forked from DmitryUlyanov/texture_nets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.lua
45 lines (35 loc) · 1.08 KB
/
test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
require 'nn'
require 'image'
require 'InstanceNormalization'
require 'src/utils'
local cmd = torch.CmdLine()
cmd:option('-input_image', '', 'Image to stylize.')
cmd:option('-image_size', 0, 'Resize input image to. Do not resize if 0.')
cmd:option('-model_t7', '', 'Path to trained model.')
cmd:option('-save_path', 'stylized.jpg', 'Path to save stylized image.')
cmd:option('-cpu', false, 'use this flag to run on CPU')
local params = cmd:parse(arg)
-- Load model and set type
local model = torch.load(params.model_t7)
if params.cpu then
tp = 'torch.FloatTensor'
else
require 'cutorch'
require 'cunn'
require 'cudnn'
tp = 'torch.CudaTensor'
model = cudnn.convert(model, cudnn)
end
model:type(tp)
model:evaluate()
-- Load image and scale
local img = image.load(params.input_image, 3):float()
if params.image_size > 0 then
img = image.scale(img, params.image_size, params.image_size)
end
-- Stylize
local input = img:add_dummy()
local stylized = model:forward(input:type(tp)):double()
stylized = deprocess(stylized[1])
-- Save
image.save(params.save_path, torch.clamp(stylized,0,1))