DataLoader = require 'dataloader'
use_display, display = pcall(require, 'display')
if not use_display then
print('torch.display not found. unable to plot')
end
----------------------------------------------------------
-- Parameters
----------------------------------------------------------
local cmd = torch.CmdLine()
cmd:option('-content_layers', 'relu4_2', 'Layer to attach content loss.')
cmd:option('-style_layers', 'relu1_1,relu2_1,relu3_1,relu4_1', 'Layer to attach style loss.')
cmd:option('-learning_rate', 1e-3)
cmd:option('-num_iterations', 50000, 'Number of steps to perform.')
cmd:option('-save_every', 1000, 'Save model every N iterations.')
cmd:option('-batch_size', 1)
cmd:option('-image_size', 256, 'Training images size')
cmd:option('-content_weight', 1)
cmd:option('-style_weight', 1)
cmd:option('-tv_weight', 0, 'Total variation weight.')
cmd:option('-style_image', '', 'Path to style image')
cmd:option('-style_size', 256, 'Resize style image to this size, no resize if 0.')
cmd:option('-mode', 'style', 'style|texture')
cmd:option('-checkpoints_path', 'data/checkpoints/', 'Directory to store intermediate results.')
cmd:option('-model', 'pyramid', 'Path to generator model description file.')
cmd:option('-vgg_no_pad', 'false')
cmd:option('-normalization', 'instance', 'batch|instance')
cmd:option('-proto_file', 'data/pretrained/VGG_ILSVRC_19_layers_deploy.prototxt', 'Pretrained')
cmd:option('-model_file', 'data/pretrained/VGG_ILSVRC_19_layers.caffemodel')
cmd:option('-backend', 'cudnn', 'nn|cudnn')
-- Dataloader
cmd:option('-dataset', 'style')
cmd:option('-data', '', 'Path to dataset. Structure like in fb.resnet.torch repo.')
cmd:option('-manualSeed', 0)
cmd:option('-nThreads', 4, 'Data loading threads.')
cmd:option('-cpu', false, 'use this flag to run on CPU')
params = cmd:parse(arg)
if params.cpu then
dtype = 'torch.FloatTensor'
params.backend = 'nn'
backend = nn
else
dtype = 'torch.CudaTensor'
require 'cutorch'
require 'cunn'
torch.CudaTensor.add_dummy = torch.FloatTensor.add_dummy
if params.backend == 'cudnn' then
require 'cudnn'
cudnn.fastest = true
cudnn.benchmark = true
backend = cudnn
else
backend = nn
end
end
assert(params.mode == 'style', 'Only stylization is implemented in master branch. You can find texture generation in texture_nets_v1 branch.')
params.normalize_gradients = params.normalize_gradients ~= 'false'
params.vgg_no_pad = params.vgg_no_pad ~= 'false'
params.circular_padding = params.circular_padding ~= 'false'
-- For compatibility with Justin Johnsons code
params.texture_weight = params.style_weight
params.texture_layers = params.style_layers
params.texture = params.style_image
if params.normalization == 'instance' then
require 'InstanceNormalization'
normalization = nn.InstanceNormalization
elseif params.normalization == 'batch' then
normalization = nn.SpatialBatchNormalization
end
if params.mode == 'texture' then
params.content_layers = ''
pad = nn.SpatialCircularPadding
-- Use circular padding
conv = convc
else
pad = nn.SpatialReplicationPadding
end
trainLoader, valLoader = DataLoader.create(params)
-- Define model
local net = require('models/' .. params.model):type(dtype)
local criterion = nn.ArtisticCriterion(params)
----------------------------------------------------------
-- feval
----------------------------------------------------------
local iteration = 0
local parameters, gradParameters = net:getParameters()
local loss_history = {}
function feval(x)
iteration = iteration + 1
if x ~= parameters then
parameters:copy(x)
end
gradParameters:zero()
local loss = 0
-- Get batch
local images = trainLoader:get()
target_for_display = images.target
local images_target = preprocess_many(images.target):type(dtype)
local images_input = images.input:type(dtype)
-- Forward
local out = net:forward(images_input)
loss = loss + criterion:forward({out, images_target})
-- Backward
local grad = criterion:backward({out, images_target}, nil)
net:backward(images_input, grad[1])
loss = loss/params.batch_size
table.insert(loss_history, {iteration,loss})
print('#it: ', iteration, 'loss: ', loss)
return loss, gradParameters
end
----------------------------------------------------------
-- Optimize
----------------------------------------------------------
print(' Optimize ')
style_weight_cur = params.style_weight
content_weight_cur = params.content_weight
local optim_method = optim.adam
local state = {
learningRate = params.learning_rate,
}
for it = 1, params.num_iterations do
-- Optimization step
optim_method(feval, parameters, state)
-- Visualize
if it%50 == 0 then
collectgarbage()
local output = net.output:double()
local imgs = {}
for i = 1, output:size(1) do
local img = deprocess(output[i])
table.insert(imgs, torch.clamp(img,0,1))
end
if use_display then
display.image(target_for_display, {win=1, width=512,title = 'Target'})
display.image(imgs, {win=0, width=512})
display.plot(loss_history, {win=2, labels={'iteration', 'Loss'}})
end
end
if it%2000 == 0 then
state.learningRate = state.learningRate*0.8
end
-- Dump net
if it%params.save_every == 0 or it == params.num_iterations then
local net_to_save = deepCopy(net):float():clearState()
if params.backend == 'cudnn' then
net_to_save = cudnn.convert(net_to_save, nn)
end
torch.save(paths.concat(params.checkpoints_path, 'model_' .. it .. '.t7'), net_to_save)
end
end