forked from kulinseth/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fold_conv_bn.cpp
411 lines (364 loc) · 14.7 KB
/
fold_conv_bn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/quantization/helper.h>
#include <ATen/TensorOperators.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty_like.h>
#include <ATen/ops/ones_like.h>
#include <ATen/ops/rsqrt.h>
#include <ATen/ops/zeros_like.h>
#endif
#include <stack>
#include <utility>
namespace torch {
namespace jit {
std::tuple<at::Tensor, at::Tensor> computeUpdatedConvWeightAndBias(
const ConvBNParameters& p) {
at::Tensor bn_var_rsqrt = at::rsqrt(p.bn_rv + p.bn_eps);
const int64_t ndim = p.conv_w.dim();
at::DimVector sizes(ndim, 1);
sizes.at(0) = -1;
auto conv_w_dtype = p.conv_w.dtype();
auto conv_b_dtype = p.conv_b.dtype();
at::Tensor new_w = p.conv_w * (p.bn_w * bn_var_rsqrt).reshape(sizes);
at::Tensor new_b = (p.conv_b - p.bn_rm) * bn_var_rsqrt * p.bn_w + p.bn_b;
return std::make_tuple(new_w.to(conv_w_dtype), new_b.to(conv_b_dtype));
}
namespace {
using graph_rewrite_helper::PatternInfo;
static bool hastensor(Module& m, const char* name) {
return m.hasattr(name) && m.attr(name).isTensor();
}
void replaceConvBiasWithGetAttr(Module& module) {
for (const auto& method : module.get_methods()) {
auto graph = method.graph();
// Only looks for _convolution pattern.
// Thus assumes that tracing will have always gotten rid of aten::conv2d or
// aten::conv3d. If it did not, BN folding will fail.
const PatternInfo& pattern_convolution = PatternInfo::parse_from_str(R"(
graph(%a, %w, %b, %stride:int[], %padding:int[], %dilation:int[],
%transposed:bool, %output_padding:int[], %groups:int, %benchmark:bool,
%deterministic:bool, %cudnn_enabled:bool, %allow_tf32:bool):
%conv_out = aten::_convolution(%a, %w, %b, %stride, %padding, %dilation,
%transposed, %output_padding, %groups, %benchmark, %deterministic, %cudnn_enabled, %allow_tf32)
return (%conv_out) )");
const PatternInfo& pattern_convolution_deprecated =
PatternInfo::parse_from_str(R"(
graph(%a, %w, %b, %stride:int[], %padding:int[], %dilation:int[],
%transposed:bool, %output_padding:int[], %groups:int, %benchmark:bool,
%deterministic:bool, %cudnn_enabled:bool):
%conv_out = aten::_convolution(%a, %w, %b, %stride, %padding, %dilation,
%transposed, %output_padding, %groups, %benchmark, %deterministic, %cudnn_enabled)
return (%conv_out) )");
auto replace_pattern = [&](const PatternInfo& pattern_convolution) {
const Graph& pattern_convolution_graph =
*pattern_convolution.pattern_graph;
const auto& convolution_vmap = pattern_convolution.vmap;
const auto& matches =
findPatternMatches(pattern_convolution_graph, *graph);
for (const auto& match : matches) {
// We come here only if the bias was not present in the module.
// In that case, the corresponding graph will not have getAttr("bias")
// Insert that in the graph.
// And change _convolution to take the new value.
auto conv_node =
match.values_map.at(convolution_vmap.at("conv_out"))->node();
WithInsertPoint ins(conv_node);
Value* bias_attr_val = graph->insertGetAttr(graph->inputs()[0], "bias")
->setType(TensorType::get());
constexpr size_t conv_bias_index = 2;
conv_node->replaceInput(conv_bias_index, bias_attr_val);
}
};
replace_pattern(pattern_convolution);
replace_pattern(pattern_convolution_deprecated);
}
}
void addBiasForConvIfNone(Module& module, const std::string& pattern_name) {
auto t = module.type()->expect<ClassType>();
const std::string real_typename = t->name()->qualifiedName();
const std::string demangled_typename = removeTorchMangle(real_typename);
bool is_floating_point_conv =
((demangled_typename == "__torch__.torch.nn.modules.conv.Conv1d") ||
(demangled_typename == "__torch__.torch.nn.modules.conv.Conv2d") ||
(demangled_typename == "__torch__.torch.nn.modules.conv.Conv3d"));
if (is_floating_point_conv) {
if (!t->hasAttribute("bias")) {
auto optional_tensor_type = OptionalType::create(TensorType::get());
t->addAttribute("bias", std::move(optional_tensor_type), true);
auto optional_tensor = c10::optional<at::Tensor>();
module.setattr("bias", std::move(optional_tensor));
replaceConvBiasWithGetAttr(module);
}
}
for (Module m : module.children()) {
addBiasForConvIfNone(m, pattern_name);
}
}
class FoldConvBatchNormHelper {
public:
/**
* In this step we find all Conv - BatchNorm patterns in the graph
* and extract the corresponding parameters for these two modules,
* and record informations for the modifications of the graph without
* actually performing these modifications.
*/
void analyze(Module& module, const PatternInfo& pattern);
/**
* In this step we perform all the modifications including
* setting the attributes for conv module, rewriting values
* and deleting nodes in the graph
*/
void transform();
private:
bool tryExtractingConvBNParameters(
Module& conv,
Module& bn,
ConvBNParameters& r);
std::unordered_map<ModulePtr, std::tuple<at::Tensor, at::Tensor>>
conv_module_and_params_;
// A map from graph to a list of tuple of paths of matched conv and bn module
// e.g. if we have a graph `g` containing following code
// x = self.sub.conv1(..)
// x = self.sub.bn1(..)
// x = self.sub.conv2(..)
// x = self.sub.bn2(..)
// then the value for graph `g` in this map will be:
// [(['sub', 'conv1'], ['sub', 'bn1']), (['sub', 'conv2'], ['sub', 'bn2'])]
// the first entry of the list is the paths to first conv-bn match
// the second entry of the list is the path to second match
std::unordered_map<
Graph*,
std::vector<
std::tuple<std::vector<std::string>, std::vector<std::string>>>>
conv_bn_paths_;
std::unordered_map<Value*, Value*> rewrite_map_;
std::vector<Value*> values_to_rewrite_;
std::unordered_set<Node*> nodes_to_delete_;
};
bool extractOptionalBNParams(const script::Module& bn, ConvBNParameters& r) {
auto bn_forward = bn.get_method("forward");
auto graph = bn_forward.graph();
const PatternInfo& pattern_bn = PatternInfo::parse_from_str(R"(
graph(%a, %weight, %bias, %running_mean, %running_var,
%training, %momentum, %eps, %cudnn_enabled):
%bn_out = aten::batch_norm(%a, %weight, %bias, %running_mean,
%running_var, %training, %momentum, %eps, %cudnn_enabled)
return (%bn_out) )");
const Graph& pattern_bn_graph = *pattern_bn.pattern_graph;
const auto& bn_vmap = pattern_bn.vmap;
const auto& matches = findPatternMatches(pattern_bn_graph, *graph);
if (matches.size() > 1) {
return false;
}
if (bn.hasattr("eps")) {
r.bn_eps = bn.attr("eps").toDouble();
} else {
auto optional_eps = toIValue(matches[0].values_map.at(bn_vmap.at("eps")));
if (!optional_eps) {
return false;
}
r.bn_eps = optional_eps.value().toDouble();
}
r.bn_w = at::ones_like(bn.attr("running_mean").toTensor());
if (bn.hasattr("weight")) {
if (bn.attr("weight").isTensor()) {
r.bn_w = bn.attr("weight").toTensor();
}
} else {
auto optional_bn_weight =
toIValue(matches[0].values_map.at(bn_vmap.at("weight")));
if (!optional_bn_weight) {
return false;
}
if (optional_bn_weight.value().isTensor()) {
r.bn_w = optional_bn_weight.value().toTensor();
}
}
r.bn_b = at::zeros_like(bn.attr("running_mean").toTensor());
if (bn.hasattr("bias")) {
if (bn.attr("bias").isTensor()) {
r.bn_b = bn.attr("bias").toTensor();
}
} else {
auto optional_bn_bias =
toIValue(matches[0].values_map.at(bn_vmap.at("bias")));
if (!optional_bn_bias) {
return false;
}
if (optional_bn_bias.value().isTensor()) {
r.bn_b = optional_bn_bias.value().toTensor();
}
}
return true;
}
bool FoldConvBatchNormHelper::tryExtractingConvBNParameters(
Module& conv,
Module& bn,
ConvBNParameters& r) {
if (!hastensor(conv, "weight") || !conv.hasattr("bias") ||
!hastensor(bn, "running_mean") || !hastensor(bn, "running_var")) {
return false;
}
r.bn_rm = bn.attr("running_mean").toTensor();
r.bn_rv = bn.attr("running_var").toTensor();
if (!extractOptionalBNParams(bn, r)) {
return false;
}
r.conv_w = conv.attr("weight").toTensor();
r.conv_b = at::zeros_like(r.bn_rm);
auto bias_opt = conv.attr("bias").toOptional<at::Tensor>();
if (bias_opt) {
r.conv_b = *bias_opt;
}
return true;
}
void FoldConvBatchNormHelper::analyze(
Module& module,
const PatternInfo& pattern) {
const Graph& pattern_graph = *pattern.pattern_graph;
const auto& vmap = pattern.vmap;
Value* pattern_conv_out = vmap.at("conv_out");
Value* pattern_bn_out = vmap.at("bn_out");
Value* pattern_bn_submodule = vmap.at("batchnorm");
Node* pattern_conv = pattern_conv_out->node();
Node* pattern_bn = pattern_bn_out->node();
// We will put submodules into this worklist and keep processing items from it
// one by one. We start by just putting the top module there.
std::stack<Module> worklist({module});
while (!worklist.empty()) {
Module current = worklist.top();
worklist.pop();
// Queue submodules for processing
for (const Module& submodule : current.children()) {
worklist.push(submodule);
}
// Process all method of the current module
for (auto& method : current.get_methods()) {
GRAPH_DUMP(
current.type()->name()->name() + "::" + method.name() +
"() before Conv-BatchNorm folding",
method.graph());
const auto& matches = findPatternMatches(pattern_graph, *method.graph());
GRAPH_DEBUG("number of Conv-BatchNorm matches: ", matches.size());
Graph* g = method.graph().get();
if (!conv_bn_paths_.count(g)) {
// This is to make sure we don't visit one graph multiple times
conv_bn_paths_[g] = {};
for (const Match& match : matches) {
if (!std::all_of(
pattern.filters.begin(),
pattern.filters.end(),
[&](const MatchFilter& f) { return f(match, vmap); })) {
continue;
}
GRAPH_DEBUG("Checking next match...");
// Get the conv and bn submodule
Node* matched_conv = match.nodes_map.at(pattern_conv);
Node* matched_bn = match.nodes_map.at(pattern_bn);
Node* matched_bn_submodule =
match.values_map.at(pattern_bn_submodule)->node();
Value* conv_instance = matched_conv->input(0);
Value* bn_instance = matched_bn->input(0);
Value* self = g->inputs()[0];
auto conv_module_path = getModuleAccessPath(conv_instance, self);
auto bn_module_path = getModuleAccessPath(bn_instance, self);
Module conv_submodule = findChildModule(current, conv_module_path);
Module bn_submodule = findChildModule(current, bn_module_path);
ConvBNParameters params;
if (!tryExtractingConvBNParameters(
conv_submodule, bn_submodule, params)) {
GRAPH_DEBUG(
"Conv and BN modules didn't have all required parameters or attributes...");
continue;
}
conv_bn_paths_[g].emplace_back(conv_module_path, bn_module_path);
// We are using a separate vector for saving Values we want to rewrite
// to make sure that the order in which we perform these
// transformations is deterministic. Iterating through keys of
// rewrite_map would result in non-determinism that might not manifest
// as a bug now, but can bite us later.
values_to_rewrite_.push_back(matched_bn->output());
rewrite_map_[matched_bn->output()] = matched_conv->output();
GRAPH_UPDATE(
"Rewriting %",
matched_bn->output()->debugName(),
" with %",
matched_conv->output()->debugName());
nodes_to_delete_.insert(matched_bn);
nodes_to_delete_.insert(matched_bn_submodule);
GRAPH_UPDATE("Deleting ", *matched_bn);
GRAPH_UPDATE("Deleting ", *matched_bn_submodule);
auto slot = conv_submodule.type()->getAttributeSlot("bias");
TORCH_CHECK(
conv_submodule.type()->is_parameter(slot),
"Expected conv module to have a bias parameter");
} // matches
}
for (const auto& conv_bn : conv_bn_paths_.at(g)) {
Module conv_submodule = findChildModule(current, std::get<0>(conv_bn));
Module bn_submodule = findChildModule(current, std::get<1>(conv_bn));
ConvBNParameters params;
TORCH_INTERNAL_ASSERT(tryExtractingConvBNParameters(
conv_submodule, bn_submodule, params));
auto new_w_b = computeUpdatedConvWeightAndBias(params);
conv_module_and_params_[conv_submodule._ivalue()] = new_w_b;
} // conv_bn module
} // methods
} // while
}
void FoldConvBatchNormHelper::transform() {
for (const auto& item : conv_module_and_params_) {
Module conv(item.first);
auto w_b = item.second;
conv.setattr("weight", std::get<0>(w_b));
conv.setattr("bias", std::get<1>(w_b));
}
// Perform planned rewritings
for (auto v : values_to_rewrite_) {
v->replaceAllUsesWith(rewrite_map_.at(v));
}
// Perform planned deletions
for (auto n : nodes_to_delete_) {
n->removeAllInputs();
}
for (auto n : nodes_to_delete_) {
n->destroy();
}
}
} // namespace
Module FoldConvBatchNorm(const Module& module) {
Module m = module.clone();
addBiasForConvIfNone(m, "Conv2d");
addBiasForConvIfNone(m, "Conv3d");
// Conv2d + BatchNorm2d
const PatternInfo pattern2d = PatternInfo::parse_from_str(
R"(
graph(%self, %input, %conv, %batchnorm):
%conv_out = prim::CallMethod[name="forward"](%conv, %input)
%bn_out = prim::CallMethod[name="forward"](%batchnorm, %conv_out)
return (%bn_out))",
{is_conv2d_module, is_batchnorm2d_module});
// Conv3d + BatchNorm3d
const PatternInfo pattern3d = PatternInfo::parse_from_str(
R"(
graph(%self, %input, %conv, %batchnorm):
%conv_out = prim::CallMethod[name="forward"](%conv, %input)
%bn_out = prim::CallMethod[name="forward"](%batchnorm, %conv_out)
return (%bn_out))",
{is_conv3d_module, is_batchnorm3d_module});
const std::vector<std::reference_wrapper<const PatternInfo>> patterns = {
pattern2d, pattern3d};
for (const auto& pattern : patterns) {
FoldConvBatchNormHelper h;
h.analyze(m, pattern);
h.transform();
}
return m;
}
} // namespace jit
} // namespace torch