forked from kulinseth/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Bucketization.cu
221 lines (195 loc) · 8.54 KB
/
Bucketization.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/ceil_div.h>
#include <ATen/Dispatch.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/native/BucketizationUtils.h>
#include <ATen/native/Resize.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/bucketize_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/searchsorted_native.h>
#endif
namespace at::native {
// Implement a numpy like searchsorted and a TF like bucketize function running on cuda
// See details in ATen/nativate/Bucketization.cpp
namespace {
template<typename input_t>
__device__ int64_t lower_bound(const input_t *data_ss, int64_t start, int64_t end, const input_t val, const int64_t *data_sort) {
// sorter gives relative ordering for ND tensors, so we need to save and add the non-updated start as an offset
// i.e. the second row of a 3x3 tensors starts at element 3 but sorter's second row only contains 0, 1, or 2
const int64_t orig_start = start;
while (start < end) {
const int64_t mid = start + ((end - start) >> 1);
const input_t mid_val = data_sort ? data_ss[orig_start + data_sort[mid]] : data_ss[mid];
if (!(mid_val >= val)) {
start = mid + 1;
}
else {
end = mid;
}
}
return start;
}
template<typename input_t>
__device__ int64_t upper_bound(const input_t *data_ss, int64_t start, int64_t end, const input_t val, const int64_t *data_sort) {
// sorter gives relative ordering for ND tensors, so we need to save and add the non-updated start as an offset
// i.e. the second row of a 3x3 tensors starts at element 3 but sorter's second row only contains 0, 1, or 2
const int64_t orig_start = start;
while (start < end) {
const int64_t mid = start + ((end - start) >> 1);
const input_t mid_val = data_sort ? data_ss[orig_start + data_sort[mid]] : data_ss[mid];
if (!(mid_val > val)) {
start = mid + 1;
}
else {
end = mid;
}
}
return start;
}
template<typename input_t, typename output_t>
__global__ void searchsorted_cuda_kernel(
output_t *data_out,
const input_t *data_in,
const input_t *data_bd,
const int64_t *data_sort,
int64_t idim_in,
int64_t idim_bd,
int64_t numel_in,
bool right,
bool is_1d_boundaries) {
for (int64_t tid = blockIdx.x * blockDim.x + threadIdx.x; tid < numel_in; tid += blockDim.x * gridDim.x) {
// If boundaries tensor is 1d, we always search the entire boundary tensor
int64_t start_bd = is_1d_boundaries ? 0 : tid / idim_in * idim_bd;
int64_t end_bd = start_bd + idim_bd;
int64_t pos = !right ?
lower_bound<input_t>(data_bd, start_bd, end_bd, data_in[tid], data_sort) - start_bd :
upper_bound<input_t>(data_bd, start_bd, end_bd, data_in[tid], data_sort) - start_bd;
// type conversion might happen here
data_out[tid] = pos;
}
}
template<typename input_t, typename output_t>
void searchsorted_cuda_contiguous(Tensor& result, const Tensor& input, const Tensor& boundaries, const bool& right, const Tensor& sorter) {
int64_t numel_in = input.numel();
bool is_scalar_input = input.dim() == 0 && numel_in == 1;
// inner most dim size of input and boundaries
int64_t idim_in = is_scalar_input ? 1 : input.sizes().back();
int64_t idim_bd = boundaries.sizes().back();
const input_t *data_in = input.data_ptr<input_t>();
const input_t *data_bd = boundaries.data_ptr<input_t>();
const int64_t *data_sort = sorter.defined() ? sorter.data_ptr<int64_t>() : nullptr;
output_t *data_out = result.data_ptr<output_t>();
int64_t maxThread = at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock;
int64_t maxGrid = 1024;
dim3 block = dim3(std::min(maxThread, numel_in));
dim3 grid = dim3(std::min(maxGrid, ceil_div<int64_t>(numel_in, block.x)));
at::cuda::CUDAStream stream = at::cuda::getCurrentCUDAStream();
searchsorted_cuda_kernel<<<grid, block, 0, stream>>>(
data_out, data_in, data_bd, data_sort, idim_in, idim_bd, numel_in, right, boundaries.dim() == 1);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
void dispatch(
Tensor& result,
const Tensor& input,
const Tensor& boundaries,
bool out_int32,
bool right,
const Tensor& sorter) {
if (!out_int32) {
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, input.scalar_type(), "searchsorted_out_cuda", [&] {
searchsorted_cuda_contiguous<scalar_t, int64_t>(result, input, boundaries, right, sorter);
});
}
else {
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, input.scalar_type(), "searchsorted_out_cuda", [&] {
searchsorted_cuda_contiguous<scalar_t, int>(result, input, boundaries, right, sorter);
});
}
}
}
Tensor& searchsorted_out_cuda(
const Tensor& sorted_sequence,
const Tensor& self,
bool out_int32,
bool right,
const c10::optional<c10::string_view> side_opt,
const c10::optional<Tensor>& sorter_opt,
Tensor& result) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> sorter_maybe_owned = at::borrow_from_optional_tensor(sorter_opt);
const Tensor& sorter = *sorter_maybe_owned;
searchsorted_pre_check(sorted_sequence, self, result, out_int32, right, side_opt, sorter);
resize_output(result, self.sizes());
// we have two inputs to set right, pre_check checks that they aren't set to opposites
bool is_right = (side_opt && *side_opt == "right") || right;
if (self.numel() == 0) {
return result;
}
// for non-contiguous result tensors, we write the output to a contiguous copy so we can later copy back, maintaing the original result tensor
Tensor out = result;
if (!result.is_contiguous()) {
out = result.contiguous();
}
if (sorted_sequence.is_contiguous() && self.is_contiguous() && sorted_sequence.dtype() == self.dtype() && sorter.is_contiguous()) {
dispatch(out, self, sorted_sequence, out_int32, is_right, sorter);
}
else {
Tensor trimmed_input;
Tensor trimmed_boundaries;
Tensor trimmed_sorter;
searchsorted_maybe_trim_input_tensors(trimmed_input, trimmed_boundaries, trimmed_sorter, self, sorted_sequence, sorter);
const Tensor& final_input = trimmed_input.defined() ? trimmed_input : self;
const Tensor& final_boundaries = trimmed_boundaries.defined() ? trimmed_boundaries : sorted_sequence;
const Tensor& final_sorter = trimmed_sorter.defined() ? trimmed_sorter : sorter;
dispatch(out, final_input, final_boundaries, out_int32, is_right, final_sorter);
}
// if result is non-contiguous, we wrote the answer to a copied version, so we copy back to the original result tensor
if (!result.is_contiguous()) {
result.copy_(out);
}
return result;
}
Tensor searchsorted_cuda(
const Tensor& sorted_sequence,
const Tensor& self,
bool out_int32,
bool right,
const c10::optional<c10::string_view> side_opt,
const c10::optional<Tensor>& sorter) {
ScalarType scalar_type = out_int32 ? ScalarType::Int : ScalarType::Long;
c10::TensorOptions options = TensorOptions().device(self.options().device()).dtype(scalar_type);
Tensor result = at::empty({0}, options, MemoryFormat::Contiguous);
at::native::searchsorted_out_cuda(sorted_sequence, self, out_int32, right, side_opt, sorter, result);
return result;
}
Tensor searchsorted_cuda(
const Tensor& sorted_sequence,
const Scalar& self,
bool out_int32,
bool right,
const c10::optional<c10::string_view> side_opt,
const c10::optional<Tensor>& sorter) {
const Tensor& scalar_tensor = searchsorted_scalar_tensor(self, sorted_sequence.device());
return searchsorted_cuda(sorted_sequence, scalar_tensor, out_int32, right, side_opt, sorter);
}
Tensor& bucketize_out_cuda(const Tensor& self, const Tensor& boundaries, bool out_int32, bool right, Tensor& result) {
TORCH_CHECK(boundaries.dim() == 1, "boundaries tensor must be 1 dimension, but got dim(", boundaries.dim(), ")");
at::native::searchsorted_out_cuda(boundaries, self, out_int32, right, nullopt, nullopt, result);
return result;
}
Tensor bucketize_cuda(const Tensor& self, const Tensor& boundaries, bool out_int32, bool right) {
ScalarType scalar_type = out_int32 ? ScalarType::Int : ScalarType::Long;
c10::TensorOptions options = TensorOptions().device(self.options().device()).dtype(scalar_type);
Tensor result = at::empty({0}, options, MemoryFormat::Contiguous);
at::native::bucketize_out_cuda(self, boundaries, out_int32, right, result);
return result;
}
Tensor bucketize_cuda(const Scalar& self, const Tensor& boundaries, bool out_int32, bool right) {
return bucketize_cuda(searchsorted_scalar_tensor(self, boundaries.device()), boundaries, out_int32, right);
}
} // namespace at::native