-
Notifications
You must be signed in to change notification settings - Fork 3
/
eltfos.tex
298 lines (267 loc) · 8.99 KB
/
eltfos.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
\documentclass{beamer}
\usetheme{Goettingen}
\usecolortheme{wolverine}
%\usefonttheme{serif}
\usepackage{geometry}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bussproofs}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsthm}
\usepackage{mathtools}
%\usepackage{authblk}
\usepackage{pict2e}
\usepackage[mathscr]{euscript}
\usepackage{tikz-cd}
\tikzstyle{none}=[inner sep=0pt]
\tikzstyle{circ}=[circle,fill=black,draw,inner sep=3pt]
\usepackage{fancybox}
\usepackage[all,2cell]{xy} \UseAllTwocells
\usetikzlibrary{arrows, positioning, intersections}
\input{coya-tikz.tex}
\tikzset{%
symbol/.style={%
draw=none,
every to/.append style={%
edge node={node [sloped, allow upside down, auto=false]{$#1$}}}
}
}
% hyperlinks
% \usepackage{color}
% \definecolor{myurlcolor}{rgb}{0.5,0,0}
% \definecolor{mycitecolor}{rgb}{0,0,1}
% \definecolor{myrefcolor}{rgb}{0,0,1}
% \usepackage[pagebackref]{hyperref}
% \hypersetup{colorlinks,
% linkcolor=myrefcolor,
% citecolor=mycitecolor,
% urlcolor=myurlcolor}
% \newcommand{\define}[1]{{\bf \boldmath{#1}}}
% \renewcommand*{\backref}[1]{(Referred to on page #1.)}
% theorems
% \theoremstyle{definition}
% \newtheorem{theorem}{Theorem}
% \newtheorem{definition}[theorem]{Definition}
% \newtheorem{lemma}[theorem]{Lemma}
% \newtheorem{example}[theorem]{Example}
% \newtheorem{corollary}{Corollary}[theorem]
\def\rd{\rotatebox[origin=c]{90}{$\dashv$}} %rotate dash right
\def\ld{\rotatebox[origin=c]{-90}{$\dashv$}} %rotate dash left
% categories
\newcommand{\Th}{\mathsf{Th}}
\newcommand{\Gph}{\mathsf{Gph}}
\newcommand{\Set}{\mathsf{Set}}
\newcommand{\Grp}{\mathsf{Grp}}
\newcommand{\Cat}{\mathsf{Cat}}
\newcommand{\Law}{\mathsf{Law}}
\newcommand{\Mnd}{\mathrm{Mnd}}
\newcommand{\Top}{\mathsf{Top}}
\newcommand{\Mon}{\mathsf{Mon}}
\newcommand{\Alg}{\mathsf{Alg}}
\newcommand{\CCC}{\mathsf{CCC}}
\newcommand{\Pos}{\mathsf{Pos}}
\newcommand{\Mod}{\mathsf{Mod}}
\newcommand{\FinSet}{\mathsf{FinSet}}
\newcommand{\NN}{\mathsf{N}}
\newcommand{\A}{\mathsf{A}}
\newcommand{\V}{\mathsf{V}}
\newcommand{\W}{\mathsf{W}}
\newcommand{\D}{\mathsf{D}}
\newcommand{\C}{\mathsf{C}}
\newcommand{\R}{\mathsf{R}}
\newcommand{\X}{\mathsf{X}}
\newcommand{\K}{\mathsf{K}}
\newcommand{\J}{\mathsf{J}}
\newcommand{\T}{\mathsf{T}}
\newcommand{\Kl}{\mathsf{Kl}}
\newcommand{\LTS}{\mathsf{LTS}}
\newcommand{\FC}{\mathrm{FC}}
\newcommand{\FP}{\mathrm{FP}}
\newcommand{\FS}{\mathrm{FS}}
\newcommand{\UC}{\mathrm{UC}}
\newcommand{\UP}{\mathrm{UP}}
\newcommand{\UG}{\mathrm{UG}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Obj}{\mathrm{Ob}}
\newcommand{\pic}{$\pi$-calculus}
\newcommand{\pfk}{\pitchfork}
\newcommand{\maps}{\colon}
\newcommand{\id}{\mathrm{id}}
\newcommand{\ul}[1]{\underline{#1}}
\title{Enriched Lawvere Theories\\ for Operational Semantics}
\author{John C. Baez: [email protected]\\ Christian Williams: williams@same}
\institute{University of California, Riverside}
\date{SYCO 4, May 22 2019}
\begin{document}
\frame{\titlepage}
\begin{frame}{Introduction}
How do we integrate syntax and semantics?
\[\begin{array}{ll}
\text{type} & \text{object}\\
\text{term} & \text{morphism}\\
\text{rewrite} & \text{2-morphism}\\
\end{array}\]
\[\begin{tikzcd}[ampersand replacement=\&]
(\lambda x.x+x \; \; 2) \ar{r}{\beta} \& 2+2 \ar{r}{+} \& 4
\end{tikzcd}\]
\end{frame}
\begin{frame}{Change of semantics}
\[\begin{tikzcd}[column sep=small, ampersand replacement=\&]
\Gph \arrow[bend left,below]{rr}{\FC}
\& \ld \&
\arrow[bend left,above]{ll}{\UG} \Cat \arrow[bend left,below]{rr}{\FP}
\& \ld \&
\arrow[bend left,above]{ll}{\UC} \Pos \arrow[bend left,below]{rr}{\FS}
\& \ld \&
\Set \arrow[bend left,above]{ll}{\UP}
\end{tikzcd}\]
\[\begin{array}{ll}
\FC_* & \text{maps small-step to big-step operational semantics.}\\
\FP_* & \text{maps big-step to full-step operational semantics.}\\
\FS_* & \text{maps full-step to denotational semantics.}\\
\end{array}\]
\end{frame}
\section{theories}
\subsection{Lawvere theories}
\begin{frame}{Lawvere theories}
A \textbf{Lawvere theory} is a category $\T$ whose objects are finite powers of a distinguished object $t = \tau(1)$.
$$\tau\maps \mathbb{N}^{\op}\to \T$$
Morphisms $t^n\to t$ are $n$-ary operations, and commuting diagrams are equations.\\~\\
Classical algebra is represented and internalized in any category with finite products.
\end{frame}
\begin{frame}{Models}
Let $\C$ be a category with finite products.\\~\\
A \textbf{model} of a Lawvere theory $\T$ in $\C$ is a product-preserving functor $\mu\maps \T\to \C$. A morphism of models is a natural transformation. \\~\\
These form a category $\Mod(\T,\C)$. For example, $\Mod(\Th(\Grp),\Top)$ is the category of topological groups.
\end{frame}
\subsection{theories and monads}
\begin{frame}{Monadicity}
Another way to describe algebraic structure is by \textit{monads}. Theories induce ``free-forgetful'' adjunctions:
\[\begin{tikzcd}[column sep=small, ampersand replacement=\&]
\Set \arrow[bend left,below]{rr}{F}
\& {\phantom{AA} \ld} \&
\arrow[bend left,above]{ll}{U} \Mod(\T,\Set).
\end{tikzcd}\]
\[\begin{array}{lll}
U :: \mu\mapsto \mu(1) && F :: n\mapsto \T(n,-)\\
&& \text{extends to $\Set$ by colimit.}
\end{array}\]\\
This induces a monad $T$ on $\Set$, and we have that:
$$T\text{-Alg} \simeq \Mod(\T,\Set).$$
\end{frame}
\section{enrichment}
\subsection{enriched categories}
\begin{frame}{Enriched categories}
Let $\V$ be a monoidal category. A \textbf{$\V$-enriched category} is:
\[\begin{array}{ll}
\text{object set} & \Obj(\C)\\
\text{hom function} & \C(-,-)\maps \Obj(\C) \times \Obj(\C) \to \Obj(\V)\\
\text{composition} & \circ_{a,b,c}\maps\C(b,c) \times \C(a,b) \to \C(a,c)\\
\text{identity} & i_a\maps 1_\V \to\C(a,a)\\
\end{array}\]
with composition associative and unital.\\
A \textbf{$\V$-functor} $F\maps \C\to \D$ is:
\[\begin{array}{ll}
\text{object function} & F\maps \Obj(\C) \to \Obj(\D)\\
\text{hom morphisms} & F_{ab}\maps \C(a,b) \to \D(F(a),F(b))\\
\end{array}\]
preserving composition and identity.\\
A \textbf{$\V$-natural transformation} $\alpha\maps F \Rightarrow G$ is:
\[\begin{array}{ll}
\text{components} & \alpha_a \maps 1_\V \to \D(F(a),G(a))\\
\end{array}\]
which is ``natural'' in $a$. These form the 2-category \textbf{$\V\Cat$}.
\end{frame}
\subsection{enriched limits}
\begin{frame}{Enriched limits}
a
\end{frame}
\begin{frame}{Preservation}
a
\end{frame}
\section{enriched theories}
\subsection{enriched Lawvere theories}
\begin{frame}{Enriched Lawvere theories}
a
\end{frame}
\begin{frame}{Generalized arities}
a
\end{frame}
\subsection{enriched monadicity}
\begin{frame}{Enriched monadicity}
a
\end{frame}
\subsection{examples}
\begin{frame}{Example: pseudomonoid}
\[ \Th(\mathrm{PsMon}) \]
\[\begin{array}{lll}
\textbf{type}\\ M & \text{pseudomonoid}\\ \\
\textbf{operations}\\ m\maps M^2 \to M & \text{multiplication}\\
e\maps1 \to M & \text{identity}\\ \\
\textbf{rewrites}\\ \alpha \colon m(m \times \id_M) \cong m (\id_M \times m) & \text{associator}\\
\lambda\maps m(e \times \id_M) \cong \id_M & \text{left unitor}\\
\rho\maps m(\id_M \times e) \cong \id_M & \text{right unitor}\\ \\
\textbf{equations} & \text{pentagon, triangle}
\end{array}\]
\end{frame}
\begin{frame}{Example: cartesian object}
\[ \Th(\mathsf{Cart}) \]
\[\begin{array}{lllllll}
\textbf{type}\\ \X & \text{cartesian object}\\ \\
\textbf{operations}\\ m \maps \X^2 \to \X & \text{product} \\
e \maps 1 \to \X & \text{terminal element} \\ \\
\textbf{rewrites}\\
\bigtriangleup\maps \mathrm{id}_\X \Longrightarrow m \circ\, \Delta_\X & \text{unit of $m \vdash \Delta_\X$}\\
\pi\maps \Delta_\X \circ m \Longrightarrow \mathrm{id}_{\X^2} & \text{counit of $m \vdash \Delta_\X$}\\
\top\maps \mathrm{id}_\X \Longrightarrow e \,\circ\, !_\X & \text{unit of $e \vdash !_\X$} \\
\epsilon \maps !_\X \, \circ \, e \Longrightarrow \mathrm{id}_{1} & \text{counit of $e \vdash !_\X$} \\\\
\textbf{equations} & \text{triangle identities}
\end{array}\]
\end{frame}
\section{natural number arities}
\subsection{arity subcategory}
\begin{frame}{Natural numbers in $\mathsf{V}$}
a
\end{frame}
\subsection{equivalences}
\begin{frame}{Equivalences}
a
\end{frame}
\section{change of semantics}
\subsection{change of base}
\begin{frame}{Change of base}
a
\end{frame}
\subsection{preserving theories}
\begin{frame}{Preservation of theories}
a
\end{frame}
% \section{grothendieck?}
% \subsection{category of all theories}
% \begin{frame}
% \end{frame}
\section{applications}
\subsection{combinators}
\begin{frame}{The $\mathsf{SKI}$-combinator calculus}
a
\end{frame}
%\subsection{theory}
\begin{frame}{The theory of $\mathsf{SKI}$}
a
\end{frame}
\subsection{change of base}
\begin{frame}{Change of semantics}
a
\end{frame}
% \subsection{change of theory}
% \begin{frame}{Change of theory}
% a
% \end{frame}
% \subsection{bisimulation}
\begin{frame}{Bisimulation}
a
\end{frame}
\begin{frame}{Conclusion}
\end{frame}
\end{document}