-
Notifications
You must be signed in to change notification settings - Fork 2
/
generate_dense_embeddings_allsents.py
191 lines (158 loc) · 5.93 KB
/
generate_dense_embeddings_allsents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Command line tool that produces embeddings for a large documents base based on the pretrained ctx & question encoders
Supposed to be used in a 'sharded' way to speed up the process.
"""
import logging
import math
import os
import pathlib
import pickle
from typing import List, Tuple
import hydra
import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf
from torch import nn
from dpr.data.biencoder_data import BiEncoderPassage, SentTokenSelector
from dpr.models import init_biencoder_components
from dpr.options import set_cfg_params_from_state, setup_cfg_gpu, setup_logger
from dpr.utils.data_utils import Tensorizer
from dpr.utils.model_utils import (
setup_for_distributed_mode,
get_model_obj,
load_states_from_checkpoint,
move_to_device,
)
logger = logging.getLogger()
setup_logger(logger)
def gen_ctx_vectors(
cfg: DictConfig,
ctx_rows: List[Tuple[object, BiEncoderPassage]],
model: nn.Module,
tensorizer: Tensorizer,
insert_title: bool = True,
) -> List[Tuple[object, np.array]]:
n = len(ctx_rows)
bsz = cfg.batch_size
total = 0
results = []
sent_selector = SentTokenSelector()
for j, batch_start in enumerate(range(0, n, bsz)):
batch = ctx_rows[batch_start : batch_start + bsz]
batch_token_tensors = [
tensorizer.text_to_tensor(
ctx[1].text, title=ctx[1].title if insert_title else None
)
for ctx in batch
]
batch_sent_positions = [
sent_selector.get_positions(input_tensor.unsqueeze(0), tensorizer)
for input_tensor in batch_token_tensors
]
batch_sent_positions = torch.cat([sent_p.view(1, -1) for sent_p in batch_sent_positions], dim=0)
# print("Showing the shape of b batch sent positions", batch_sent_positions)
batch_sent_positions.to(cfg.device)
ctx_ids_batch = move_to_device(
torch.stack(batch_token_tensors, dim=0), cfg.device
)
ctx_seg_batch = move_to_device(torch.zeros_like(ctx_ids_batch), cfg.device)
ctx_attn_mask = move_to_device(
tensorizer.get_attn_mask(ctx_ids_batch), cfg.device
)
with torch.no_grad():
choose_idxs, _, out, _ = model(ctx_ids_batch, ctx_seg_batch, ctx_attn_mask, batch_sent_positions=batch_sent_positions)
out = out.cpu()
choose_idxs = choose_idxs.cpu()
ctx_ids = [r[0] for r in batch]
extra_info = []
if len(batch[0]) > 3:
extra_info = [r[3:] for r in batch]
assert len(ctx_ids) == out.size(0)
total += len(ctx_ids)
if extra_info:
results.extend(
[
(ctx_ids[i]+"_"+str(j), out[i][j].view(-1).numpy(), *extra_info[i])
for i in range(out.size(0))
for j in range(out.size(1))
if choose_idxs[i][j] == 1
]
)
else:
extender = [
(ctx_ids[i]+"_"+str(j), out[i][j].view(-1).numpy())
for i in range(out.size(0))
for j in range(out.size(1))
if choose_idxs[i][j] == 1
]
# print(len(extender))
results.extend(
extender
)
if total % 10 == 0:
logger.info("Encoded passages %d", total)
return results
@hydra.main(config_path="conf", config_name="gen_embs")
def main(cfg: DictConfig):
assert cfg.model_file, "Please specify encoder checkpoint as model_file param"
assert cfg.ctx_src, "Please specify passages source as ctx_src param"
cfg = setup_cfg_gpu(cfg)
saved_state = load_states_from_checkpoint(cfg.model_file)
set_cfg_params_from_state(saved_state.encoder_params, cfg)
logger.info("CFG:")
logger.info("%s", OmegaConf.to_yaml(cfg))
tensorizer, encoder, _ = init_biencoder_components(
cfg.encoder.encoder_model_type, cfg, inference_only=True
)
encoder = encoder.ctx_model if cfg.encoder_type == "ctx" else encoder.question_model
encoder, _ = setup_for_distributed_mode(
encoder,
None,
cfg.device,
cfg.n_gpu,
cfg.local_rank,
cfg.fp16,
cfg.fp16_opt_level,
)
encoder.eval()
# load weights from the model file
model_to_load = get_model_obj(encoder)
logger.info("Loading saved model state ...")
logger.debug("saved model keys =%s", saved_state.model_dict.keys())
prefix_len = len("ctx_model.")
ctx_state = {
key[prefix_len:]: value
for (key, value) in saved_state.model_dict.items()
if key.startswith("ctx_model.")
}
model_to_load.load_state_dict(ctx_state)
logger.info("reading data source: %s", cfg.ctx_src)
ctx_src = hydra.utils.instantiate(cfg.ctx_sources[cfg.ctx_src])
all_passages_dict = {}
ctx_src.load_data_to(all_passages_dict)
all_passages = [(k, v) for k, v in all_passages_dict.items()]
shard_size = math.ceil(len(all_passages) / cfg.num_shards)
start_idx = cfg.shard_id * shard_size
end_idx = start_idx + shard_size
logger.info(
"Producing encodings for passages range: %d to %d (out of total %d)",
start_idx,
end_idx,
len(all_passages),
)
shard_passages = all_passages[start_idx:end_idx]
data = gen_ctx_vectors(cfg, shard_passages, encoder, tensorizer, True)
file = cfg.out_file + "_" + str(cfg.shard_id)
pathlib.Path(os.path.dirname(file)).mkdir(parents=True, exist_ok=True)
logger.info("Writing results to %s" % file)
with open(file, mode="wb") as f:
pickle.dump(data, f)
logger.info("Total passages processed %d. Written to %s", len(data), file)
if __name__ == "__main__":
main()