forked from kulinseth/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
frozen_linear_folding.cpp
127 lines (108 loc) · 4.15 KB
/
frozen_linear_folding.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/fold_linear_bn.h>
#include <torch/csrc/jit/passes/frozen_linear_folding.h>
#include <torch/csrc/jit/passes/utils/optimization_utils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/ones_like.h>
#include <ATen/ops/zeros_like.h>
#endif
namespace torch {
namespace jit {
namespace {
using Tensor = at::Tensor;
bool supportedLinearNode(Node* n) {
if (n->kind() == aten::linear) {
return true;
} else {
return false;
}
}
bool FoldFrozenLinearBatchnorm(Block* b) {
bool graph_modified = false;
for (Node* n : b->nodes()) {
for (Block* block : n->blocks()) {
graph_modified |= FoldFrozenLinearBatchnorm(block);
}
if (n->kind() == aten::batch_norm &&
supportedLinearNode(n->inputs().at(0)->node())) {
auto linear = n->inputs().at(0)->node();
auto bn = n;
if (nonConstantParameters(linear) || nonConstantParameters(bn)) {
continue;
}
auto bn_rm_ivalue = bn->namedInput("running_mean");
auto bn_rv_ivalue = bn->namedInput("running_var");
// check running_mean and running_var has value, if they are
// None(track_running_stats=False), skiping the folding path.
if (bn_rm_ivalue->type() == NoneType::get() &&
bn_rv_ivalue->type() == NoneType::get()) {
continue;
}
auto bn_rm = constant_as<Tensor>(bn->namedInput("running_mean")).value();
auto bn_rv = constant_as<Tensor>(bn->namedInput("running_var")).value();
auto bn_eps = constant_as<double>(bn->namedInput("eps")).value();
auto linear_w = constant_as<Tensor>(linear->namedInput("weight")).value();
// implementation taken from torch/nn/utils/fusion.py
Tensor linear_b;
if (linear->namedInput("bias")->type() == NoneType::get()) {
at::ScalarType bias_dtype = bn_rm.scalar_type();
at::ScalarType weight_dtype = linear_w.scalar_type();
at::DeviceType weight_device = linear_w.device().type();
if (weight_device == at::kCUDA &&
(weight_dtype == at::kHalf || weight_dtype == at::kBFloat16) &&
bias_dtype == at::kFloat) {
bias_dtype = weight_dtype;
}
linear_b = at::zeros_like(bn_rm, at::TensorOptions().dtype(bias_dtype));
} else {
linear_b = constant_as<Tensor>(linear->namedInput("bias")).value();
}
Tensor bn_w;
if (bn->namedInput("weight")->type() == NoneType::get()) {
bn_w = at::ones_like(bn_rm);
} else {
bn_w = constant_as<Tensor>(bn->namedInput("weight")).value();
}
Tensor bn_b;
if (n->namedInput("bias")->type() == NoneType::get()) {
bn_b = at::zeros_like(bn_rm);
} else {
bn_b = constant_as<Tensor>(bn->namedInput("bias")).value();
}
LinearBNParameters params;
params.linear_w = linear_w;
params.linear_b = linear_b;
params.bn_rm = bn_rm;
params.bn_rv = bn_rv;
params.bn_eps = bn_eps;
params.bn_w = bn_w;
params.bn_b = bn_b;
std::tuple<Tensor, Tensor> out =
computeUpdatedLinearWeightAndBias(params);
WithInsertPoint guard(linear);
auto fused_linear_w = b->owningGraph()->insertConstant(std::get<0>(out));
auto fused_linear_b = b->owningGraph()->insertConstant(std::get<1>(out));
auto linear_w_value = linear->namedInput("weight");
auto linear_b_value = linear->namedInput("bias");
fused_linear_w->setDebugName(linear_w_value->debugName() + "_fused_bn");
fused_linear_b->setDebugName(linear_b_value->debugName() + "_fused_bn");
linear->replaceInputWith(linear_w_value, fused_linear_w);
linear->replaceInputWith(linear_b_value, fused_linear_b);
bn->output()->replaceAllUsesWith(linear->output());
graph_modified = true;
}
}
return graph_modified;
}
} // namespace
bool FoldFrozenLinearBatchnorm(std::shared_ptr<Graph>& graph) {
bool graph_modified = FoldFrozenLinearBatchnorm(graph->block());
EliminateDeadCode(graph);
return graph_modified;
}
} // namespace jit
} // namespace torch