-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
986ea40
commit edca528
Showing
1 changed file
with
71 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
import tensorflow as tf | ||
import tensorflow.keras.backend as K | ||
import tensorflow.keras.layers as layers | ||
import tensorflow_addons as tfa | ||
|
||
class Involution3D( layers.Layer ) : | ||
def __init__( self, filters, kernel_size = [ 3, 3, 3 ], strides = 1, padding = 'SYMMETRIC', channels_per_group = 16, reduce_ratio = 1, kernel_initializer = 'glorot_uniform' ) : | ||
super( Involution3D, self ).__init__() | ||
self.filters = filters | ||
self.kernel_size = kernel_size | ||
self.kernel_initializer = kernel_initializer | ||
self.strides = strides | ||
self.padding = padding | ||
self.channels_per_group = channels_per_group | ||
self.groups = filters // channels_per_group # number of channel groups: within each group the same kernel is used | ||
self.reduce_ratio = reduce_ratio | ||
if self.padding == 'SYMMETRIC' : | ||
dx = kernel_size[ 0 ] // 2 | ||
dy = kernel_size[ 1 ] // 2 | ||
dz = kernel_size[ 2 ] // 2 | ||
cx = 0 | ||
if kernel_size[ 0 ] % 2 == 0 : # even kernel size | ||
cx = -1 | ||
cy = 0 | ||
if kernel_size[ 1 ] % 2 == 0 : # even kernel size | ||
cy = -1 | ||
cz = 0 | ||
if kernel_size[ 2 ] % 2 == 0 : # even kernel size | ||
cz = -1 | ||
self.paddings = tf.constant( [ [ 0, 0 ], [ dx, dx + cx ], [ dy, dy + cy ], [ dz, dz + cz ], [ 0, 0 ] ] ) | ||
self.initial_mapping = layers.Conv3D( filters, 1, kernel_initializer = kernel_initializer ) | ||
self.reduce_mapping = tf.keras.Sequential( | ||
[ | ||
layers.Conv3D( filters // reduce_ratio, 1, kernel_initializer = kernel_initializer ), | ||
# layers.BatchNormalization(), | ||
# layers.LayerNormalization(), | ||
tfa.layers.GroupNormalization( groups = self.groups ), | ||
layers.Activation( 'relu' ), | ||
] | ||
) | ||
self.span_mapping = layers.Conv3D( kernel_size[ 0 ] * kernel_size[ 1 ] * kernel_size[ 2 ] * self.groups, 1, kernel_initializer = kernel_initializer ) | ||
if strides > 1 : | ||
self.o_mapping = layers.AveragePooling3D( strides ) | ||
|
||
def get_config( self ) : # this function is needed to save the layer when saving model or checkpoints | ||
config = super( Involution3D, self ).get_config() | ||
config.update( { 'filters' : self.filters } ) | ||
config.update( { 'kernel_size' : self.kernel_size } ) | ||
config.update( { 'strides' : self.strides } ) | ||
config.update( { 'padding' : self.padding } ) | ||
config.update( { 'channels_per_group' : self.channels_per_group } ) | ||
config.update( { 'groups' : self.groups } ) | ||
config.update( { 'reduce_ratio' : self.reduce_ratio } ) | ||
config.update( { 'kernel_initializer' : self.kernel_initializer } ) | ||
return config | ||
|
||
def call( self, x ) : | ||
weight = self.span_mapping( self.reduce_mapping( x if self.strides == 1 else self.o_mapping( x ) ) ) | ||
# split groups into a separate dimension and add a unit dimension for multiplication with channels_per_group in the image expanded via broadcasting | ||
_, d, h, w, c = K.int_shape( x ) # get a tuple of image dimensions before padding | ||
weight = K.expand_dims( K.reshape( weight, ( -1, d, h, w, self.kernel_size[ 0 ] * self.kernel_size[ 1 ] * self.kernel_size[ 2 ], self.groups ) ), axis = 6 ) | ||
if self.padding == 'SYMMETRIC' : | ||
x = tf.pad( x, self.paddings, 'SYMMETRIC' ) | ||
out = tf.extract_volume_patches( input = x if c == self.filters else self.initial_mapping( x ), | ||
ksizes = [ 1, self.kernel_size[ 2 ], self.kernel_size[ 0 ], self.kernel_size[ 1 ], 1 ], | ||
strides = [ 1, self.strides, self.strides, self.strides, 1 ], | ||
padding = 'SAME' if self.padding == 'SAME' else 'VALID' ) # get kernel-sized image patches around each voxel, output size is b, d, h, w, k[0] * k[1] * k[2] * filters | ||
out = K.reshape( out, ( -1, d, h, w, self.kernel_size[ 0 ] * self.kernel_size[ 1 ] * self.kernel_size[ 2 ], self.groups, self.channels_per_group ) ) # split kernels and groups into separate dimensions | ||
out = K.sum( weight * out, axis = -3 ) # convolve flattened patches with the weights along the flattened kernel dimension, broadcast the unit weight dimension into channels_per_group | ||
out = K.reshape( out, ( -1, d, h, w, self.filters ) ) | ||
return out |