forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Image2Image.py
executable file
·224 lines (192 loc) · 8.06 KB
/
Image2Image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: Image2Image.py
# Author: Yuxin Wu <[email protected]>
import numpy as np
import tensorflow as tf
import glob
import pickle
import os
import sys
import argparse
import cv2
from tensorpack import *
from tensorpack.utils.viz import *
from tensorpack.tfutils.summary import add_moving_summary
import tensorpack.tfutils.symbolic_functions as symbf
from GAN import GANTrainer, GANModelDesc
"""
To train Image-to-Image translation model with image pairs:
./Image2Image.py --data /path/to/datadir --mode {AtoB,BtoA}
# datadir should contain jpg images of shpae 2s x s, formed by A and B
# you can download some data from the original authors:
# https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/
Speed:
On GTX1080 with BATCH=1, the speed is about 9.3it/s (the original torch version is 9.5it/s)
Training visualization will appear be in tensorboard.
To visualize on test set:
./Image2Image.py --sample --data /path/to/test/datadir --mode {AtoB,BtoA} --load model
"""
SHAPE = 256
BATCH = 1
IN_CH = 3
OUT_CH = 3
LAMBDA = 100
NF = 64 # number of filter
class Model(GANModelDesc):
def _get_inputs(self):
return [InputDesc(tf.float32, (None, SHAPE, SHAPE, IN_CH), 'input'),
InputDesc(tf.float32, (None, SHAPE, SHAPE, OUT_CH), 'output')]
def generator(self, imgs):
# imgs: input: 256x256xch
# U-Net structure, it's slightly different from the original on the location of relu/lrelu
with argscope(BatchNorm, use_local_stat=True), \
argscope(Dropout, is_training=True):
# always use local stat for BN, and apply dropout even in testing
with argscope(Conv2D, kernel_shape=4, stride=2,
nl=lambda x, name: LeakyReLU(BatchNorm('bn', x), name=name)):
e1 = Conv2D('conv1', imgs, NF, nl=LeakyReLU)
e2 = Conv2D('conv2', e1, NF * 2)
e3 = Conv2D('conv3', e2, NF * 4)
e4 = Conv2D('conv4', e3, NF * 8)
e5 = Conv2D('conv5', e4, NF * 8)
e6 = Conv2D('conv6', e5, NF * 8)
e7 = Conv2D('conv7', e6, NF * 8)
e8 = Conv2D('conv8', e7, NF * 8, nl=BNReLU) # 1x1
with argscope(Deconv2D, nl=BNReLU, kernel_shape=4, stride=2):
return (LinearWrap(e8)
.Deconv2D('deconv1', NF * 8)
.Dropout()
.ConcatWith(e7, 3)
.Deconv2D('deconv2', NF * 8)
.Dropout()
.ConcatWith(e6, 3)
.Deconv2D('deconv3', NF * 8)
.Dropout()
.ConcatWith(e5, 3)
.Deconv2D('deconv4', NF * 8)
.ConcatWith(e4, 3)
.Deconv2D('deconv5', NF * 4)
.ConcatWith(e3, 3)
.Deconv2D('deconv6', NF * 2)
.ConcatWith(e2, 3)
.Deconv2D('deconv7', NF * 1)
.ConcatWith(e1, 3)
.Deconv2D('deconv8', OUT_CH, nl=tf.tanh)())
def discriminator(self, inputs, outputs):
""" return a (b, 1) logits"""
l = tf.concat([inputs, outputs], 3)
with argscope(Conv2D, nl=tf.identity, kernel_shape=4, stride=2):
l = (LinearWrap(l)
.Conv2D('conv0', NF, nl=LeakyReLU)
.Conv2D('conv1', NF * 2)
.BatchNorm('bn1').LeakyReLU()
.Conv2D('conv2', NF * 4)
.BatchNorm('bn2').LeakyReLU()
.Conv2D('conv3', NF * 8, stride=1, padding='VALID')
.BatchNorm('bn3').LeakyReLU()
.Conv2D('convlast', 1, stride=1, padding='VALID')())
return l
def _build_graph(self, inputs):
input, output = inputs
input, output = input / 128.0 - 1, output / 128.0 - 1
with argscope([Conv2D, Deconv2D],
W_init=tf.truncated_normal_initializer(stddev=0.02)), \
argscope(LeakyReLU, alpha=0.2):
with tf.variable_scope('gen'):
fake_output = self.generator(input)
with tf.variable_scope('discrim'):
real_pred = self.discriminator(input, output)
with tf.variable_scope('discrim', reuse=True):
fake_pred = self.discriminator(input, fake_output)
self.build_losses(real_pred, fake_pred)
errL1 = tf.reduce_mean(tf.abs(fake_output - output), name='L1_loss')
self.g_loss = tf.add(self.g_loss, LAMBDA * errL1, name='total_g_loss')
add_moving_summary(errL1, self.g_loss)
# tensorboard visualization
if IN_CH == 1:
input = tf.image.grayscale_to_rgb(input)
if OUT_CH == 1:
output = tf.image.grayscale_to_rgb(output)
fake_output = tf.image.grayscale_to_rgb(fake_output)
viz = (tf.concat([input, output, fake_output], 2) + 1.0) * 128.0
viz = tf.cast(tf.clip_by_value(viz, 0, 255), tf.uint8, name='viz')
tf.summary.image('input,output,fake', viz, max_outputs=max(30, BATCH))
self.collect_variables()
def _get_optimizer(self):
lr = symbolic_functions.get_scalar_var('learning_rate', 2e-4, summary=True)
return tf.train.AdamOptimizer(lr, beta1=0.5, epsilon=1e-3)
def split_input(img):
"""
img: an RGB image of shape (s, 2s, 3).
:return: [input, output]
"""
# split the image into left + right pairs
s = img.shape[0]
assert img.shape[1] == 2 * s
input, output = img[:, :s, :], img[:, s:, :]
if args.mode == 'BtoA':
input, output = output, input
if IN_CH == 1:
input = cv2.cvtColor(input, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis]
if OUT_CH == 1:
output = cv2.cvtColor(output, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis]
return [input, output]
def get_data():
datadir = args.data
imgs = glob.glob(os.path.join(datadir, '*.jpg'))
ds = ImageFromFile(imgs, channel=3, shuffle=True)
ds = MapData(ds, lambda dp: split_input(dp[0]))
assert SHAPE < 286 # this is the parameter used in the paper
augs = [imgaug.Resize(286), imgaug.RandomCrop(SHAPE)]
ds = AugmentImageComponents(ds, augs, (0, 1))
ds = BatchData(ds, BATCH)
ds = PrefetchData(ds, 100, 1)
return ds
def get_config():
logger.auto_set_dir()
dataset = get_data()
return TrainConfig(
dataflow=dataset,
callbacks=[
PeriodicTrigger(ModelSaver(), every_k_epochs=3),
ScheduledHyperParamSetter('learning_rate', [(200, 1e-4)])
],
model=Model(),
steps_per_epoch=dataset.size(),
max_epoch=300,
)
def sample(datadir, model_path):
pred = PredictConfig(
session_init=get_model_loader(model_path),
model=Model(),
input_names=['input', 'output'],
output_names=['viz'])
imgs = glob.glob(os.path.join(datadir, '*.jpg'))
ds = ImageFromFile(imgs, channel=3, shuffle=True)
ds = BatchData(MapData(ds, lambda dp: split_input(dp[0])), 6)
pred = SimpleDatasetPredictor(pred, ds)
for o in pred.get_result():
o = o[0][:, :, :, ::-1]
stack_patches(o, nr_row=3, nr_col=2, viz=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--sample', action='store_true', help='run sampling')
parser.add_argument('--data', help='Image directory')
parser.add_argument('--mode', choices=['AtoB', 'BtoA'], default='AtoB')
parser.add_argument('-b', '--batch', type=int, default=1)
global args
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
assert args.data
BATCH = args.batch
if args.sample:
sample(args.data, args.load)
else:
config = get_config()
if args.load:
config.session_init = SaverRestore(args.load)
GANTrainer(config).train()