-
Notifications
You must be signed in to change notification settings - Fork 0
/
ANALYSE_waterfallplot.r
75 lines (63 loc) · 2.69 KB
/
ANALYSE_waterfallplot.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#' Makes a waterfall plot
#'
#' Makes a waterfall plot using ggplot2. The bars will be plotted in
#' the order specified by the factoring of the 'category' column.
#' Values should represent the positive or negative changes relative
#' to the previous bar.
#'
#' @param df a dataframe with columns 'category' (an ordered factor),
#' 'value' (numeric), and 'sector' (character)
#' @param offset the spacing between the columns, default = 0.3
#'
#' @examples
#' raw <- data.frame(category=c("A", "B", "C", "D"),
#' value=c(100, -20, 10, 90),
#' sector=1)
#'
#' df1 <- transform(raw, category=factor(category))
#' waterfall(df1) + theme_bw() + labs(x="", y="Value")
#'
#' df2 <- transform(raw, category=factor(category, levels=c("A", "C", "B", "D")))
#' waterfall(df2) + theme_bw() + labs(x="", y="Value")
#'
#' @return a ggplot2 object
waterfall <- function(df, offset=0.3) {
library(ggplot2)
library(scales)
library(dplyr)
## Add the order column to the raw data frame and order appropriately
df <- df %>% mutate(order=as.numeric(category)) %>% arrange(order)
## The last value needs to be negated so that it goes down to
## zero. Throws a warning if the cumulative sum doesn't match.
last.id <- nrow(df)
df$value[last.id] <- -df$value[last.id]
## Calculate the cumulative sums
df <- df %>% mutate(cs1=round(cumsum(value),2))
## Throw a warning if the values don't match zero as expected
final_value <- tail(df$cs1, 1)
if (final_value!=0) {
warning(sprintf("Final value doesn't return to 0. %.2d instead.", final_value))
}
## Calculate the max and mins for each category and sector
df <- transform(df, min.val=c(0, head(cs1, -1)),
max.val=c(head(cs1, -1), 0))
df <- df %>% group_by(order, category, sector, value, cs1) %>%
dplyr::summarize(min=min(min.val, max.val), max=max(min.val, max.val))
## Create the lines data frame to link the bars
lines <- df %>% group_by(order) %>% summarize(cs=max(cs1))
lines <- with(lines, data.frame(x=head(order, -1),
xend=tail(order, -1),
y=head(cs, -1),
yend=head(cs, -1)))
## Add the offset parameter
df <- transform(df, offset=offset)
## Make the plot
gg <- ggplot() +
geom_segment(data=lines, aes(x=x, y=y, xend=xend, yend=yend), linetype="dashed") +
geom_rect(data=df, aes(xmin=order - offset,
xmax=order + offset,
ymin=min,
ymax=max, fill=sector)) +
scale_x_continuous(breaks=unique(df$order), labels=unique(df$category))
return(gg)
}