forked from kulinseth/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LossCTC.cpp
205 lines (175 loc) · 6.79 KB
/
LossCTC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Config.h>
#include <ATen/cuda/CUDAConfig.h>
#if AT_CUDNN_ENABLED()
#include <ATen/cudnn/Descriptors.h>
#endif
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_cudnn_ctc_loss.h>
#include <ATen/ops/_cudnn_ctc_loss_native.h>
#include <ATen/ops/_use_cudnn_ctc_loss.h>
#include <ATen/ops/_use_cudnn_ctc_loss_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_like.h>
#endif
#if (!AT_CUDNN_ENABLED()) || (CUDNN_VERSION < 7600)
namespace at { namespace native {
// See Note [ATen preprocessor philosophy]
bool _use_cudnn_ctc_loss(
const Tensor& log_probs,
const Tensor& targets,
IntArrayRef input_lengths,
IntArrayRef target_lengths,
int64_t BLANK) {
return false;
}
bool _use_cudnn_ctc_loss_tensor(
const Tensor& log_probs,
const Tensor& targets,
const Tensor& input_lengths,
const Tensor& target_lengths,
int64_t BLANK) {
return false;
}
std::tuple<Tensor, Tensor> _cudnn_ctc_loss(const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t BLANK, bool deterministic, bool zero_infinity) {
AT_ERROR("cudnn_ctc_loss: ATen not compiled with cuDNN >= 7 support");
}
std::tuple<Tensor, Tensor> _cudnn_ctc_loss_tensor(
const Tensor& log_probs,
const Tensor& targets,
const Tensor& input_lengths,
const Tensor& target_lengths,
int64_t BLANK,
bool deterministic,
bool zero_infinity) {
AT_ERROR("cudnn_ctc_loss: ATen not compiled with cuDNN >= 7 support");
}
}}
#else // AT_CUDNN_ENABLED
#include <ATen/cudnn/Descriptors.h>
#include <ATen/cudnn/Types.h>
#include <ATen/cudnn/Utils.h>
#include <ATen/TensorUtils.h>
#include <c10/util/irange.h>
namespace at { namespace native {
bool _use_cudnn_ctc_loss(
const Tensor& log_probs,
const Tensor& targets,
IntArrayRef input_lengths,
IntArrayRef target_lengths,
int64_t BLANK) {
auto& ctx = at::globalContext();
bool use_cudnn = ctx.userEnabledCuDNN() && (BLANK == 0) &&
(targets.dim() == 1) && (log_probs.scalar_type() == at::kFloat) &&
(targets.scalar_type() == at::kInt) &&
(log_probs.device().type() == at::kCUDA);
if (use_cudnn) {
// we don't know that input_lengths and target_lengths have the same size
// (they should, but we didn't check yet)
int64_t max_input_length = log_probs.size(0);
for (const auto input_length : input_lengths) {
use_cudnn = use_cudnn && ((input_length == max_input_length) ? 1 : 0);
}
for (const auto b : c10::irange(target_lengths.size())) {
// target length < 256 is documented, but we see illegal memory accesses
// when target lengths > input lengths for CuDNN
use_cudnn =
use_cudnn && (target_lengths[b] < 256) && (target_lengths[b] <= input_lengths[b]);
}
}
return use_cudnn;
}
bool _use_cudnn_ctc_loss_tensor(
const Tensor& log_probs,
const Tensor& targets,
const Tensor& input_lengths,
const Tensor& target_lengths,
int64_t BLANK) {
Tensor ilc = input_lengths.to(Device(at::kCPU), at::kLong).contiguous();
Tensor tlc = target_lengths.to(Device(at::kCPU), at::kLong).contiguous();
IntArrayRef il(ilc.data_ptr<int64_t>(), ilc.numel());
IntArrayRef tl(tlc.data_ptr<int64_t>(), tlc.numel());
return at::_use_cudnn_ctc_loss(
log_probs, targets, il, tl, BLANK);
}
std::tuple<Tensor, Tensor> _cudnn_ctc_loss(const Tensor& log_probs_t, const Tensor& targets_t, IntArrayRef input_lengths_, IntArrayRef target_lengths_, int64_t BLANK, bool deterministic, bool zero_infinity) {
(void)zero_infinity; // only used for backward
const CheckedFrom c = "cudnn_ctc_loss";
const TensorArg log_probs { log_probs_t, "log_probs", 1 };
const TensorArg targets { targets_t, "targets", 2 };
checkDim(c, log_probs, 3);
checkScalarType(c, log_probs, kFloat);
checkDim(c, targets, 1);
checkScalarType(c, targets, kInt);
checkContiguous(c, targets); // ?
checkBackend(c, {*log_probs}, Backend::CUDA);
checkBackend(c, {*targets}, Backend::CPU);
const auto batch_size = log_probs->size(1);
TORCH_CHECK(static_cast<int64_t>(input_lengths_.size()) == batch_size, "input_lengths needs to have size to match batch_size");
TORCH_CHECK(static_cast<int64_t>(target_lengths_.size()) == batch_size, "target_lengths needs to have size to match batch_size");
std::vector<int> input_lengths(input_lengths_.begin(), input_lengths_.end());
std::vector<int> target_lengths(target_lengths_.begin(), target_lengths_.end());
TORCH_CHECK(BLANK == 0, "blank must be label 0 for cudnn_ctc_loss");
// checked in dispatch:
// assert other conditions for cudnnCTCLoss: all label lengths <= 256
// all input lengths = logprob.size(0)
const auto handle = getCudnnHandle();
const cudnnCTCLossAlgo_t algo = (deterministic ? CUDNN_CTC_LOSS_ALGO_DETERMINISTIC : CUDNN_CTC_LOSS_ALGO_NON_DETERMINISTIC);
CTCLossDescriptor ctc_loss_desc;
// so the CuDNN gradient semantics have changed between 7.1 and 7.6,
// this is CuDNN 7.6 only, see PyTorch 1.2 for older CuDNN.
ctc_loss_desc.setEx(
CUDNN_DATA_FLOAT, CUDNN_LOSS_NORMALIZATION_SOFTMAX, CUDNN_PROPAGATE_NAN);
TensorDescriptor log_probs_desc{log_probs_t};
Tensor grad = at::empty_like(log_probs_t, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
TensorDescriptor grad_desc{grad};
size_t workspace_size;
AT_CUDNN_CHECK(cudnnGetCTCLossWorkspaceSize(
handle,
log_probs_desc.desc(),
grad_desc.desc(),
targets->data_ptr<int>(),
target_lengths.data(),
input_lengths.data(),
algo,
ctc_loss_desc.desc(),
&workspace_size));
Tensor workspace = at::empty(workspace_size, log_probs->options().dtype(kByte));
Tensor costs = at::empty({log_probs->size(1)}, log_probs->options());
AT_CUDNN_CHECK(cudnnCTCLoss(
handle,
log_probs_desc.desc(),
log_probs_t.data_ptr(),
targets->data_ptr<int>(),
target_lengths.data(),
input_lengths.data(),
costs.data_ptr(),
grad_desc.desc(),
grad.data_ptr(),
algo,
ctc_loss_desc.desc(),
workspace.data_ptr(),
workspace_size));
return std::make_tuple(costs, grad);
}
std::tuple<Tensor, Tensor> _cudnn_ctc_loss_tensor(
const Tensor& log_probs,
const Tensor& targets,
const Tensor& input_lengths,
const Tensor& target_lengths,
int64_t BLANK,
bool deterministic,
bool zero_infinity) {
Tensor ilc = input_lengths.to(Device(at::kCPU), at::kLong).contiguous();
Tensor tlc = target_lengths.to(Device(at::kCPU), at::kLong).contiguous();
IntArrayRef il(ilc.data_ptr<int64_t>(), ilc.numel());
IntArrayRef tl(tlc.data_ptr<int64_t>(), tlc.numel());
return at::_cudnn_ctc_loss(
log_probs, targets, il, tl, BLANK, deterministic, zero_infinity);
}
}} // namespace at::native
#endif