-
Notifications
You must be signed in to change notification settings - Fork 35
/
own_sampler.py
48 lines (43 loc) · 2.09 KB
/
own_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
from torch.utils.data.sampler import BatchSampler
import numpy as np
## revised done
class BalancedBatchSampler(BatchSampler):
"""
BatchSampler - from a MNIST-like dataset, samples n_classes and within these classes samples n_samples.
Returns batches of size n_classes * n_samples
"""
def __init__(self, dataset, n_classes, n_samples):
self.labels = np.zeros(len(dataset),).astype(int)
for i in range(len(dataset)):
self.labels[i] = dataset[i][1]
self.labels_set = list(set(self.labels))
self.label_to_indices = {label: np.where(self.labels == label)[0]
for label in self.labels_set}
for l in self.labels_set:
np.random.shuffle(self.label_to_indices[l])
self.used_label_indices_count = {label: 0 for label in self.labels_set}
self.count = 0
self.n_classes = n_classes
self.n_samples = n_samples
self.dataset = dataset
self.batch_size = self.n_samples * self.n_classes
def __iter__(self):
self.count = 0
while self.count + self.batch_size < len(self.dataset) * self.n_samples / 2:
classes = np.random.choice(self.labels_set, int(self.n_classes), replace=False)
indices = []
for class_ in classes:
indices.extend(self.label_to_indices[class_][
self.used_label_indices_count[class_]:self.used_label_indices_count[
class_] + self.n_samples])
self.used_label_indices_count[class_] += self.n_samples
if self.used_label_indices_count[class_] + self.n_samples > len(self.label_to_indices[class_]):
np.random.shuffle(self.label_to_indices[class_])
self.used_label_indices_count[class_] = 0
yield indices
self.count += self.n_classes * self.n_samples
def __len__(self):
return len(self.dataset) // self.batch_size