forked from kulinseth/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CITATION.cff
73 lines (73 loc) · 1.98 KB
/
CITATION.cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
cff-version: 1.2.0
message: If you use this software, please cite it as below.
title: PyTorch
authors:
- family-names: PyTorch Team
url: https://pytorch.org
preferred-citation:
type: conference-paper
title: "PyTorch: An Imperative Style, High-Performance Deep Learning Library"
authors:
- family-names: Paszke
given-names: Adam
- family-names: Gross
given-names: Sam
- family-names: Massa
given-names: Francisco
- family-names: Lerer
given-names: Adam
- family-names: Bradbury
given-names: James
- family-names: Chanan
given-names: Gregory
- family-names: Killeen
given-names: Trevor
- family-names: Lin
given-names: Zeming
- family-names: Gimelshein
given-names: Natalia
- family-names: Antiga
given-names: Luca
- family-names: Desmaison
given-names: Alban
- family-names: Kopf
given-names: Andreas
- family-names: Yang
given-names: Edward
- family-names: DeVito
given-names: Zachary
- family-names: Raison
given-names: Martin
- family-names: Tejani
given-names: Alykhan
- family-names: Chilamkurthy
given-names: Sasank
- family-names: Steiner
given-names: Benoit
- family-names: Fang
given-names: Lu
- family-names: Bai
given-names: Junjie
- family-names: Chintala
given-names: Soumith
collection-title: Advances in Neural Information Processing Systems 32
collection-type: proceedings
editors:
- family-names: Wallach
given-names: H.
- family-names: Larochelle
given-names: H.
- family-names: Beygelzimer
given-names: A.
- family-names: "d'Alché-Buc"
given-names: F.
- family-names: Fox
given-names: E.
- family-names: Garnett
given-names: R.
start: 8024
end: 8035
year: 2019
publisher:
name: Curran Associates, Inc.
url: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf