From def30fcb321362bd14e8fa37df0d0b9e51ec3727 Mon Sep 17 00:00:00 2001 From: baluteshih Date: Sun, 7 Apr 2024 01:03:35 +0800 Subject: [PATCH] Update Estimation from ckiseki --- codebook/6_Math/Estimation.tex | 57 +++++++++++++++++++++++++++------- 1 file changed, 45 insertions(+), 12 deletions(-) diff --git a/codebook/6_Math/Estimation.tex b/codebook/6_Math/Estimation.tex index 96db511e..957dd6dc 100644 --- a/codebook/6_Math/Estimation.tex +++ b/codebook/6_Math/Estimation.tex @@ -1,12 +1,45 @@ -\begin{itemize} -\item Estimation - -\begin{itemize} - %\itemsep-0.5em - \item The number of divisors of $n$ is at most around $100$ for $n<5e4$, $500$ for $n<1e7$, $2000$ for $n<1e10$, $200000$ for $n<1e19$. - \item The number of ways of writing $n$ as a sum of positive integers, disregarding the order of the summands. $1, 1, 2, 3, 5, 7, 11, 15, 22, 30$ for $n=0\sim 9$, $627$ for $n=20$, $\sim 2e5$ for $n=50$, $\sim 2e8$ for $n=100$. - \item Total number of partitions of $n$ distinct elements: $B(n)=1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597,$\\ - $27644437, 190899322, \ldots$. -\end{itemize} - -\end{itemize} +{ + \setlength{\tabcolsep}{1pt} + \setlength{\columnsep}{0pt} + + \noindent + \begin{tabular}{@{}c|*{20}{c@{\ }}@{}} + $n$ & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 20 & 30 & 40 & 50 & 100 \\ + \hline + $p(n)$ & 2 & 3 & 5 & 7 & 11 & 15 & 22 & 30 & 627 & 5604 & 4e4 & 2e5 & 2e8 \\ + \end{tabular} + + \noindent + \begin{tabular}{@{}c|*{20}{c@{\ }}@{}} + $n$ + & 100 & 1e3 & 1e6 & 1e9 & 1e12 & 1e15 & 1e18 \\ + \hline + $d(i)$ % max _ { i <= n } d(i) + & 12 & 32 & 240 & 1344 & 6720 & 26880 & 103680 \\ + \end{tabular} + + % \vspace{-2.0em} + % \begin{center} + % \begin{tabular}{c|*{20}c} + % $n$ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ + % \hline + % $n!$ & 1 & 2 & 6 & 24 & 120 & 720 & 5040 & 40320 & 3.6e5 & 3.6e6 & 4e7 \\ + % \end{tabular} + % \end{center} + + \noindent + \begin{tabular}{c|*{20}c} + $n$ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 + & 10 & 11 & 12 & 13 & 14 & 15 \\ + \hline + $\binom{2n}{n}$ & 2 & 6 & 20 & 70 & 252 & 924 & 3432 & 12870 & 48620 + & 184756 & 7e5 & 2e6 & 1e7 & 4e7 & 1.5e8 \\ + \end{tabular} + + \noindent + \begin{tabular}{c|*{20}c} + $n$ & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ + \hline + $B_n$ & 2 & 5 & 15 & 52 & 203 & 877 & 4140 & 21147 & 115975 & 7e5 & 4e6 & 3e7 \\ + \end{tabular} +}