forked from Jaraxxus-Me/LogiCity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
371 lines (352 loc) · 17.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os
import copy
import time
import yaml
import torch
import argparse
import importlib
import numpy as np
import pickle as pkl
from tqdm import trange
from logicity.core.config import *
from logicity.utils.load import CityLoader
from logicity.utils.logger import setup_logger
from logicity.utils.vis import visualize_city
# RL
from logicity.rl_agent.alg import *
from logicity.utils.gym_wrapper import GymCityWrapper
from stable_baselines3.common.vec_env import SubprocVecEnv
from logicity.utils.gym_callback import EvalCheckpointCallback, DreamerEvalCheckpointCallback
def parse_arguments():
parser = argparse.ArgumentParser(description='Logic-based city simulation.')
# logger
parser.add_argument('--log_dir', type=str, default="./log_rl")
parser.add_argument('--exp', type=str, default="maxsynth_debug")
parser.add_argument('--vis', action='store_true', help='Visualize the city.')
# seed
parser.add_argument('--seed', type=int, default=2)
parser.add_argument('--max-steps', type=int, default=300)
# RL
parser.add_argument('--collect_only', action='store_true', help='Only collect expert data.')
parser.add_argument('--use_gym', action='store_true', help='In gym mode, we can use RL alg. to control certain agents.')
parser.add_argument('--save_steps', action='store_true', help='Save step-wise decision for each trajectory.')
parser.add_argument('--config', default='config/tasks/Nav/medium/algo/maxsynthtest.yaml', help='Configure file for this RL exp.')
parser.add_argument('--checkpoint_path', default=None, help='Path to the trained model.')
return parser.parse_args()
def load_config(config_path):
with open(config_path, 'r') as file:
return yaml.safe_load(file)
def dynamic_import(module_name, class_name):
module = importlib.import_module(module_name)
return getattr(module, class_name)
def make_env(simulation_config, episode_cache=None, return_cache=False):
# Unpack arguments from simulation_config and pass them to CityLoader
city, cached_observation = CityLoader.from_yaml(**simulation_config, episode_cache=episode_cache)
env = GymCityWrapper(city)
if return_cache:
return env, cached_observation
else:
return env
def make_envs(simulation_config, rank):
"""
Utility function for multiprocessed env.
:param simulation_config: The configuration for the simulation.
:param rank: Unique index for each environment to ensure different seeds.
:return: A function that creates a single environment.
"""
def _init():
env = make_env(simulation_config)
env.seed(rank + 1000) # Optional: set a unique seed for each environment
return env
return _init
def main_collect(args, logger):
torch.manual_seed(args.seed)
np.random.seed(args.seed)
config = load_config(args.config)
simulation_config = config["simulation"]
logger.info("Simulation config: {}".format(simulation_config))
collection_config = config['collecting_config']
logger.info("RL config: {}".format(collection_config))
# Check if expert data collection is requested
logger.info("Collecting expert demonstration data...")
# Create an environment instance for collecting expert demonstrations
expert_data_env, cached_observation = make_env(simulation_config, None, True) # Use your existing environment setup function
assert expert_data_env.use_expert # Ensure the environment uses expert actions
# Initialize the ExpertCollector with the environment and total timesteps
collector = ExpertCollector(expert_data_env, **collection_config)
_, full_world = collector.collect_data(cached_observation)
# Save the collected expert demonstrations
collector.save_data(f"{args.log_dir}/{args.exp}_expert_demonstrations.pkl")
logger.info(f"Collected and saved expert demonstration data to {args.log_dir}/{args.exp}_expert_demonstrations.pkl")
# Save the full world if needed
if collection_config["return_full_world"]:
for ts in range(len(full_world)):
with open(os.path.join(args.log_dir, "{}_{}.pkl".format(args.exp, ts)), "wb") as f:
pkl.dump(full_world[ts], f)
def main(args, logger):
config = load_config(args.config)
# simulation config
simulation_config = config["simulation"]
logger.info("Simulation config: {}".format(simulation_config))
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# Create a city instance with a predefined grid
city, cached_observation = CityLoader.from_yaml(**simulation_config)
visualize_city(city, 4*WORLD_SIZE, -1, "vis/init.png")
# Main simulation loop
steps = 0
while steps < args.max_steps:
logger.info("Simulating Step_{}...".format(steps))
s = time.time()
time_obs = city.update()
e = time.time()
logger.info("Time spent: {}".format(e-s))
# Visualize the current state of the city (optional)
if args.vis:
visualize_city(city, 4*WORLD_SIZE, -1, "vis/step_{}.png".format(steps))
steps += 1
cached_observation["Time_Obs"][steps] = time_obs
# Save the cached observation for better rendering
with open(os.path.join(args.log_dir, "{}.pkl".format(args.exp)), "wb") as f:
pkl.dump(cached_observation, f)
def main_gym(args, logger):
torch.manual_seed(args.seed)
np.random.seed(args.seed)
config = load_config(args.config)
# simulation config
simulation_config = config["simulation"]
logger.info("Simulation config: {}".format(simulation_config))
# RL config
rl_config = config['stable_baselines']
logger.info("RL config: {}".format(rl_config))
# Dynamic import of the features extractor class
if "features_extractor_module" in rl_config["policy_kwargs"]:
features_extractor_class = dynamic_import(
rl_config["policy_kwargs"]["features_extractor_module"],
rl_config["policy_kwargs"]["features_extractor_class"]
)
# Prepare policy_kwargs with the dynamically imported class
policy_kwargs = {
"features_extractor_class": features_extractor_class,
"features_extractor_kwargs": rl_config["policy_kwargs"]["features_extractor_kwargs"]
}
else:
policy_kwargs = rl_config["policy_kwargs"]
# Dynamic import of the RL algorithm
algorithm_class = dynamic_import(
"logicity.rl_agent.alg", # Adjust the module path as needed
rl_config["algorithm"]
)
# Load the entire eval_checkpoint configuration as a dictionary
eval_checkpoint_config = config.get('eval_checkpoint', {})
# Hyperparameters
hyperparameters = rl_config["hyperparameters"]
train = rl_config["train"]
# model training
if train:
num_envs = rl_config["num_envs"]
total_timesteps = rl_config["total_timesteps"]
if num_envs > 1:
logger.info("Running in RL mode with {} parallel environments.".format(num_envs))
train_env = SubprocVecEnv([make_envs(simulation_config, i) for i in range(num_envs)])
else:
train_env = make_env(simulation_config)
train_env.reset()
if os.path.isfile(rl_config["checkpoint_path"]):
logger.info("Resume training")
logger.info("Loading the model from checkpoint: {}".format(rl_config["checkpoint_path"]))
policy_kwargs_use = copy.deepcopy(policy_kwargs)
model = algorithm_class.load(rl_config["checkpoint_path"], \
train_env, **hyperparameters, policy_kwargs=policy_kwargs_use)
else:
model = algorithm_class(rl_config["policy_network"], \
train_env, \
**hyperparameters, \
policy_kwargs=policy_kwargs)
# RL training mode
# Create the custom checkpoint and evaluation callback
if "Dreamer" == rl_config["algorithm"]:
eval_checkpoint_callback = DreamerEvalCheckpointCallback(exp_name=args.exp, **eval_checkpoint_config)
else:
eval_checkpoint_callback = EvalCheckpointCallback(exp_name=args.exp, **eval_checkpoint_config)
# Train the model
model.learn(total_timesteps=total_timesteps, callback=eval_checkpoint_callback\
, tb_log_name=args.exp)
# Save the model
model.save(eval_checkpoint_config["name_prefix"])
return
# model evaluation
else:
assert os.path.isfile(rl_config["episode_data"])
logger.info("Testing the trained model on episode data {}".format(rl_config["episode_data"]))
assert "eval_actions" in rl_config
logger.info("Evaluating the model with actions/id: {}".format(rl_config["eval_actions"]))
# RL testing mode
with open(rl_config["episode_data"], "rb") as f:
episode_data = pkl.load(f)
logger.info("Loaded episode data with {} episodes.".format(len(episode_data.keys())))
# Checkpoint evaluation
rew_list = []
success = []
decision_step = {}
succ_decision = {}
for action, id in rl_config["eval_actions"].items():
decision_step[id] = 0
succ_decision[id] = 0
vis_id = [] if "vis_id" not in rl_config else rl_config["vis_id"]
# over write the checkpoint path if not none
if args.checkpoint_path is not None:
rl_config["checkpoint_path"] = args.checkpoint_path
logger.info("Overwrite the checkpoint path to {}".format(args.checkpoint_path))
for ts in list(episode_data.keys()):
# if (ts not in vis_id) and len(vis_id) > 0:
# continue
logger.info("Evaluating episode {}...".format(ts))
episode_cache = episode_data[ts]
max_steps = 10000
if "label_info" in episode_cache:
logger.info("Episode label: {}".format(episode_cache["label_info"]))
if not args.save_steps:
assert "oracle_step" in episode_cache["label_info"], "Need oracle step for evaluation."
max_steps = episode_cache["label_info"]["oracle_step"] * 2
eval_env, cached_observation = make_env(simulation_config, episode_cache, True)
if rl_config["algorithm"] == "ExpertCollector" or rl_config["algorithm"] == "Random":
# expert and random agent do not need a policy network
model = algorithm_class(eval_env)
elif rl_config["algorithm"] == "MaxSynth":
model = algorithm_class(eval_env, **policy_kwargs)
elif rl_config["algorithm"] in ["HRI", "NLM"]:
# HRI and NLM are trained w/ ext code, just load the network
model = algorithm_class(rl_config["policy_network"], \
eval_env, \
**hyperparameters, \
policy_kwargs=policy_kwargs)
model.load(rl_config["checkpoint_path"])
else:
# SB3-based agents
policy_kwargs_use = copy.deepcopy(policy_kwargs)
if rl_config["algorithm"] == 'A2C':
model = algorithm_class.load(rl_config["checkpoint_path"], \
eval_env, **hyperparameters)
else:
model = algorithm_class.load(rl_config["checkpoint_path"], \
eval_env, **hyperparameters, policy_kwargs=policy_kwargs_use)
logger.info("Loaded model from {}".format(rl_config["checkpoint_path"]))
o = eval_env.init()
rew = 0
step = 0
local_decision_step = {}
local_succ_decision = {}
for acc, id in rl_config["eval_actions"].items():
local_decision_step[id] = 0
local_succ_decision[id] = 1
d = False
if rl_config["algorithm"] == 'Dreamer':
prev_rssmstate = model.policy.RSSM._init_rssm_state(1)
prev_action = torch.zeros(1, model.action_size).to(model.device)
while (not d) and (step < max_steps):
step += 1
oracle_action = eval_env.expert_action
with torch.no_grad():
embed = model.policy.ObsEncoder(torch.tensor(o, dtype=torch.float32).unsqueeze(0).to(model.device))
_, posterior_rssm_state = model.policy.RSSM.rssm_observe(embed, prev_action, not d, prev_rssmstate)
model_state = model.policy.RSSM.get_model_state(posterior_rssm_state)
action, _ = model.policy.ActionModel(model_state)
prev_rssmstate = posterior_rssm_state
prev_action = action
env_action = torch.argmax(action, dim=-1).cpu().numpy()
if oracle_action in local_decision_step.keys():
local_decision_step[oracle_action] = 1
if int(env_action) != oracle_action:
local_succ_decision[oracle_action] = 0
o, r, d, i = eval_env.step(int(env_action))
if i["Fail"][0]:
rew += r
break
rew += r
else:
while (not d) and (step < max_steps):
step += 1
oracle_action = eval_env.expert_action
action, _ = model.predict(o, deterministic=True)
# save step_wise decision succ per trajectory
if oracle_action in local_decision_step.keys():
local_decision_step[oracle_action] = 1
if int(action) != oracle_action:
local_succ_decision[oracle_action] = 0
o, r, d, i = eval_env.step(int(action))
if (ts in vis_id) or (-1 in vis_id):
cached_observation["Time_Obs"][step] = i
if i["Fail"][0]:
rew += r
break
rew += r
if i["is_success"]:
success.append(1)
else:
success.append(0)
for acc, id in rl_config["eval_actions"].items():
if local_decision_step[id] == 0:
local_succ_decision[id] = 0
decision_step[id] += local_decision_step[id]
succ_decision[id] += local_succ_decision[id]
if step >= max_steps:
rew -= 3
rew_list.append(rew)
if args.save_steps:
episode_cache["label_info"]['oracle_step'] = step
logger.info("Episode {} took {} steps.".format(ts, step))
logger.info("Episode {} achieved a score of {}".format(ts, rew))
logger.info("Episode {} Success: {}".format(ts, success[-1]))
logger.info("Episode {} Decision Step: {}".format(ts, local_decision_step))
logger.info("Episode {} Success Decision: {}".format(ts, local_succ_decision))
if (ts in vis_id) or (-1 in vis_id):
# worlds[ts] = cached_observation
with open(os.path.join(args.log_dir, "{}_{}.pkl".format(args.exp, ts)), "wb") as f:
pkl.dump(cached_observation, f)
mean_reward = np.mean(rew_list)
np.save(os.path.join(args.log_dir, "{}_rewards.npy".format(args.exp)), rew_list)
sr = np.mean(success)
mSuccD, aSuccD, SuccDAct = cal_step_metric(decision_step, succ_decision)
logger.info("Mean Score achieved: {}".format(mean_reward))
logger.info("Success Rate: {}".format(sr))
logger.info("Mean Decision Succ: {}".format(mSuccD))
logger.info("Average Decision Succ: {}".format(aSuccD))
logger.info("Decision Succ for each action: {}".format(SuccDAct))
if args.save_steps:
with open(os.path.join(args.log_dir, "{}_steps.pkl".format(args.exp)), "wb") as f:
pkl.dump(episode_data, f)
# for ts in worlds.keys():
# if worlds[ts] is not None:
# with open(os.path.join(args.log_dir, "{}_{}.pkl".format(args.exp, ts)), "wb") as f:
# pkl.dump(worlds[ts], f)
def cal_step_metric(decision_step, succ_decision):
mean_decision_succ = {}
total_decision = sum(decision_step.values())
total_decision = max(total_decision, 1)
total_succ = sum(succ_decision.values())
for action, num in decision_step.items():
num = max(num, 1)
mean_decision_succ[action] = succ_decision[action]/num
average_decision_succ = sum(mean_decision_succ.values())/len(mean_decision_succ)
# mean decision succ (over all steps), average decision succ (over all actions), decision succ for each action
return total_succ/total_decision, average_decision_succ, mean_decision_succ
if __name__ == '__main__':
args = parse_arguments()
logger = setup_logger(log_dir=args.log_dir, log_name=args.exp)
if args.collect_only:
logger.info("Running in data collection mode.")
logger.info("Loading simulation config from {}.".format(args.config))
main_collect(args, logger)
elif args.use_gym:
logger.info("Running in RL mode.")
logger.info("Loading RL config from {}.".format(args.config))
# RL mode, will use gym wrapper to learn and test an agent
main_gym(args, logger)
else:
# Sim mode, will use the logic-based simulator to run a simulation (no learning)
logger.info("Running in simulation mode.")
logger.info("Loading simulation config from {}.".format(args.config))
e = time.time()
main(args, logger)
logger.info("Total time spent: {}".format(time.time()-e))