-
Notifications
You must be signed in to change notification settings - Fork 37
/
caffe_client.py
166 lines (126 loc) · 7.83 KB
/
caffe_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from twisted.internet import reactor, protocol
import libs.grammar.q_protocol as q_protocol
import time
import socket
import argparse
import os
import shutil
import pandas as pd
from libs.caffe.model_exec import ModelExec
from libs.misc.clear_trained_models import clear_redundant_logs_caffe
def rm_model_dir(base_ckpt_dir, net):
ckpt_file_map_file = os.path.join(base_ckpt_dir, 'file_map.csv')
if os.path.exists(ckpt_file_map_file):
ckpt_file_map = pd.read_csv(ckpt_file_map_file)
# Check if net exists
if len(ckpt_file_map.net == net):
model_dir = os.path.join(base_ckpt_dir, str(ckpt_file_map[ckpt_file_map.net == net].file_number.values[0]))
if os.path.exists(model_dir):
shutil.rmtree(model_dir)
ckpt_file_map = ckpt_file_map[ckpt_file_map.net != net]
ckpt_file_map.to_csv(ckpt_file_map_file, index=False)
def get_model_dir(base_ckpt_dir, net):
if not os.path.exists(base_ckpt_dir):
os.makedirs(base_ckpt_dir)
ckpt_file_map_file = os.path.join(base_ckpt_dir, 'file_map.csv')
if not os.path.exists(ckpt_file_map_file):
pd.DataFrame(columns=['net', 'file_number']).to_csv(ckpt_file_map_file, index=False)
ckpt_file_map = pd.read_csv(ckpt_file_map_file)
# check if we already have a folder
if sum(ckpt_file_map['net'] == net) == 0:
next_ckpt = 1 if len(ckpt_file_map) == 0 else max(ckpt_file_map['file_number']) + 1
ckpt_file_map = pd.concat([ckpt_file_map, pd.DataFrame({'net':[net], 'file_number':[next_ckpt]})])
ckpt_file_map.to_csv(ckpt_file_map_file, index=False)
else:
next_ckpt = ckpt_file_map[ckpt_file_map['net'] == net]['file_number'].values[0]
return os.path.join(base_ckpt_dir, str(int(next_ckpt)))
# a client protocol
class QClient(protocol.Protocol):
"""Once connected, send a message, then print the result."""
def connectionMade(self):
self.transport.write(q_protocol.construct_login_message(self.factory.clientname))
def dataReceived(self, data):
out = q_protocol.parse_message(data)
if out['type'] == 'redundant_connection':
print 'Redundancy in connect name'
if out['type'] == 'new_net':
print 'Ready to train ' + out['net_string']
if self.factory.debug:
time.sleep(5)
self.transport.write(q_protocol.construct_net_trained_message(self.factory.clientname,
out['net_string'],
86.0,
100,
85.5,
10000,
float(out['epsilon']),
int(out['iteration_number'])))
else:
model_dir = get_model_dir(self.factory.hyper_parameters.CHECKPOINT_DIR, out['net_string'])
trainer = ModelExec(model_dir, self.factory.hyper_parameters, self.factory.state_space_parameters)
train_out = trainer.run_one_model(out['net_string'], gpu_to_use=self.factory.gpu_to_use)
print 'OUT', train_out
# If OUT OF MEMORY or FAIL, delete files
if train_out['status'] in ['OUT_OF_MEMORY', 'FAIL']:
rm_model_dir(self.factory.hyper_parameters.CHECKPOINT_DIR, out['net_string'])
if train_out['status'] == 'OUT_OF_MEMORY':
self.transport.write(q_protocol.construct_net_too_large_message(self.factory.clientname))
else:
(iter_best, acc_best) = max(train_out['test_accs'].items(), key=lambda x: x[1]) if train_out['status'] != 'FAIL' \
else (0, 1.0/self.factory.hyper_parameters.NUM_CLASSES)
(iter_last, acc_last) = max(train_out['test_accs'].items(), key=lambda x: x[0]) if train_out['status'] != 'FAIL' \
else (0, 1.0/self.factory.hyper_parameters.NUM_CLASSES)
# Clear out model files
clear_redundant_logs_caffe(self.factory.hyper_parameters.CHECKPOINT_DIR, pd.DataFrame({'net': [out['net_string']],
'iter_best_val': [iter_best],
'iter_last_val': [iter_last]}))
self.transport.write(q_protocol.construct_net_trained_message(self.factory.clientname,
out['net_string'],
acc_best,
iter_best,
acc_last,
iter_last,
float(out['epsilon']),
int(out['iteration_number'])))
def connectionLost(self, reason):
print "connection lost"
class QFactory(protocol.ClientFactory):
def __init__(self, clientname, hyper_parameters, state_space_parameters, gpu_to_use, debug):
self.hyper_parameters = hyper_parameters
self.state_space_parameters = state_space_parameters
self.protocol = QClient
self.clientname = clientname
self.gpu_to_use = gpu_to_use
self.debug = debug
def clientConnectionFailed(self, connector, reason):
print "Connection failed - goodbye!"
reactor.stop()
def clientConnectionLost(self, connector, reason):
print "Connection lost - goodbye!"
reactor.stop()
def start_reactor(clientname, hostname, model, gpu_to_use, debug):
_model = __import__('models.' + model, globals(), locals(), ['hyper_parameters', 'state_space_parameters'], -1)
if gpu_to_use is not None:
print 'GPU TO USE', gpu_to_use
_model.hyper_parameters.CHECKPOINT_DIR = _model.hyper_parameters.CHECKPOINT_DIR + str(gpu_to_use)
f = QFactory(clientname, _model.hyper_parameters, _model.state_space_parameters, gpu_to_use, debug)
reactor.connectTCP(hostname, 8000, f)
reactor.run()
# this connects the protocol to a server running on port 8000
def main():
parser = argparse.ArgumentParser()
model_pkgpath = os.path.join(os.path.dirname(__file__),'models')
model_choices = next(os.walk(model_pkgpath))[1]
parser.add_argument('model',
help='model package name package should have a model.py,' +
'file, hyper_parameters.py file, and a log folder',
choices=model_choices)
parser.add_argument('clientname')
parser.add_argument('hostname')
parser.add_argument('-gpu', '--gpu_to_use', help="GPU number to use", type=int)
parser.add_argument('--debug', type=bool, help="True if you don't want to actually run networks and return bs", default=False)
args = parser.parse_args()
start_reactor(args.clientname, args.hostname, args.model, args.gpu_to_use, args.debug)
# this only runs if the module was *not* imported
if __name__ == '__main__':
main()