forked from kulinseth/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinaryMiscBackwardOpsKernels.cu
131 lines (122 loc) · 4.8 KB
/
BinaryMiscBackwardOpsKernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/native/BinaryOps.h>
#include <limits>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/cuda/JitLoops.cuh>
// NOTE: CUDA on Windows requires that the enclosing function
// of a __device__ lambda not have internal linkage.
namespace at::native {
CONSTEXPR_EXCEPT_WIN_CUDA char sigmoid_backward_name[] = "sigmoid_backward";
void sigmoid_backward_kernel_cuda(TensorIteratorBase& iter) {
auto dtype = iter.dtype();
if(isComplexType(dtype)) {
#if AT_USE_JITERATOR()
static const auto sigmoid_backward_string = jiterator_stringify(
template <typename T>
T sigmoid_backward(T a, T b) {
return a * std::conj((T{1.} - b) * b);
}
); // sigmoid_backward_string
AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, dtype, "sigmoid_backward_cuda", [&]() {
jitted_gpu_kernel<
/*name=*/ sigmoid_backward_name,
/*return_dtype=*/ scalar_t,
/*common_dtype=*/ scalar_t,
/*arity=*/ 2>(iter, sigmoid_backward_string);
});
#else
AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, dtype, "sigmoid_backward_cuda", [&]() {
gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
using comp_t = at::opmath_type<scalar_t>;
const auto one = comp_t{1.};
const auto comp_b = static_cast<comp_t>(b);
const auto comp_a = static_cast<comp_t>(a);
return static_cast<scalar_t>(comp_a * std::conj((one - comp_b) * comp_b));
});
});
#endif
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, dtype, "sigmoid_backward_cuda", [&]() {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return a * (scalar_t(1.) - b) * b;
});
});
}
}
void logit_backward_kernel_cuda(TensorIteratorBase& iter, const Scalar& eps_scalar) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
iter.dtype(),
"logit_cuda",
[&]() {
using T_ACC = acc_type<scalar_t, true>;
const T_ACC eps = eps_scalar.to<T_ACC>();
if (eps < T_ACC(0)) {
gpu_kernel(
iter, [] GPU_LAMBDA(scalar_t dy, scalar_t x) -> scalar_t {
const T_ACC dy_acc = static_cast<T_ACC>(dy);
const T_ACC x_acc = static_cast<T_ACC>(x);
return (x_acc < T_ACC(0) || x_acc > T_ACC(1))
? std::numeric_limits<T_ACC>::quiet_NaN()
: dy_acc / (x_acc * (T_ACC(1) - x_acc));
});
} else {
const T_ACC lo = eps;
const T_ACC hi = T_ACC(1) - eps;
gpu_kernel(
iter, [lo, hi] GPU_LAMBDA(scalar_t dy, scalar_t x) -> scalar_t {
const T_ACC dy_acc = static_cast<T_ACC>(dy);
const T_ACC x_acc = static_cast<T_ACC>(x);
return (x_acc < lo || x_acc > hi)
? T_ACC(0)
: dy_acc / (x_acc * (T_ACC(1) - x_acc));
});
}
});
}
CONSTEXPR_EXCEPT_WIN_CUDA char tanh_backward_name[] = "tanh_backward";
void tanh_backward_kernel_cuda(TensorIteratorBase& iter) {
auto dtype = iter.dtype();
if(isComplexType(dtype)) {
#if AT_USE_JITERATOR()
static const auto tanh_backward_string = jiterator_stringify(
template <typename T>
T tanh_backward(T a, T b) {
return a * std::conj(T{1.} - b * b);
}
); // tanh_backward_string
AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, dtype, "tanh_backward_complex_cuda", [&]() {
jitted_gpu_kernel<
/*name=*/ tanh_backward_name,
/*return_dtype=*/ scalar_t,
/*common_dtype=*/ scalar_t,
/*arity=*/ 2>(iter, tanh_backward_string);
});
#else
AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, dtype, "tanh_backward_complex_cuda", [&]() {
gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
using comp_t = at::opmath_type<scalar_t>;
const auto one = comp_t{1.};
const auto comp_b = static_cast<comp_t>(b);
const auto comp_a = static_cast<comp_t>(a);
return static_cast<scalar_t>(comp_a * std::conj(one - comp_b * comp_b));
});
});
#endif
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, dtype, "tanh_backward_cuda", [&]() {
gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return a * (scalar_t{1.} - b * b);
});
});
}
}
REGISTER_DISPATCH(sigmoid_backward_stub, &sigmoid_backward_kernel_cuda);
REGISTER_DISPATCH(logit_backward_stub, &logit_backward_kernel_cuda);
REGISTER_DISPATCH(tanh_backward_stub, &tanh_backward_kernel_cuda);
} // namespace at::native