-
Notifications
You must be signed in to change notification settings - Fork 77
/
train.py
288 lines (265 loc) · 22.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# -*- coding: utf-8 -*-
#training the model.
#process--->1.load data(X:list of lint,y:int). 2.create session. 3.feed data. 4.training (5.validation) ,(6.prediction)
#import sys
#reload(sys)
#sys.setdefaultencoding('utf8')
import tensorflow as tf
import numpy as np
from predictor.model import HierarchicalAttention
from data_util_hdf5 import create_or_load_vocabulary,load_data_multilabel,get_part_validation_data #,imprisonment_mean,imprisonment_std
import os
from evaluation_matrix import *
import gensim
from gensim.models import KeyedVectors
#configuration
FLAGS=tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("data_path","./data","path of traning data.")
tf.app.flags.DEFINE_string("traning_data_file","./data_big/cail2018_big_downsmapled.json","path of traning data.") #./data/cail2018_bi.json
tf.app.flags.DEFINE_string("valid_data_file","./data/data_valid_checked.json","path of validation data.")
tf.app.flags.DEFINE_string("test_data_path","./data/data_test.json","path of validation data.")
tf.app.flags.DEFINE_string("predict_path","./predictor","path of traning data.")
tf.app.flags.DEFINE_string("ckpt_dir","./predictor/checkpoint/","checkpoint location for the model") #save to here, so make it easy to upload for test
tf.app.flags.DEFINE_string("tokenize_style","word","checkpoint location for the model") #save to here, so make it easy to upload for test
tf.app.flags.DEFINE_integer("vocab_size",100000,"maximum vocab size.") #80000
tf.app.flags.DEFINE_float("learning_rate",0.0003,"learning rate") #0.001
tf.app.flags.DEFINE_integer("batch_size", 128, "Batch size for training/evaluating.") #批处理的大小 32-->128
tf.app.flags.DEFINE_integer("decay_steps", 1000, "how many steps before decay learning rate.") #6000批处理的大小 32-->128
tf.app.flags.DEFINE_float("decay_rate", 1.0, "Rate of decay for learning rate.") #0.65一次衰减多少
tf.app.flags.DEFINE_float("keep_dropout_rate", 0.5, "percentage to keep when using dropout.") #0.65一次衰减多少
tf.app.flags.DEFINE_integer("sentence_len",500,"max sentence length")#400
tf.app.flags.DEFINE_integer("num_sentences",16,"number of sentences")
tf.app.flags.DEFINE_integer("embed_size",300,"embedding size") #300-->64
tf.app.flags.DEFINE_integer("hidden_size",256,"hidden size") #128
tf.app.flags.DEFINE_integer("num_filters",256,"number of filter for a filter map used in CNN.") #128
tf.app.flags.DEFINE_boolean("is_training_flag",True,"is training.true:tranining,false:testing/inference")
tf.app.flags.DEFINE_integer("num_epochs",18,"number of epochs to run.")
tf.app.flags.DEFINE_integer("validate_every", 1, "Validate every validate_every epochs.") #每10轮做一次验证
tf.app.flags.DEFINE_boolean("use_pretrained_embedding",True,"whether to use embedding or not.")#
tf.app.flags.DEFINE_string("word2vec_model_path","./data/sgns.target.word-word.dynwin5.thr10.neg5.dim300.iter5","word2vec's vocabulary and vectors") # data/sgns.target.word-word.dynwin5.thr10.neg5.dim300.iter5--->data/news_12g_baidubaike_20g_novel_90g_embedding_64.bin--->sgns.merge.char
tf.app.flags.DEFINE_boolean("multi_label_flag",True,"use multi label or single label.")
tf.app.flags.DEFINE_boolean("test_mode",False,"whether it is test mode. if it is test mode, only small percentage of data will be used")
tf.app.flags.DEFINE_string("model","text_cnn","name of model:han,text_cnn,dp_cnn,c_gru,c_gru2,gru,pooling")
tf.app.flags.DEFINE_string("pooling_strategy","hier","pooling strategy used when model is pooling. {avg,max,concat,hier}")
#you can change this
filter_sizes=[2,3,4,5] #,6,7,8]# [6, 7, 8, 9, 10]
stride_length=1
def main(_):
print("model:",FLAGS.model)
name_scope=FLAGS.model
vocab_word2index, accusation_label2index,articles_label2index= create_or_load_vocabulary(FLAGS.data_path,FLAGS.predict_path,FLAGS.traning_data_file,FLAGS.vocab_size,name_scope=name_scope,test_mode=FLAGS.test_mode,tokenize_style=FLAGS.tokenize_style) #tokenize_style=FLAGS.tokenize_style
deathpenalty_label2index={True:1,False:0}
lifeimprisonment_label2index={True:1,False:0}
vocab_size = len(vocab_word2index);print("cnn_model.vocab_size:",vocab_size);
accusation_num_classes=len(accusation_label2index);article_num_classes=len(articles_label2index)
deathpenalty_num_classes=len(deathpenalty_label2index);lifeimprisonment_num_classes=len(lifeimprisonment_label2index)
print("accusation_num_classes:",accusation_num_classes);print("article_num_clasess:",article_num_classes)
train,valid, test= load_data_multilabel(FLAGS.traning_data_file,FLAGS.valid_data_file,FLAGS.test_data_path,vocab_word2index, accusation_label2index,articles_label2index,deathpenalty_label2index,lifeimprisonment_label2index,
FLAGS.sentence_len,name_scope=name_scope,test_mode=FLAGS.test_mode,tokenize_style=FLAGS.tokenize_style) #,tokenize_style=FLAGS.tokenize_style
train_X, train_feature_X, train_Y_accusation, train_Y_article, train_Y_deathpenalty, train_Y_lifeimprisonment, train_Y_imprisonment,train_weights_accusation,train_weights_article = train
valid_X, valid_feature_X, valid_Y_accusation, valid_Y_article, valid_Y_deathpenalty, valid_Y_lifeimprisonment, valid_Y_imprisonment,valid_weights_accusation,valid_weights_article = valid
test_X, test_feature_X, test_Y_accusation, test_Y_article, test_Y_deathpenalty, test_Y_lifeimprisonment, test_Y_imprisonment,test_weights_accusation,test_weights_article = test
#print some message for debug purpose
feature_length=len(train_feature_X[0])
print("length of training data:",len(train_X),";valid data:",len(valid_X),";test data:",len(test_X),";feature_length:",feature_length)
print("trainX_[0]:", train_X[0]); print("train_feature_X[0]:",train_feature_X[0])
train_Y_accusation_short1 = get_target_label_short(train_Y_accusation[0]);train_Y_accusation_short2 = get_target_label_short(train_Y_accusation[1]);train_Y_accusation_short3 = get_target_label_short(train_Y_accusation[2]);train_Y_accusation_short4 = get_target_label_short(train_Y_accusation[20]);train_Y_accusation_short5 = get_target_label_short(train_Y_accusation[200])
train_Y_article_short = get_target_label_short(train_Y_article[0])
print("train_Y_accusation_short:", train_Y_accusation_short1,train_Y_accusation_short2,train_Y_accusation_short3,train_Y_accusation_short4,train_Y_accusation_short4,";train_Y_article_short:",train_Y_article_short)
print("train_Y_deathpenalty:",train_Y_deathpenalty[0],";train_Y_lifeimprisonment:",train_Y_lifeimprisonment[0],";train_Y_imprisonment:",train_Y_imprisonment[0])
#2.create session.
config=tf.ConfigProto()
config.gpu_options.allow_growth=True
with tf.Session(config=config) as sess:
#Instantiate Model
model=HierarchicalAttention( accusation_num_classes,article_num_classes, deathpenalty_num_classes,lifeimprisonment_num_classes,FLAGS.learning_rate,FLAGS.batch_size,
FLAGS.decay_steps, FLAGS.decay_rate, FLAGS.sentence_len, FLAGS.num_sentences,vocab_size, FLAGS.embed_size,FLAGS.hidden_size,
num_filters=FLAGS.num_filters,model=FLAGS.model,filter_sizes=filter_sizes,stride_length=stride_length,pooling_strategy=FLAGS.pooling_strategy,feature_length=feature_length)
#Initialize Save
saver=tf.train.Saver()
if os.path.exists(FLAGS.ckpt_dir+"checkpoint"):
print("Restoring Variables from Checkpoint.")
saver.restore(sess,tf.train.latest_checkpoint(FLAGS.ckpt_dir))
for i in range(2): #decay learning rate if necessary.
print(i,"Going to decay learning rate by half.")
sess.run(model.learning_rate_decay_half_op)
#sess.run(model.learning_rate_decay_half_op)
else:
print('Initializing Variables')
sess.run(tf.global_variables_initializer())
if FLAGS.use_pretrained_embedding: #load pre-trained word embedding
vocabulary_index2word={index:word for word,index in vocab_word2index.items()}
assign_pretrained_word_embedding(sess, vocabulary_index2word, vocab_size, model,FLAGS.word2vec_model_path,model.Embedding)
#assign_pretrained_word_embedding(sess, vocabulary_index2word, vocab_size, model,FLAGS.word2vec_model_path2,model.Embedding2) #TODO
curr_epoch=sess.run(model.epoch_step)
#3.feed data & training
number_of_training_data=len(train_X)
batch_size=FLAGS.batch_size
iteration=0
accasation_score_best=-100
for epoch in range(curr_epoch,FLAGS.num_epochs):
loss_total, counter = 0.0, 0
for start, end in zip(range(0, number_of_training_data, batch_size),range(batch_size, number_of_training_data, batch_size)):
iteration=iteration+1
if epoch==0 and counter==0:
print("trainX[start:end]:",train_X[start:end],"train_X.shape:",train_X.shape)
feed_dict = {model.input_x: train_X[start:end],model.input_feature: train_feature_X[start:end],model.input_y_accusation:train_Y_accusation[start:end],model.input_y_article:train_Y_article[start:end],
model.input_y_deathpenalty:train_Y_deathpenalty[start:end],model.input_y_lifeimprisonment:train_Y_lifeimprisonment[start:end],
model.input_y_imprisonment:train_Y_imprisonment[start:end],model.input_weight_accusation:train_weights_accusation[start:end],
model.input_weight_article:train_weights_article[start:end],model.dropout_keep_prob: FLAGS.keep_dropout_rate,
model.is_training_flag:FLAGS.is_training_flag}
#model.iter: iteration,model.tst: not FLAGS.is_training
current_loss,lr,loss_accusation,loss_article,loss_deathpenalty,loss_lifeimprisonment,loss_imprisonment,l2_loss,_=\
sess.run([model.loss_val,model.learning_rate,model.loss_accusation,model.loss_article,model.loss_deathpenalty,
model.loss_lifeimprisonment,model.loss_imprisonment,model.l2_loss,model.train_op],feed_dict) #model.update_ema
loss_total,counter=loss_total+current_loss,counter+1
if counter %20==0:
print("Epoch %d\tBatch %d\tTrain Loss:%.3f\tLearning rate:%.5f" %(epoch,counter,float(loss_total)/float(counter),lr))
if counter %60==0:
print("Loss_accusation:%.3f\tLoss_article:%.3f\tLoss_deathpenalty:%.3f\tLoss_lifeimprisonment:%.3f\tLoss_imprisonment:%.3f\tL2_loss:%.3f\tCurrent_loss:%.3f\t"
%(loss_accusation,loss_article,loss_deathpenalty,loss_lifeimprisonment,loss_imprisonment,l2_loss,current_loss))
########################################################################################################
if start!=0 and start%(3900*FLAGS.batch_size)==0: # eval every 400 steps.
loss, f1_macro_accasation, f1_micro_accasation, f1_a_article, f1_i_aritcle, f1_a_death, f1_i_death, f1_a_life, f1_i_life, score_penalty = \
do_eval(sess, model, valid,iteration,accusation_num_classes,article_num_classes,accusation_label2index)
accasation_score=((f1_macro_accasation+f1_micro_accasation)/2.0)*100.0
article_score=((f1_a_article+f1_i_aritcle)/2.0)*100.0
score_all=accasation_score+article_score+score_penalty #3ecfDzJbjUvZPUdS
print("Epoch %d ValidLoss:%.3f\tMacro_f1_accasation:%.3f\tMicro_f1_accsastion:%.3f\tMacro_f1_article:%.3f Micro_f1_article:%.3f Macro_f1_deathpenalty:%.3f\t"
"Micro_f1_deathpenalty:%.3f\tMacro_f1_lifeimprisonment:%.3f\tMicro_f1_lifeimprisonment:%.3f\t"
% (epoch, loss, f1_macro_accasation, f1_micro_accasation, f1_a_article, f1_i_aritcle,f1_a_death, f1_i_death, f1_a_life, f1_i_life))
print("1.Accasation Score:", accasation_score, ";2.Article Score:", article_score, ";3.Penalty Score:",score_penalty, ";Score ALL:", score_all)
# save model to checkpoint
if accasation_score>accasation_score_best:
save_path = FLAGS.ckpt_dir + "model.ckpt" #TODO temp remove==>only save checkpoint for each epoch once.
print("going to save check point.")
saver.save(sess, save_path, global_step=epoch)
accasation_score_best=accasation_score
#epoch increment
print("going to increment epoch counter....")
sess.run(model.epoch_increment)
# 4.validation
print(epoch,FLAGS.validate_every,(epoch % FLAGS.validate_every==0))
if epoch % FLAGS.validate_every==0:
loss,f1_macro_accasation,f1_micro_accasation,f1_a_article,f1_i_aritcle,f1_a_death,f1_i_death,f1_a_life,f1_i_life,score_penalty=\
do_eval(sess,model,valid,iteration,accusation_num_classes,article_num_classes,accusation_label2index)
accasation_score = ((f1_macro_accasation + f1_micro_accasation) / 2.0) * 100.0
article_score = ((f1_a_article + f1_i_aritcle) / 2.0) * 100.0
score_all = accasation_score + article_score + score_penalty
print()
print("Epoch %d ValidLoss:%.3f\tMacro_f1_accasation:%.3f\tMicro_f1_accsastion:%.3f\tMacro_f1_article:%.3f\tMicro_f1_article:%.3f\tMacro_f1_deathpenalty:%.3f\t"
"Micro_f1_deathpenalty:%.3f\tMacro_f1_lifeimprisonment:%.3f\tMicro_f1_lifeimprisonment:%.3f\t"
% (epoch,loss,f1_macro_accasation,f1_micro_accasation,f1_a_article,f1_i_aritcle,f1_a_death,f1_i_death,f1_a_life,f1_i_life))
print("===>1.Accasation Score:", accasation_score, ";2.Article Score:", article_score,";3.Penalty Score:",score_penalty,";Score ALL:",score_all)
#save model to checkpoint
if accasation_score > accasation_score_best:
save_path=FLAGS.ckpt_dir+"model.ckpt"
print("going to save check point.")
saver.save(sess,save_path,global_step=epoch)
accasation_score_best = accasation_score
#if (epoch == 2 or epoch == 4 or epoch == 7 or epoch==10 or epoch == 13 or epoch==19):
#if (epoch == 1 or epoch == 3 or epoch == 6 or epoch == 9 or epoch == 12 or epoch == 18):
if (epoch == 0 or epoch == 2 or epoch == 4 or epoch == 6 or epoch == 9 or epoch == 13):
for i in range(2):
print(i, "Going to decay learning rate by half.")
sess.run(model.learning_rate_decay_half_op)
# 5.最后在测试集上做测试,并报告测试准确率 Testto 0.0
loss_test, f1_macro_accasation_test, f1_micro_accasation_test, f1_a_article_test, f1_i_aritcle_test, f1_a_death_test, f1_i_death_test, f1_a_life_test, f1_i_life_test, score_penalty_test=\
do_eval(sess, model, test, iteration, accusation_num_classes, article_num_classes, accusation_label2index)
print("TEST.FINAL.Epoch %d ValidLoss:%.3f\tMacro_f1_accasation:%.3f\tMicro_f1_accsastion:%.3f\tMacro_f1_article:%.3f\tMicro_f1_article:%.3f\tMacro_f1_deathpenalty:%.3f\t"
"Micro_f1_deathpenalty:%.3f\tMacro_f1_lifeimprisonment:%.3f\tMicro_f1_lifeimprisonment:%.3f\t"
% (epoch, loss_test, f1_macro_accasation_test, f1_micro_accasation_test, f1_a_article_test, f1_i_aritcle_test, f1_a_death_test,
f1_i_death_test, f1_a_life_test, f1_i_life_test))
accasation_score_test = ((f1_macro_accasation_test + f1_micro_accasation_test) / 2.0) * 100.0
article_score_test = ((f1_a_article_test + f1_i_aritcle_test) / 2.0) * 100.0
score_all_test = accasation_score_test + article_score_test + score_penalty_test
print("TEST.Accasation Score:", accasation_score_test, ";2.Article Score:", article_score_test, ";3.Penalty Score:",score_penalty_test, ";Score ALL:", score_all_test)
#print("Test Loss:%.3f\tMacro f1:%.3f\tMicro f1:%.3f" % (test_loss,macrof1,microf1))
print("training completed...")
pass
def do_eval(sess,model,valid,iteration,accusation_num_classes,article_num_classes,accusation_label2index):
valid_X, valid_X_feature,valid_Y_accusation, valid_Y_article, valid_Y_deathpenalty, valid_Y_lifeimprisonment, valid_Y_imprisonment,_,_=get_part_validation_data(valid)
number_examples=len(valid_X)
print("number_examples:",number_examples)
eval_loss,eval_counter=0.0,0
batch_size=FLAGS.batch_size
label_dict_accusation=init_label_dict(accusation_num_classes)
label_dict_article=init_label_dict(article_num_classes)
label_dict_deathpenalty = init_label_dict(2)
label_dict_lifeimprisonment = init_label_dict(2)
eval_macro_f1_accusation, eval_micro_f1_accusation,eval_r2_score_imprisonment,eval_macro_f1_article,eval_micro_f1_article,eval_r2_score_imprisonment = 0.0,0.0,0.0,0.0,0.0,0.0
eval_penalty_score=0.0
for start,end in zip(range(0,number_examples,batch_size),range(batch_size,number_examples,batch_size)):
feed_dict = {model.input_x: valid_X[start:end], model.input_feature: valid_X_feature[start:end],
model.input_y_accusation:valid_Y_accusation[start:end],model.input_y_article:valid_Y_article[start:end],
model.input_y_deathpenalty:valid_Y_deathpenalty[start:end],model.input_y_lifeimprisonment:valid_Y_lifeimprisonment[start:end],
model.input_y_imprisonment:valid_Y_imprisonment[start:end],model.input_weight_accusation:
[1.0 for i in range(batch_size)],model.input_weight_article:[1.0 for i in range(batch_size)],
model.dropout_keep_prob: 1.0,model.is_training_flag:False}#,model.iter: iteration,model.tst: True}
curr_eval_loss, logits_accusation,logits_article,logits_deathpenalty,logits_lifeimprisonment,logits_imprisonment= sess.run(
[model.loss_val,model.logits_accusation_p,model.logits_article_p,model.logits_deathpenalty_p,model.logits_lifeimprisonment_p,
model.logits_imprisonment],feed_dict)#logits:[batch_size,label_size]
#compute confuse matrix for accusation,relevant article,death penalty,life imprisonment
label_dict_accusation=compute_confuse_matrix_batch(valid_Y_accusation[start:end],logits_accusation,label_dict_accusation,name='accusation')
label_dict_article = compute_confuse_matrix_batch(valid_Y_article[start:end],logits_article,label_dict_article,name='article')
label_dict_deathpenalty = compute_confuse_matrix_batch(valid_Y_deathpenalty[start:end],logits_deathpenalty,label_dict_deathpenalty,name='deathpenalty')
label_dict_lifeimprisonment = compute_confuse_matrix_batch(valid_Y_lifeimprisonment[start:end],logits_lifeimprisonment,label_dict_lifeimprisonment,name='lifeimprisionment')
penalty_score=compute_penalty_score_batch(valid_Y_deathpenalty[start:end], logits_deathpenalty,
valid_Y_lifeimprisonment[start:end], logits_lifeimprisonment,valid_Y_imprisonment, logits_imprisonment)
eval_penalty_score=eval_penalty_score+penalty_score
eval_loss=eval_loss+curr_eval_loss
eval_counter=eval_counter+1
#compute f1_micro & f1_macro for accusation,article,deathpenalty,lifeimprisonment
f1_micro_accusation,f1_macro_accusation=compute_micro_macro(label_dict_accusation) #label_dict_accusation is a dict, key is: accusation,value is: (TP,FP,FN). where TP is number of True Positive
compute_accusation_f1_score_write_for_debug(label_dict_accusation, accusation_label2index)
f1_micro_article, f1_macro_article = compute_micro_macro(label_dict_article)
f1_micro_deathpenalty, f1_macro_deathpenalty = compute_micro_macro(label_dict_deathpenalty)
f1_micro_lifeimprisonment, f1_macro_lifeimprisonment = compute_micro_macro(label_dict_lifeimprisonment)
print("f1_micro_accusation:",f1_micro_accusation,";f1_macro_accusation:",f1_macro_accusation)
return eval_loss/float(eval_counter+small_value),f1_macro_accusation,f1_micro_accusation, f1_macro_article, f1_micro_article, \
f1_macro_deathpenalty, f1_micro_deathpenalty,f1_macro_lifeimprisonment, f1_micro_lifeimprisonment,eval_penalty_score/float(eval_counter+small_value)
def assign_pretrained_word_embedding(sess,vocabulary_index2word,vocab_size,model,word2vec_model_path,embedding_instance):
print("using pre-trained word emebedding.started.word2vec_model_path:",word2vec_model_path)
##word2vec_model = word2vec.load(word2vec_model_path, kind='bin')
binary_flag = True
if '.bin' not in word2vec_model_path:
binary_flag = False
word2vec_model = KeyedVectors.load_word2vec_format(word2vec_model_path, binary=binary_flag,unicode_errors='ignore')
#word2vec_model = KeyedVectors.load_word2vec_format(word2vec_model_path, binary=True, unicode_errors='ignore') #
word2vec_dict = {}
count_=0
for word, vector in zip(word2vec_model.vocab, word2vec_model.vectors):
if count_==0:
print("pretrained word embedding size:",str(len(vector)))
count_=count_+1
if '.bin' not in word2vec_model_path:
word2vec_dict[word] = vector
else:
word2vec_dict[word] = vector /np.linalg.norm(vector) # normalize vector only when word2vec data is a .bin file
word_embedding_2dlist = [[]] * vocab_size # create an empty word_embedding list.
word_embedding_2dlist[0] = np.zeros(FLAGS.embed_size) # assign empty for first word:'PAD'
word_embedding_2dlist[1] = np.zeros(FLAGS.embed_size) # assign empty for first word:'PAD'
bound = np.sqrt(3.0) / np.sqrt(vocab_size) # bound for random variables.
count_exist = 0;
count_not_exist = 0
for i in range(2, vocab_size): # loop each word
word = vocabulary_index2word[i] # get a word
embedding = None
try:
embedding = word2vec_dict[word] # try to get vector:it is an array.
except Exception:
embedding = None
if embedding is not None: # the 'word' exist a embedding
word_embedding_2dlist[i] = embedding;
count_exist = count_exist + 1 # assign array to this word.
else: # no embedding for this word
word_embedding_2dlist[i] = np.random.uniform(-bound, bound, FLAGS.embed_size);
count_not_exist = count_not_exist + 1 # init a random value for the word.
word_embedding_final = np.array(word_embedding_2dlist) # covert to 2d array.
word_embedding = tf.constant(word_embedding_final, dtype=tf.float32) # convert to tensor
t_assign_embedding = tf.assign(embedding_instance,word_embedding) #TODO model.Embedding. assign this value to our embedding variables of our model.
sess.run(t_assign_embedding);
print("====>>>>word. exists embedding:", count_exist, " ;word not exist embedding:", count_not_exist)
print("using pre-trained word emebedding.ended...")
if __name__ == "__main__":
tf.app.run()