forked from kulinseth/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Blas.cpp
762 lines (682 loc) · 27.7 KB
/
Blas.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/core/NamedTensor.h>
#include <ATen/Dispatch.h>
#include <ATen/ExpandUtils.h>
#include <ATen/OpMathType.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDABlas.h>
#include <ATen/native/Resize.h>
#include <c10/util/MaybeOwned.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_addmm_activation_native.h>
#include <ATen/ops/_efficientzerotensor.h>
#include <ATen/ops/addmm_native.h>
#include <ATen/ops/addmv_native.h>
#include <ATen/ops/baddbmm_native.h>
#include <ATen/ops/bmm_native.h>
#include <ATen/ops/copy_native.h>
#include <ATen/ops/dot_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/gelu.h>
#include <ATen/ops/mm_native.h>
#include <ATen/ops/mul.h>
#include <ATen/ops/relu.h>
#include <ATen/ops/scalar_tensor_native.h>
#include <ATen/ops/vdot_native.h>
#endif
namespace at::native {
namespace {
// TODO: https://github.com/pytorch/pytorch/pull/59380#pullrequestreview-725310492
c10::MaybeOwned<Tensor> inline resolve_conj_if_indicated(const Tensor& tensor, bool resolve_conj) {
if (resolve_conj && tensor.is_conj()) {
return c10::MaybeOwned<Tensor>::owned(tensor.resolve_conj());
} else {
return c10::MaybeOwned<Tensor>::borrowed(tensor);
}
}
c10::MaybeOwned<Tensor> inline prepare_matrix_for_cublas(const Tensor& tensor, bool& transpose_tensor, bool transpose_result) {
if (tensor.is_non_overlapping_and_dense()) { // common case
transpose_tensor = tensor.is_contiguous();
return resolve_conj_if_indicated(tensor, transpose_result ? transpose_tensor : !transpose_tensor);
}
IntArrayRef tensor_strides = tensor.strides();
IntArrayRef tensor_sizes = tensor.sizes();
if ((tensor_strides[0] == 1) && (tensor_strides[1] >= std::max<int64_t>(1, tensor_sizes[0]))) {
transpose_tensor = false;
return resolve_conj_if_indicated(tensor, !transpose_result);
} else if ((tensor_strides[1] == 1) && (tensor_strides[0] >= std::max<int64_t>(1, tensor_sizes[1]))) {
transpose_tensor = true;
return resolve_conj_if_indicated(tensor, transpose_result);
} else {
transpose_tensor = true;
return c10::MaybeOwned<Tensor>::owned(tensor.clone(at::MemoryFormat::Contiguous));
}
}
c10::MaybeOwned<Tensor> inline prepare_matrix_for_cublas(const Tensor& tensor, bool& transpose_tensor) {
if (tensor.is_non_overlapping_and_dense()) { // common case
transpose_tensor = tensor.is_contiguous();
return resolve_conj_if_indicated(tensor, true);
}
IntArrayRef tensor_strides = tensor.strides();
IntArrayRef tensor_sizes = tensor.sizes();
if ((tensor_strides[0] == 1) && (tensor_strides[1] >= std::max<int64_t>(1, tensor_sizes[0]))) {
transpose_tensor = false;
return resolve_conj_if_indicated(tensor, true);
} else if ((tensor_strides[1] == 1) && (tensor_strides[0] >= std::max<int64_t>(1, tensor_sizes[1]))) {
transpose_tensor = true;
return resolve_conj_if_indicated(tensor, true);
} else {
transpose_tensor = true;
return c10::MaybeOwned<Tensor>::owned(tensor.clone(at::MemoryFormat::Contiguous));
}
}
} // namespace
c10::MaybeOwned<Tensor> prepare_batch_matrix_for_cublas(const Tensor& tensor, bool& transpose_tensor, int64_t& ld_tensor, bool transpose_result, int64_t m, int64_t n) {
IntArrayRef tensor_strides = tensor.strides();
c10::MaybeOwned<Tensor> tensor_;
int fast_dim = transpose_result ? 2 : 1;
int leading_dim = transpose_result ? 1 : 2;
if (tensor_strides[fast_dim] == 1 &&
(tensor_strides[leading_dim] >= std::max<int64_t>(1, m))) {
transpose_tensor = false;
tensor_ = resolve_conj_if_indicated(tensor, true);
ld_tensor = tensor_->strides()[leading_dim];
} else if ((tensor_strides[leading_dim] == 1) &&
(tensor_strides[fast_dim] >= std::max<int64_t>(1, n))) {
transpose_tensor = true;
tensor_ = resolve_conj_if_indicated(tensor, false);
ld_tensor = tensor_->strides()[fast_dim];
} else {
transpose_tensor = !transpose_result;
// gemm call requires leading dimension and stride parameters to be non-zero
bool is_stride_non_zero = tensor.strides()[1] != 0 && tensor.strides()[2] != 0;
if (tensor.is_contiguous() && is_stride_non_zero) {
tensor_ = resolve_conj_if_indicated(tensor, transpose_result);
} else {
tensor_ = c10::MaybeOwned<Tensor>::owned(tensor.clone(at::MemoryFormat::Contiguous));
}
ld_tensor = tensor_->strides()[1];
}
return tensor_;
}
namespace {
enum class Activation {
None,
RELU,
GELU,
};
#if !defined(USE_ROCM) && !defined(_MSC_VER)
cuda::blas::GEMMAndBiasActivationEpilogue activation_to_gemm_and_blas_arg(Activation a) {
switch (a) {
case Activation::None:
return cuda::blas::GEMMAndBiasActivationEpilogue::BIAS;
case Activation::RELU:
return cuda::blas::GEMMAndBiasActivationEpilogue::BIAS_RELU;
case Activation::GELU:
return cuda::blas::GEMMAndBiasActivationEpilogue::BIAS_GELU;
default:
TORCH_CHECK(false);
return cuda::blas::GEMMAndBiasActivationEpilogue::BIAS;
}
}
#endif
static bool getDisableAddmmCudaLt() {
static const char* env_value = std::getenv("DISABLE_ADDMM_CUDA_LT");
if (env_value != nullptr && strcmp(env_value, "1") == 0) {
return true;
}
return false;
}
uint8_t getAlignment(const Tensor &t) {
// alignment are in bytes
uint8_t alignment = 1;
uintptr_t address = reinterpret_cast<uintptr_t>(t.data_ptr());
for (; alignment < 4; alignment *= 2) {
if (address % (alignment * 2)) {
return alignment;
}
}
return alignment;
}
Tensor& addmm_out_cuda_impl(
Tensor& result,
const Tensor& self,
const Tensor& mat1,
const Tensor& mat2,
const Scalar& beta,
const Scalar& alpha,
Activation activation = Activation::None,
bool allow_extended = false) {
// Make sure to keep addmm_cuda below in sync with this code; it
// preflights a check to try to avoid actually needing to call
// expand().
TORCH_CHECK(mat1.dim() == 2 && mat2.dim() == 2, "tensors must be 2-D");
TensorArg args[]{{result, "out", 0}, {self, "self", 1}, {mat1, "mat1", 2}, {mat2, "mat2", 3}};
checkAllSameGPU(__func__, args);
IntArrayRef mat1_sizes = mat1.sizes();
IntArrayRef mat2_sizes = mat2.sizes();
IntArrayRef self__sizes;
bool useLtInterface = false;
static bool disable_addmm_cuda_lt = getDisableAddmmCudaLt();
at::ScalarType scalar_type = self.scalar_type();
c10::MaybeOwned<Tensor> self_;
if (&result != &self) {
#if defined(CUDA_VERSION) && CUDA_VERSION >= 11040 && !defined(_MSC_VER)
// Strangely, if mat2 has only 1 row or column, we get
// CUBLAS_STATUS_INVALID_VALUE error from cublasLtMatmulAlgoGetHeuristic.
// self.dim() == 1 && result.dim() == 2 && self.sizes()[0] == mat2_sizes[1]
// is to use lt interface only when self is bias.
// for cuda 11.4, cublasLtMatmul is activated
// the last two conditions is to skip 16b transA and non-trans-B having
// leading dim >> rows when they are sliced from a large tensor
// see fbcode/caffe2/test/test_linalg.py:test_corner_cases_of_cublasltmatmul
if (!disable_addmm_cuda_lt) {
auto self_alignment = getAlignment(self);
auto mat1_alignment = getAlignment(mat1);
auto mat2_alignment = getAlignment(mat2);
// due to a heuristic bug, cuBlasLt requires all alignments > 2 or the same ( == 2)
// should we err on the side of caution and remove the second dispatch path?
bool alignment_ok = (self_alignment > 2 &&
mat1_alignment > 2 &&
mat2_alignment > 2) ||
(self_alignment == 2 &&
mat1_alignment == 2 &&
mat2_alignment == 2);
useLtInterface = beta.toComplexDouble() == 1.0 && self.dim() == 1 &&
result.dim() == 2 && self.sizes()[0] == mat2_sizes[1] &&
self.is_contiguous() &&
(scalar_type == at::ScalarType::Double ||
scalar_type == at::ScalarType::Float ||
scalar_type == at::ScalarType::Half ||
scalar_type == at::ScalarType::BFloat16) &&
alignment_ok &&
mat2_sizes[0] > 1 && mat2_sizes[1] > 1 &&
mat2_sizes[0] < 65535 * 32 && mat2_sizes[1] < 65535 * 32 &&
mat1_sizes[0] < 65535 * 32 && mat1_sizes[1] < 65535 * 32 &&
// avoid leaing dim >> rows bugs
((mat1.strides()[0] == 1 && mat1.strides()[1] == mat1_sizes[0]) ||
(mat1.strides()[1] == 1 && mat1.strides()[0] == mat1_sizes[1]) ||
(scalar_type != at::ScalarType::Half &&
scalar_type != at::ScalarType::BFloat16)) &&
((mat2.strides()[0] == 1 && mat2.strides()[1] == mat2_sizes[0]) ||
(mat2.strides()[1] == 1 && mat2.strides()[0] == mat2_sizes[1]) ||
(scalar_type != at::ScalarType::Half &&
scalar_type != at::ScalarType::BFloat16));
}
#endif
if (!useLtInterface) {
self_ = expand_size(self, {mat1_sizes[0], mat2_sizes[1]}, "addmm");
}
self__sizes = self_->sizes();
} else {
self_ = c10::MaybeOwned<Tensor>::borrowed(self);
self__sizes = self_->sizes();
TORCH_CHECK(result.dim() == 2, "tensors must be 2-D");
TORCH_CHECK(self__sizes[0] == mat1_sizes[0], "self_ dim 0 must match mat1 dim 0");
TORCH_CHECK(self__sizes[1] == mat2_sizes[1], "self_ dim 1 must match mat2 dim 1");
}
if (&result != &self) {
at::native::resize_output(result, {mat1_sizes[0], mat2_sizes[1]});
if (beta.toComplexDouble() != 0.0 && !useLtInterface) {
at::native::copy_(result, *self_);
}
}
IntArrayRef result_sizes = result.sizes();
if ((result_sizes[0] == 0) || (result_sizes[1] == 0)) {
return result;
}
bool transpose_result;
c10::MaybeOwned<Tensor> result_ = prepare_matrix_for_cublas(result, transpose_result);
bool transpose_mat1;
bool transpose_mat2;
auto mat1_ = prepare_matrix_for_cublas(transpose_result ? mat2 : mat1, transpose_mat1, transpose_result);
auto mat2_ = prepare_matrix_for_cublas(transpose_result ? mat1 : mat2, transpose_mat2, transpose_result);
if (transpose_result) {
transpose_mat1 = !transpose_mat1;
transpose_mat2 = !transpose_mat2;
mat1_sizes = mat1_->sizes();
mat2_sizes = mat2_->sizes();
}
int64_t m = mat1_sizes[transpose_result ? 1 : 0];
int64_t k = mat1_sizes[transpose_result ? 0 : 1];
int64_t n = mat2_sizes[transpose_result ? 0 : 1];
int64_t mat1_ld = mat1_->stride((transpose_mat1 == transpose_result) ? 1 : 0);
int64_t mat2_ld = mat2_->stride((transpose_mat2 == transpose_result) ? 1 : 0);
int64_t result_ld = result_->stride(transpose_result ? 0 : 1);
if (mat1.numel() == 0) {
// By definition, when beta==0, values in self should be ignored. nans and infs
// should not propagate
if (beta.toComplexDouble() == 0.) {
return result.zero_();
}
// TODO: We could squeeze some perf by calling at::cuda::mul_out here instead, to bypass the dispatcher.
// That requires some fixing some internal build dependencies though.
return at::mul_out(
result,
self,
at::native::scalar_tensor(
beta,
self.scalar_type(),
c10::nullopt /* layout */,
at::kCPU,
c10::nullopt /* pin_memory */));
}
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!result_->is_conj());
#if !defined(USE_ROCM) && !defined(_MSC_VER)
if (useLtInterface) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
scalar_type,
"addmm_cuda_lt",
[&] {
at::cuda::blas::gemm_and_bias<scalar_t>(
transpose_mat1,
transpose_mat2,
m,
n,
k,
alpha.to<at::opmath_type<scalar_t>>(),
mat1_->data_ptr<scalar_t>(),
mat1_ld,
mat2_->data_ptr<scalar_t>(),
mat2_ld,
self.data_ptr<scalar_t>(),
result_->data_ptr<scalar_t>(),
result_ld,
#if 0
activation_to_gemm_and_blas_arg(activation)
#else
// GELU is not supported (and does not compile!) prior
// to CUDA 11.4. Have observed accuracy issues with
// GELU epilogue in 11.4; disabling the GELU epilogue
// path until we confirm which version it's working in.
activation != Activation::GELU
? activation_to_gemm_and_blas_arg(activation)
: cuda::blas::GEMMAndBiasActivationEpilogue::BIAS
#endif
);
});
} else
#endif
{
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
scalar_type,
"addmm_cuda",
[&] {
using opmath_t = at::opmath_type<scalar_t>;
opmath_t alpha_val = alpha.to<opmath_t>();
opmath_t beta_val = beta.to<opmath_t>();
scalar_t* mat1_ptr = mat1_->data_ptr<scalar_t>();
scalar_t* mat2_ptr = mat2_->data_ptr<scalar_t>();
scalar_t* result_ptr = result_->data_ptr<scalar_t>();
at::cuda::blas::gemm<scalar_t>(
transpose_mat1 ? mat1_->is_conj() ? 'c' : 't' : 'n',
transpose_mat2 ? mat2_->is_conj() ? 'c' : 't' : 'n',
m,
n,
k,
alpha_val,
mat1_ptr,
mat1_ld,
mat2_ptr,
mat2_ld,
beta_val,
result_ptr,
result_ld);
});
switch (activation) {
case Activation::RELU:
at::relu_(const_cast<Tensor&>(*result_));
break;
case Activation::GELU:
at::gelu_(const_cast<Tensor&>(*result_));
break;
default: break;
}
}
// Preprocessor gate here needs to match the inverse of the check
// gating activation_to_gemm_and_blas_arg above; here we are manually
// performing a post-GELU because we weren't able to use the GELU
// epilogue above.
#if !0
if (useLtInterface && activation == Activation::GELU) {
at::gelu_(const_cast<Tensor&>(*result_));
}
#endif
if (!result.is_same(*result_)) {
result.copy_(*result_);
}
return result;
}
const Tensor& baddbmm_out_cuda_impl(const Tensor& result, const Tensor& self, const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha) {
IntArrayRef batch1_sizes = batch1.sizes();
// handle pathological cases that blas may not like
if (result.numel() == 0) {
return result;
} else if (batch1_sizes[2] == 0) {
if (beta.to<c10::complex<double>>() == 0.0) {
return result.zero_();
} else {
return result.mul_(beta);
}
}
bool transpose_result = false;
c10::MaybeOwned<Tensor> result_;
IntArrayRef result_strides = result.strides();
IntArrayRef result_sizes = result.sizes();
if ((result_strides[1] == 1) &&
((result_sizes[2] == 1) || (result_strides[2] >= std::max<int64_t>(1, result_sizes[1])))) {
result_ = resolve_conj_if_indicated(result, true);
} else if ((result_strides[2] == 1) &&
(result_sizes[1] == 1 || (result_strides[1] >= std::max<int64_t>(1, result_sizes[2])))) {
transpose_result = true;
result_ = resolve_conj_if_indicated(result, true);
} else {
result_ = c10::MaybeOwned<Tensor>::owned(result.transpose(1, 2).clone(at::MemoryFormat::Contiguous).transpose(1, 2));
}
int leading_dim = transpose_result ? 1 : 2;
int64_t m = result_sizes[transpose_result ? 2 : 1];
int64_t n = result_sizes[leading_dim];
int64_t k = (transpose_result ? batch2 : batch1).sizes()[leading_dim];
int64_t lda, ldb, ldc;
bool transpose_batch1, transpose_batch2;
auto batch1_ = prepare_batch_matrix_for_cublas(transpose_result ? batch2 : batch1, transpose_batch1, lda, transpose_result, m, k);
auto batch2_ = prepare_batch_matrix_for_cublas(transpose_result ? batch1 : batch2, transpose_batch2, ldb, transpose_result, k, n);
ldc = result_->strides()[leading_dim];
int64_t num_batches = result_->sizes()[0];
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!result_->is_conj());
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "baddbmm_cuda", [&] {
using opmath_t = at::opmath_type<scalar_t>;
opmath_t alpha_val = alpha.to<opmath_t>();
opmath_t beta_val = beta.to<opmath_t>();
scalar_t* batch1_ptr = batch1_->data_ptr<scalar_t>();
scalar_t* batch2_ptr = batch2_->data_ptr<scalar_t>();
scalar_t* result_ptr = result_->data_ptr<scalar_t>();
at::cuda::blas::bgemm<scalar_t>(
transpose_batch1 ? batch1_->is_conj() ? 'c' : 't' : 'n',
transpose_batch2 ? batch2_->is_conj() ? 'c' : 't' : 'n',
m, n, k,
alpha_val,
batch1_ptr, lda, batch1_->strides()[0],
batch2_ptr, ldb, batch2_->strides()[0],
beta_val,
result_ptr, ldc, result_->strides()[0],
num_batches
);
});
if (!result.is_same(*result_)) {
result.copy_(*result_);
}
return result;
}
} // anonymous namespace
TORCH_IMPL_FUNC(addmm_out_cuda)(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha, const Tensor& result) {
addmm_out_cuda_impl(const_cast<Tensor&>(result), self, mat1, mat2, beta, alpha);
}
TORCH_IMPL_FUNC(addmm_activation_out_cuda)(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha, bool use_gelu, const Tensor& result) {
addmm_out_cuda_impl(const_cast<Tensor&>(result), self, mat1, mat2, beta, alpha, use_gelu ? Activation::GELU : Activation::RELU);
}
TORCH_IMPL_FUNC(mm_out_cuda)(const Tensor& self, const Tensor& mat2, const Tensor& result) {
addmm_out_cuda_impl(const_cast<Tensor&>(result), result, self, mat2, 0, 1);
}
TORCH_IMPL_FUNC(baddbmm_out_cuda)(const Tensor& self, const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha, const Tensor& result) {
{
at::NoNamesGuard guard;
baddbmm_out_cuda_impl(result, self, batch1, batch2, beta, alpha);
}
}
TORCH_IMPL_FUNC(bmm_out_cuda)(const Tensor& batch1, const Tensor& batch2, const Tensor &result) {
Scalar beta(0.0);
Scalar alpha(1.0);
{
NoNamesGuard guard;
baddbmm_out_cuda_impl(result, result, batch1, batch2, beta, alpha);
}
}
namespace {
inline void dot_check(const Tensor& self, const Tensor& other) {
TORCH_CHECK(
self.dim() == 1 && other.dim() == 1,
"1D tensors expected, but got ",
self.dim(),
"D and ",
other.dim(),
"D tensors");
TORCH_CHECK(
self.scalar_type() == other.scalar_type(),
"dot : expected both vectors to have same dtype, but found ",
self.scalar_type(),
" and ",
other.scalar_type());
TORCH_CHECK(
self.numel() == other.numel(),
"inconsistent tensor size, expected tensor [",
self.numel(),
"] and src [",
other.numel(),
"] to have the same number of elements, but got ",
self.numel(),
" and ",
other.numel(),
" elements respectively");
TORCH_CHECK(
self.device() == other.device(),
"expected all tensors to be on the same device. Found: ",
self.device(),
", ",
other.device());
TORCH_CHECK(
(self.numel() <= INT_MAX) && (self.stride(0) <= INT_MAX) &&
(other.stride(0) <= INT_MAX),
"dot only supports n, incx, incy with the bound [val] <= %d",
INT_MAX);
}
} // anonymous namespace
Tensor dot_cuda(const Tensor& self, const Tensor& other) {
if (self.is_complex()) {
if (self.is_conj()) {
if (other.is_conj()) {
return (dot_cuda(self.conj(), other.conj())).conj();
} else {
return vdot_cuda(self.conj(), other);
}
} else if (other.is_conj()) {
return vdot_cuda(other.conj(), self);
}
}
at::NoNamesGuard guard;
dot_check(self, other);
const int n = static_cast<int>(self.numel());
int incx = static_cast<int>(self.stride(0));
int incy = static_cast<int>(other.stride(0));
if (n == 1) {
incx = 1;
incy = 1;
}
if (self._is_zerotensor() || other._is_zerotensor()) {
return at::_efficientzerotensor({}, self.options());
}
return AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
ScalarType::Half, ScalarType::BFloat16,
self.scalar_type(), "dot",
[&] {
Tensor result = at::empty({}, self.options());
auto handle = at::cuda::getCurrentCUDABlasHandle();
at::cuda::blas::PointerModeGuard pointerModeGuard(handle, CUBLAS_POINTER_MODE_DEVICE);
at::cuda::blas::dot<scalar_t>(
handle,
n,
self.data_ptr<scalar_t>(),
incx,
other.data_ptr<scalar_t>(),
incy,
result.data_ptr<scalar_t>());
return result;
});
}
Tensor vdot_cuda(const Tensor& self, const Tensor& other) {
if (!self.is_complex()) {
return dot_cuda(self, other);
}
if (self.is_conj()) {
if (other.is_conj()) {
return vdot_cuda(other.conj(), self.conj());
} else {
return dot_cuda(self.conj(), other);
}
} else if (other.is_conj()) {
return (dot_cuda(self, other.conj())).conj();
}
at::NoNamesGuard guard;
dot_check(self, other);
if (self._is_zerotensor() || other._is_zerotensor()) {
return at::_efficientzerotensor({}, self.options());
}
const int n = static_cast<int>(self.numel());
int incx = static_cast<int>(self.stride(0));
int incy = static_cast<int>(other.stride(0));
if (n == 1) {
incx = 1;
incy = 1;
}
return AT_DISPATCH_COMPLEX_TYPES(self.scalar_type(), "vdot", [&] {
Tensor result = at::empty({}, self.options());
auto handle = at::cuda::getCurrentCUDABlasHandle();
at::cuda::blas::PointerModeGuard pointerModeGuard(
handle, CUBLAS_POINTER_MODE_DEVICE);
at::cuda::blas::vdot<scalar_t>(
handle,
n,
self.data_ptr<scalar_t>(),
incx,
other.data_ptr<scalar_t>(),
incy,
result.data_ptr<scalar_t>());
return result;
});
}
TORCH_IMPL_FUNC(addmv_out_cuda)(const Tensor &self, const Tensor &mat, const Tensor &vec, const Scalar& beta_, const Scalar& alpha_, const Tensor& result) {
c10::MaybeOwned<Tensor> self_ = expand_size(self, {mat.size(0)});
auto betaval = beta_.toComplexDouble();
if (mat.numel() == 0) {
// shortcut for an empty matrix
// By definition, when beta==0, values in self should be ignored. nans and infs
// should not propagate
if (betaval == 0.0) {
result.zero_();
} else {
at::mul_out(
const_cast<Tensor&>(result),
self,
at::native::scalar_tensor(
beta_, self.scalar_type(), c10::nullopt /* layout */, at::kCPU, c10::nullopt /* pin_memory */));
}
} else {
if (!result.is_same(*self_) && betaval != 0.0) { //if beta is 0, result contents will be zeroed later
at::native::copy_(const_cast<Tensor&>(result), *self_);
}
if (result.numel() != 0) {
auto r_stride = result.stride(0);
auto vec_stride = vec.stride(0);
// Check for contiguity of `vec` and update `vec_stride` accordingly
const auto vec_contiguous = vec_stride == 0 ? vec.contiguous() : vec;
// A vector can be contiguous and have a stride of zero if it has it is of length 1
vec_stride = std::max<int64_t>(vec_contiguous.stride(0), 1LL);
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, mat.scalar_type(), "addmv_impl_cuda", [&] {
auto beta = beta_.to<scalar_t>();
auto alpha = alpha_.to<scalar_t>();
if (mat.stride(0) == 1 && mat.stride(1) >= std::max<int64_t>(1, mat.size(0))) {
at::cuda::blas::gemv<scalar_t>('n',
mat.size(0), mat.size(1), alpha, mat.data_ptr<scalar_t>(), mat.stride(1), vec_contiguous.data_ptr<scalar_t>(),
vec_stride, beta, result.data_ptr<scalar_t>(), r_stride);
}
else if (mat.stride(1) == 1 && mat.stride(0) >= std::max<int64_t>(1, mat.size(1))) {
at::cuda::blas::gemv<scalar_t>('t',
mat.size(1), mat.size(0), alpha, mat.data_ptr<scalar_t>(), mat.stride(0),
vec_contiguous.data_ptr<scalar_t>(), vec_stride, beta, result.data_ptr<scalar_t>(), r_stride);
}
else {
Tensor cmat = mat.contiguous();
at::cuda::blas::gemv<scalar_t>('t',
mat.size(1), mat.size(0), alpha, cmat.data_ptr<scalar_t>(), cmat.stride(0),
vec_contiguous.data_ptr<scalar_t>(), vec_stride, beta, result.data_ptr<scalar_t>(), r_stride);
}
});
}
}
}
Tensor& _int_mm_out_cuda(const Tensor& self, const Tensor& mat2, Tensor& result) {
// NOTE: cuBLAS is currently broken for some combination of transposed inputs.
TORCH_CHECK(self.dim() == 2, "Expected self to be of dimension 2 but got ", self.dim());
TORCH_CHECK(mat2.dim() == 2, "Expected mat2 to be of dimension 2 but got ", mat2.dim());
TORCH_CHECK(self.size(0) > 16, "self.size(0) needs to be greater than 16, but got ", self.size(0));
TORCH_CHECK(self.size(1) > 0 && self.size(1) % 8 == 0, "self.size(1) needs to be greater than 0 and a multiple of 8, but got ", self.size(1));
TORCH_CHECK(self.size(1) == mat2.size(0), "self.size(1) needs to match mat2.size(0) but got ", self.size(1), " and ", mat2.size(0));
TORCH_CHECK(mat2.size(1) > 0 && mat2.size(1) % 8 == 0, "mat2.size(1) needs to be greater than 0 and a multiple of 8, but got ", mat2.size(1));
TORCH_CHECK(result.dtype() == at::kInt, "Expected result dtype to be of type kInt but got ", result.dtype());
TORCH_CHECK(result.size(0) == self.size(0), "Expected result.size(0) to be ", self.size(0), " but got ", result.size(0));
TORCH_CHECK(result.size(1) == mat2.size(1), "Expected result.size(1) to be ", mat2.size(1), " but got ", result.size(1));
TORCH_CHECK(result.dim() == 2, "Expected result to be of dimension 2 but got ", result.dim());
TORCH_CHECK(result.is_contiguous(), "Expected result to be contiguous.");
#if !defined(USE_ROCM) && !defined(_MSC_VER) && defined(CUDA_VERSION) && CUDA_VERSION == 11070
auto mat1 = self;
IntArrayRef mat1_sizes = mat1.sizes();
IntArrayRef mat2_sizes = mat2.sizes();
bool transpose_result;
c10::MaybeOwned<Tensor> result_ = prepare_matrix_for_cublas(result, transpose_result);
bool transpose_mat1;
bool transpose_mat2;
c10::MaybeOwned<Tensor> mat1_ = prepare_matrix_for_cublas(transpose_result ? mat2 : mat1, transpose_mat1, transpose_result);
c10::MaybeOwned<Tensor> mat2_ = prepare_matrix_for_cublas(transpose_result ? mat1 : mat2, transpose_mat2, transpose_result);
if (transpose_result) {
transpose_mat1 = !transpose_mat1;
transpose_mat2 = !transpose_mat2;
mat1_sizes = mat1_->sizes();
mat2_sizes = mat2_->sizes();
}
int64_t m = mat1_sizes[transpose_result ? 1 : 0];
int64_t k = mat1_sizes[transpose_result ? 0 : 1];
int64_t n = mat2_sizes[transpose_result ? 0 : 1];
int64_t mat1_ld = mat1_->stride((transpose_mat1 == transpose_result) ? 1 : 0);
int64_t mat2_ld = mat2_->stride((transpose_mat2 == transpose_result) ? 1 : 0);
int64_t result_ld = result_->stride(transpose_result ? 0 : 1);
at::cuda::blas::gemm_and_bias<int8_t, int32_t, std::nullptr_t>(
transpose_mat1,
transpose_mat2,
m,
n,
k,
1.0,
mat1_->data_ptr<int8_t>(),
mat1_ld,
mat2_->data_ptr<int8_t>(),
mat2_ld,
nullptr,
result_->data_ptr<int32_t>(),
result_ld,
cuda::blas::GEMMAndBiasActivationEpilogue::NONE,
false /* use_heuristic */);
if (!result.is_same(*result_)) {
result.copy_(*result_);
}
#else
#if !defined(USE_ROCM) && !defined(_MSC_VER) && defined(CUDA_VERSION)
TORCH_CHECK(false, "_int_mm_out_cuda not compiled for CUDA ", CUDA_VERSION);
#else
TORCH_CHECK(false, "_int_mm_out_cuda not compiled for this platform.");
#endif
#endif
return result;
}
Tensor _int_mm_cuda(const Tensor& self, const Tensor& mat2) {
Tensor result = at::empty({self.size(0), mat2.size(1)}, self.options().dtype(at::kInt));
return _int_mm_out_cuda(self, mat2, result);
}
} // namespace at::native