-
Notifications
You must be signed in to change notification settings - Fork 1
/
MultiProcessing.py
274 lines (222 loc) · 10.1 KB
/
MultiProcessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import cv2
import depthai as dai
import numpy as np
import blobconverter
import CoDrone
import queue
from threading import Thread
from multiprocessing import Process, Value, Queue, freeze_support
import time
height_threshold = 180 # height before drone.land()
depth_upper_threshold = 1000
depth_lower_threshold = 500
left_threshold = -250
right_threshold = 250
def drone_thread_function(q,data_flag):
# set up drone connection and take off before trying to land
print('Creating Drone Object')
drone = CoDrone.CoDrone()
print("Getting Ready to Pair")
drone.pair(drone.Nearest)
print("Paired")
data_flag.value = 1
drone.takeoff()
print("Taking Off")
print(drone.get_height())
while True:
if data_flag.value == 0 and not q.empty():
start_coords = q.get(0)
print('from drone',start_coords)
# x:left-right, y:height, z:depth in mm
xs,ys,zs = start_coords
xl,yl,zl = [0,0,0]
x = xs - xl
z = zs - zl
drone_land(drone,x,z)
data_flag.value = 1
# else:
# print('q is empty')
data_flag.value = 0
def camera_thread_function(q,data_flag):
# camera setup
syncNN = False
# Create pipeline
pipeline = dai.Pipeline()
labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
spatialDetectionNetwork = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
monoLeft = pipeline.create(dai.node.MonoCamera)
monoRight = pipeline.create(dai.node.MonoCamera)
stereo = pipeline.create(dai.node.StereoDepth)
xoutRgb = pipeline.create(dai.node.XLinkOut)
xoutNN = pipeline.create(dai.node.XLinkOut)
xoutBoundingBoxDepthMapping = pipeline.create(dai.node.XLinkOut)
xoutDepth = pipeline.create(dai.node.XLinkOut)
xoutRgb.setStreamName("rgb")
xoutNN.setStreamName("detections")
xoutBoundingBoxDepthMapping.setStreamName("boundingBoxDepthMapping")
xoutDepth.setStreamName("depth")
# Properties
camRgb.setPreviewSize(300, 300)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
# Setting node configs
stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
# set disparity
# Better handling for occlusions:
stereo.setLeftRightCheck(True) # True for removing disparity pixels miscalculation
# Closer-in minimum depth, disparity range is doubled:
stereo.setExtendedDisparity(False) # True to detect closer distanced objects
# Better accuracy for longer distance, fractional disparity 32-levels:
stereo.setSubpixel(True) # True for farther visual range
spatialDetectionNetwork.setBlobPath(blobconverter.from_zoo(name='mobilenet-ssd', shaves=6))
spatialDetectionNetwork.setConfidenceThreshold(0.5)
spatialDetectionNetwork.input.setBlocking(False)
spatialDetectionNetwork.setBoundingBoxScaleFactor(0.5)
spatialDetectionNetwork.setDepthLowerThreshold(100)
spatialDetectionNetwork.setDepthUpperThreshold(5000)
# Linking
monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)
camRgb.preview.link(spatialDetectionNetwork.input)
if syncNN:
spatialDetectionNetwork.passthrough.link(xoutRgb.input)
else:
camRgb.preview.link(xoutRgb.input)
spatialDetectionNetwork.out.link(xoutNN.input)
spatialDetectionNetwork.boundingBoxMapping.link(xoutBoundingBoxDepthMapping.input)
stereo.depth.link(spatialDetectionNetwork.inputDepth)
spatialDetectionNetwork.passthroughDepth.link(xoutDepth.input)
# Connect to device and start pipeline
with dai.Device(pipeline) as device:
# Output queues will be used to get the rgb frames and nn data from the outputs defined above
previewQueue = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
detectionNNQueue = device.getOutputQueue(name="detections", maxSize=4, blocking=False)
xoutBoundingBoxDepthMapping = device.getOutputQueue(name="boundingBoxDepthMapping", maxSize=4, blocking=False)
depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
counter = 0
fps = 0
while True:
# xs,ys,zs = 0,0,0
inPreview = previewQueue.get()
inDet = detectionNNQueue.get()
depth = depthQueue.get()
frame = inPreview.getCvFrame()
depthFrame = depth.getFrame()
depthFrameColor = cv2.normalize(depthFrame, None, 255, 0, cv2.NORM_INF, cv2.CV_8UC1)
depthFrameColor = cv2.equalizeHist(depthFrameColor)
depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT)
detections = inDet.detections
if len(detections) != 0:
boundingBoxMapping = xoutBoundingBoxDepthMapping.get()
roiDatas = boundingBoxMapping.getConfigData()
for roiData in roiDatas:
roi = roiData.roi
roi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
topLeft = roi.topLeft()
bottomRight = roi.bottomRight()
xmin = int(topLeft.x)
ymin = int(topLeft.y)
xmax = int(bottomRight.x)
ymax = int(bottomRight.y)
cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), 255, cv2.FONT_HERSHEY_SCRIPT_SIMPLEX)
# If the frame is available, draw bounding boxes on it and show the frame
height = frame.shape[0]
width = frame.shape[1]
for detection in detections:
# Denormalize bounding box
x1 = int(detection.xmin * width)
x2 = int(detection.xmax * width)
y1 = int(detection.ymin * height)
y2 = int(detection.ymax * height)
try:
label = labelMap[detection.label]
except:
label = detection.label
cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, "{:.2f}".format(detection.confidence * 100), (x1 + 10, y1 + 35),
cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, f"X: {int(detection.spatialCoordinates.x)} mm", (x1 + 10, y1 + 50),
cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, f"Y: {int(detection.spatialCoordinates.y)} mm", (x1 + 10, y1 + 65),
cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, f"Z: {int(detection.spatialCoordinates.z)} mm", (x1 + 10, y1 + 80),
cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), cv2.FONT_HERSHEY_SIMPLEX)
xs = int(detection.spatialCoordinates.x)
ys = int(detection.spatialCoordinates.y)
zs = int(detection.spatialCoordinates.z)
# str(label) == "person" and
if data_flag.value == 1:
q.put([xs,0,zs])
data_flag.value = 0
cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4,
(255, 255, 255))
cv2.imshow("preview", frame)
if cv2.waitKey(1) == ord('q'):
break
# simple straight landing function
def drone_move(drone, x,z):
#startTime = time.time()
pitch_power = 30 # 20 is the scale factor for pitch, assume while loop repeat 3 times
roll_power = 25 # moves left 20
if x < left_threshold:
drone.set_pitch(0)
print('move right')
drone.set_roll(-roll_power)
drone.move(1)
elif x > right_threshold:
drone.set_pitch(0)
print('move left')
drone.set_roll(roll_power)
drone.move(1)
else:
drone.set_roll(0)
drone.move(0)
if z > depth_upper_threshold:
drone.set_roll(0)
print('move forward')
drone.set_pitch(pitch_power)
drone.move(1)
elif z < depth_lower_threshold:
drone.set_roll(0)
print('move backward')
drone.set_pitch(-pitch_power)
drone.move(1)
else:
drone.set_pitch(0)
drone.move(0)
def drone_land(drone, x,z):
if depth_lower_threshold <= z <= depth_upper_threshold and left_threshold <= x <= right_threshold:
drone.go_to_height(height_threshold)
print('coords before landing', x, z)
# drone.set_pitch(5)
# drone.move(1)
print('landing')
drone.land()
print("landing")
drone.close()
print('drone closed')
drone.disconnect()
print('drone disconnected')
else:
drone_move(drone,x,z)
# executionTime = (time.time() - startTime)
# print('Execution time in seconds: ' + str(executionTime))
if __name__ == '__main__':
freeze_support()
data_flag = Value('i',0)
locationQ = Queue()
camera = Process(target=camera_thread_function, args=(locationQ,data_flag))
camera.start()
drone1 = Process(target=drone_thread_function, args=(locationQ,data_flag))
drone1.start()
camera.join()
drone1.join()