Skip to content

burchim/PPO-PyTorch

Repository files navigation

PyTorch implementation of Proximal Policy optimization

PyTorch implementation of Proximal Policy optimization (PPO), Proximal Policy Optimization Algorithms.

Installation

Clone GitHub repository and set up environment

git clone https://github.com/burchim/PPO-PyTorch.git && cd PPO-PyTorch
pip install -r requirements.txt

Training

Train agent on a specific task:

env_name=atari-breakout python3 main.py -c configs/PPO/ppo.py

Train agent on all tasks:

./train_ppo_atari.sh

Visualize experiments

tensorboard --logdir ./callbacks

Overriding model config hyperparameters

override_config='{"dim_cnn": 48, "eval_env_params": {"episode_saving_path": "./videos"}}' run_name=dim_cnn_48 env_name=atari-breakout python3 main.py -c configs/PPO/ppo.py

Evaluation

env_name=atari-breakout python3 main.py -c configs/PPO/ppo.py --mode evaluation

Atari Results (40M env steps)

We averaged the evaluation score over 10 episodes.

Acknowledgments

The 37 Implementation Details of Proximal Policy Optimization: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details

About

PyTorch implementation of PPO for Atari

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published