-
Notifications
You must be signed in to change notification settings - Fork 60
/
train_gs.py
357 lines (314 loc) · 17.5 KB
/
train_gs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import sys
import uuid
import json
from argparse import ArgumentParser, Namespace
from random import randint
from typing import Optional
import torch
import numpy as np
import torch.nn.functional as F
from tqdm import tqdm
from torchmetrics.functional.regression import pearson_corrcoef
from arguments import ModelParams, OptimizationParams, PipelineParams
from gaussian_renderer import network_gui
from scene import GaussianModel, Scene
from utils.general_utils import safe_state
from utils.image_utils import psnr
from utils.loss_utils import l1_loss, ssim, monodisp
from utils.pose_utils import update_pose, get_loss_tracking
from torch.utils.tensorboard.writer import SummaryWriter
TENSORBOARD_FOUND = True
def training(args, dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
if args.use_dust3r:
print('Use pose refinement from dust3r')
from gaussian_renderer import render_w_pose as render
else:
from gaussian_renderer import render
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, extra_opts=args)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack, augview_stack = None, None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record() # type: ignore
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
if args.use_dust3r:
pose_opt_params = [
{
"params": [viewpoint_cam.cam_rot_delta],
"lr": 0.003,
"name": "rot_{}".format(viewpoint_cam.uid),
},
{
"params": [viewpoint_cam.cam_trans_delta],
"lr": 0.001,
"name": "trans_{}".format(viewpoint_cam.uid),
}
]
pose_optimizer = torch.optim.Adam(pose_opt_params)
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], \
render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
loss, Ll1 = cal_loss(opt, args, image, render_pkg, viewpoint_cam, bg, tb_writer=tb_writer, iteration=iteration, mono_loss_type=args.mono_loss_type)
loss.backward()
iter_end.record() # type: ignore
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
num_gauss = len(gaussians._xyz)
if iteration % 10 == 0:
progress_bar.set_postfix({'Loss': f"{ema_loss_for_log:.{7}f}", 'n': f"{num_gauss}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter and num_gauss < opt.max_num_splats:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
if iteration % opt.remove_outliers_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.remove_outliers(opt, iteration, linear=True)
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if args.use_dust3r and iteration < opt.pose_iterations:
pose_optimizer.step()
pose_optimizer.zero_grad(set_to_none = True)
_ = update_pose(viewpoint_cam)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/ckpt" + str(iteration) + ".pth")
if args.use_dust3r:
with open(os.path.join(dataset.source_path, f'dust3r_{args.sparse_view_num}.json'), 'r') as f:
json_cameras = json.load(f)
refined_cameras = []
for viewpoint_cam, json_camera in zip(scene.getTrainCameras(), json_cameras):
camera = json_camera
w2c = np.eye(4)
w2c[:3, :3] = viewpoint_cam.R.T
w2c[:3, 3] = viewpoint_cam.T
c2w = np.linalg.inv(w2c)
camera['position'] = c2w[:3, 3].tolist()
camera['rotation'] = c2w[:3, :3].tolist()
refined_cameras.append(camera)
with open(os.path.join(scene.model_path, 'refined_cams.json'), 'w') as f:
json.dump(refined_cameras, f, indent=4)
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
args.model_path = os.path.join("./output/", unique_str)
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
torch.cuda.empty_cache()
def cal_loss(opt, args, image, render_pkg, viewpoint_cam, bg, silhouette_loss_type="bce", mono_loss_type="mid", tb_writer: Optional[SummaryWriter]=None, iteration=0):
"""
Calculate the loss of the image, contains l1 loss and ssim loss.
l1 loss: Ll1 = l1_loss(image, gt_image)
ssim loss: Lssim = 1 - ssim(image, gt_image)
Optional: [silhouette loss, monodepth loss]
"""
gt_image = viewpoint_cam.original_image.to(image.dtype).cuda()
if opt.random_background:
gt_image = gt_image * viewpoint_cam.mask + bg[:, None, None] * (1 - viewpoint_cam.mask).squeeze()
Ll1 = l1_loss(image, gt_image)
Lssim = (1.0 - ssim(image, gt_image))
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * Lssim
if tb_writer is not None:
tb_writer.add_scalar('loss/l1_loss', Ll1, iteration)
tb_writer.add_scalar('loss/ssim_loss', Lssim, iteration)
if hasattr(args, "use_mask") and args.use_mask:
if silhouette_loss_type == "bce":
silhouette_loss = F.binary_cross_entropy(render_pkg["rendered_alpha"], viewpoint_cam.mask)
elif silhouette_loss_type == "mse":
silhouette_loss = F.mse_loss(render_pkg["rendered_alpha"], viewpoint_cam.mask)
else:
raise NotImplementedError
loss = loss + opt.lambda_silhouette * silhouette_loss
if tb_writer is not None:
tb_writer.add_scalar('loss/silhouette_loss', silhouette_loss, iteration)
if hasattr(viewpoint_cam, "mono_depth") and viewpoint_cam.mono_depth is not None:
if mono_loss_type == "mid":
# we apply masked monocular loss
gt_mask = torch.where(viewpoint_cam.mask > 0.5, True, False)
render_mask = torch.where(render_pkg["rendered_alpha"] > 0.5, True, False)
mask = torch.logical_and(gt_mask, render_mask)
if mask.sum() < 10:
depth_loss = 0.0
else:
disp_mono = 1 / viewpoint_cam.mono_depth[mask].clamp(1e-6) # shape: [N]
disp_render = 1 / render_pkg["rendered_depth"][mask].clamp(1e-6) # shape: [N]
depth_loss = monodisp(disp_mono, disp_render, 'l1')[-1]
elif mono_loss_type == "pearson":
disp_mono = 1 / viewpoint_cam.mono_depth[viewpoint_cam.mask > 0.5].clamp(1e-6) # shape: [N]
disp_render = 1 / render_pkg["rendered_depth"][viewpoint_cam.mask > 0.5].clamp(1e-6) # shape: [N]
depth_loss = (1 - pearson_corrcoef(disp_render, -disp_mono)).mean()
elif mono_loss_type == "dust3r":
gt_mask = torch.where(viewpoint_cam.mask > 0.5, True, False)
render_mask = torch.where(render_pkg["rendered_alpha"] > 0.5, True, False)
mask = torch.logical_and(gt_mask, render_mask)
if mask.sum() < 10:
depth_loss = 0.0
else:
disp_mono = 1 / viewpoint_cam.mono_depth[mask].clamp(1e-6) # shape: [N]
disp_render = 1 / render_pkg["rendered_depth"][mask].clamp(1e-6) # shape: [N]
depth_loss = torch.abs((disp_render - disp_mono)).mean()
depth_loss *= (opt.iterations - iteration) / opt.iterations # linear scheduler
else:
raise NotImplementedError
loss = loss + args.mono_depth_weight * depth_loss
if tb_writer is not None:
tb_writer.add_scalar('loss/depth_loss', depth_loss, iteration)
if args.use_dust3r:
image_ab = (torch.exp(viewpoint_cam.exposure_a)) * image + viewpoint_cam.exposure_b
tracking_loss = get_loss_tracking(image_ab, render_pkg["rendered_alpha"], viewpoint_cam) + args.lambda_t_norm * torch.abs(viewpoint_cam.cam_trans_delta).mean()
loss = loss + tracking_loss
if tb_writer is not None:
tb_writer.add_scalar('loss/tracking_loss', tracking_loss, iteration)
return loss, Ll1
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 15_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
### some exp args
parser.add_argument("--sparse_view_num", type=int, default=-1,
help="Use sparse view or dense view, if sparse_view_num > 0, use sparse view, \
else use dense view. In sparse setting, sparse views will be used as training data, \
others will be used as testing data.")
parser.add_argument("--use_mask", default=True, help="Use masked image, by default True")
parser.add_argument('--use_dust3r', action='store_true', default=False,
help='use dust3r estimated poses')
parser.add_argument('--dust3r_json', type=str, default=None)
parser.add_argument("--init_pcd_name", default='origin', type=str,
help="the init pcd name. 'random' for random, 'origin' for pcd from the whole scene")
parser.add_argument("--transform_the_world", action="store_true", help="Transform the world to the origin")
parser.add_argument('--mono_depth_weight', type=float, default=0.0005, help="The rate of monodepth loss")
parser.add_argument('--lambda_t_norm', type=float, default=0.0005)
parser.add_argument('--mono_loss_type', type=str, default="mid")
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(args, lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations,
args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)
# All done
print("\nTraining complete.")