-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_age.py
368 lines (304 loc) · 14.5 KB
/
train_age.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import argparse
import glob
import json
import multiprocessing
import os
import random
import re
from importlib import import_module
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader, ConcatDataset
from torch.utils.tensorboard import SummaryWriter
from dataset_age import * #CustomDataset, train_transform_Over60_1
from loss import create_criterion
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
import wandb
import pandas as pd
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def grid_image(np_images, gts, preds, n=16, shuffle=False):
batch_size = np_images.shape[0]
assert n <= batch_size
choices = random.sample(range(batch_size), k=n) if shuffle else list(range(n))
figure = plt.figure(figsize=(12, 18 + 2)) # cautions: hardcoded, 이미지 크기에 따라 figsize 를 조정해야 할 수 있습니다. T.T
plt.subplots_adjust(top=0.8) # cautions: hardcoded, 이미지 크기에 따라 top 를 조정해야 할 수 있습니다. T.T
n_grid = int(np.ceil(n ** 0.5))
task = "age"
for idx, choice in enumerate(choices):
gt = gts[choice].item()
pred = preds[choice].item()
image = np_images[choice]
title = f"{task} - gt: {gt}, pred: {pred}"
plt.subplot(n_grid, n_grid, idx + 1, title=title)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(image, cmap=plt.cm.binary)
return figure
def increment_path(path, exist_ok=False):
""" Automatically increment path, i.e. runs/exp --> runs/exp0, runs/exp1 etc.
Args:
path (str or pathlib.Path): f"{model_dir}/{args.name}".
exist_ok (bool): whether increment path (increment if False).
"""
path = Path(path)
if (path.exists() and exist_ok) or (not path.exists()):
return str(path)
else:
dirs = glob.glob(f"{path}*")
matches = [re.search(rf"%s(\d+)" % path.stem, d) for d in dirs]
i = [int(m.groups()[0]) for m in matches if m]
n = max(i) + 1 if i else 2
return f"{path}{n}"
def train(data_dir, model_dir, args):
seed_everything(args.seed)
save_dir = increment_path(os.path.join(model_dir, args.name))
# -- settings
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# -- dataset
dataset_module = getattr(import_module("dataset_age"), 'MaskBaseDataset') # default: MaskBaseDataset
dataset = dataset_module(
data_dir=data_dir,
)
num_classes = dataset.num_classes
df = pd.DataFrame({'img_path' : dataset.image_paths, 'label' :dataset.age_labels})
train_df, val_df, _, _ = train_test_split(df, df['label'].values, test_size=args.val_ratio, random_state=args.seed, stratify=df['label'].values)
train_df_label_0 = train_df[train_df['label']==0] # ~30 : 7174
train_df_label_1 = train_df[train_df['label']==1] # 30~60 : 3646
train_df_label_2 = train_df[train_df['label']==2] # 60~ : 1075
# -- augmentation
transform_module = getattr(import_module("dataset_age"), 'train_transform_1')
train_transform_1 = transform_module(
resize=args.resize,
mean=dataset.mean,
std=dataset.std,
)
transform_module = getattr(import_module("dataset_age"), 'val_transform')
val_transform = transform_module(
resize=args.resize,
mean=dataset.mean,
std=dataset.std,
)
###################################### 내가 추가한 Augmentation들 ######################################
transform_module = getattr(import_module("dataset_age"), 'train_transform_Over60_1')
train_transform_over60_1 = transform_module(
resize=args.resize,
mean=dataset.mean,
std=dataset.std,
)
transform_module = getattr(import_module("dataset_age"), 'train_transform_Over60_2')
train_transform_over60_2 = transform_module(
resize=args.resize,
mean=dataset.mean,
std=dataset.std,
)
transform_module = getattr(import_module("dataset_age"), 'train_transform_Over60_3')
train_transform_over60_3 = transform_module(
resize=args.resize,
mean=dataset.mean,
std=dataset.std,
)
transform_module = getattr(import_module("dataset_age"), 'train_transform_Over60_4')
train_transform_over60_4 = transform_module(
resize=args.resize,
mean=dataset.mean,
std=dataset.std,
)
transform_module = getattr(import_module("dataset_age"), 'train_transform_Over60_5')
train_transform_over60_5 = transform_module(
resize=args.resize,
mean=dataset.mean,
std=dataset.std,
)
transform_module = getattr(import_module("dataset_age"), 'train_transform_30to60')
train_transform_30to60 = transform_module(
resize=args.resize,
mean=dataset.mean,
std=dataset.std,
)
########################################################################################################
train_img_paths_0, train_labels_0 = train_df_label_0['img_path'].values, train_df_label_0['label'].values
train_img_paths_1, train_labels_1 = train_df_label_1['img_path'].values, train_df_label_1['label'].values
train_img_paths_2, train_labels_2 = train_df_label_2['img_path'].values, train_df_label_2['label'].values
train_dataset = []
# 기본 이미지들을 데이터셋에다가 추가
train_dataset.append(CustomDataset(train_img_paths_0, train_labels_0, train_transform_1))
train_dataset.append(CustomDataset(train_img_paths_1, train_labels_1, train_transform_1))
train_dataset.append(CustomDataset(train_img_paths_2, train_labels_2, train_transform_1))
###################################### 내가 추가한 Augmentation들 ######################################
# 30 이상 60 미만 데이터 2배로 증강 -> 7292장
train_dataset.append(CustomDataset(train_img_paths_1, train_labels_1, train_transform_30to60))
# 60 이상 데이터 6배로 증강 -> 6450장
train_dataset.append(CustomDataset(train_img_paths_2, train_labels_2, train_transform_over60_1))
train_dataset.append(CustomDataset(train_img_paths_2, train_labels_2, train_transform_over60_2))
train_dataset.append(CustomDataset(train_img_paths_2, train_labels_2, train_transform_over60_3))
train_dataset.append(CustomDataset(train_img_paths_2, train_labels_2, train_transform_over60_4))
train_dataset.append(CustomDataset(train_img_paths_2, train_labels_2, train_transform_over60_5))
########################################################################################################
train_set = ConcatDataset(train_dataset)
val_img_paths, val_labels = val_df['img_path'].values, val_df['label'].values
val_set = CustomDataset(val_img_paths, val_labels, val_transform)
train_loader = DataLoader(
train_set,
batch_size=args.batch_size,
num_workers=multiprocessing.cpu_count() // 2,
shuffle=True,
pin_memory=use_cuda,
drop_last=True,
)
val_loader = DataLoader(
val_set,
batch_size=args.valid_batch_size,
num_workers=multiprocessing.cpu_count() // 2,
shuffle=False,
pin_memory=use_cuda,
drop_last=True,
)
# -- model
model_module = getattr(import_module("model_age"), args.model)
model = model_module(
num_classes=num_classes
).to(device)
model = torch.nn.DataParallel(model)
# -- loss & metric
criterion = create_criterion(args.criterion)
opt_module = getattr(import_module("torch.optim"), args.optimizer)
optimizer = opt_module(
filter(lambda p: p.requires_grad, model.parameters()),
lr=args.lr,
weight_decay=5e-4
)
scheduler = StepLR(optimizer, args.lr_decay_step, gamma=0.5)
# -- logging
logger = SummaryWriter(log_dir=save_dir)
with open(os.path.join(save_dir, 'config.json'), 'w', encoding='utf-8') as f:
json.dump(vars(args), f, ensure_ascii=False, indent=4)
best_val_acc = 0
best_val_loss = np.inf
for epoch in range(1, args.epochs+1):
# train loop
model.train()
loss_value = 0
matches = 0
for idx, train_batch in enumerate(train_loader):
inputs, labels = train_batch
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outs = model(inputs)
preds = torch.argmax(outs, dim=-1)
loss = criterion(outs, labels)
loss.backward()
optimizer.step()
loss_value += loss.item()
matches += (preds == labels).sum().item()
if (idx + 1) % args.log_interval == 0:
train_loss = loss_value / args.log_interval
train_acc = matches / args.batch_size / args.log_interval
current_lr = get_lr(optimizer)
print(
f"Epoch[{epoch}/{args.epochs}]({idx + 1}/{len(train_loader)}) || "
f"training loss {train_loss:4.4} || training accuracy {train_acc:4.2%} || lr {current_lr}"
)
logger.add_scalar("Train/loss", train_loss, epoch * len(train_loader) + idx)
logger.add_scalar("Train/accuracy", train_acc, epoch * len(train_loader) + idx)
loss_value = 0
matches = 0
wandb.log({
"Train loss":train_loss,
"Train acc":train_acc
})
scheduler.step()
# val loop
epoch_preds = []
epoch_labels = []
with torch.no_grad():
print("Calculating validation results...")
model.eval()
val_loss_items = []
val_acc_items = []
figure = None
for val_batch in val_loader:
inputs, labels = val_batch
inputs = inputs.to(device)
labels = labels.to(device)
outs = model(inputs)
preds = torch.argmax(outs, dim=-1)
epoch_preds += preds.detach().cpu().numpy().tolist()
epoch_labels += labels.detach().cpu().numpy().tolist()
loss_item = criterion(outs, labels).item()
acc_item = (labels == preds).sum().item()
val_loss_items.append(loss_item)
val_acc_items.append(acc_item)
if figure is None:
inputs_np = torch.clone(inputs).detach().cpu().permute(0, 2, 3, 1).numpy()
inputs_np = dataset_module.denormalize_image(inputs_np, dataset.mean, dataset.std)
figure = grid_image(
inputs_np, labels, preds, n=16, shuffle=True
)
val_loss = np.sum(val_loss_items) / len(val_loader)
val_acc = np.sum(val_acc_items) / len(val_set)
best_val_loss = min(best_val_loss, val_loss)
val_f1 = f1_score(epoch_preds, epoch_labels, average="macro")
if val_acc > best_val_acc:
print(f"New best model for val accuracy : {val_acc:4.2%}! saving the best model..")
torch.save(model.module.state_dict(), f"{save_dir}/best.pth")
best_val_acc = val_acc
torch.save(model.module.state_dict(), f"{save_dir}/last.pth")
print(
f"[Val] acc : {val_acc:4.2%}, loss: {val_loss:4.2}, f1: {val_f1:4.2} || "
f"best acc : {best_val_acc:4.2%}, best loss: {best_val_loss:4.2}"
)
logger.add_scalar("Val/loss", val_loss, epoch)
logger.add_scalar("Val/accuracy", val_acc, epoch)
logger.add_figure("results", figure, epoch)
wandb.log({
"Valid loss":val_loss,
"Valid acc":val_acc,
"Valid f1-score":val_f1,
"results":figure
})
print()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data and model checkpoints directories
parser.add_argument('--seed', type=int, default=42, help='random seed (default: 42)')
parser.add_argument('--epochs', type=int, default=50, help='number of epochs to train (default: 1)')
# parser.add_argument('--dataset', type=str, default='MaskBaseDataset', help='dataset augmentation type (default: MaskBaseDataset)')
# parser.add_argument('--augmentation', type=str, default='BaseAugmentation', help='data augmentation type (default: BaseAugmentation)')
parser.add_argument("--resize", nargs="+", type=list, default=[256, 192], help='resize size for image when training')
parser.add_argument('--batch_size', type=int, default=64, help='input batch size for training (default: 64)')
parser.add_argument('--valid_batch_size', type=int, default=64, help='input batch size for validing (default: 1000)')
parser.add_argument('--model', type=str, default='ResNet152', help='model type (default: BaseModel)')
parser.add_argument('--optimizer', type=str, default='Adam', help='optimizer type (default: SGD)')
parser.add_argument('--lr', type=float, default=1e-5, help='learning rate (default:1e-3)')
parser.add_argument('--val_ratio', type=float, default=0.2, help='ratio for validaton (default: 0.2)')
parser.add_argument('--criterion', type=str, default='f1', help='criterion type (default: cross_entropy)')
parser.add_argument('--lr_decay_step', type=int, default=20, help='learning rate scheduler deacy step (default: 20)')
parser.add_argument('--log_interval', type=int, default=20, help='how many batches to wait before logging training status')
parser.add_argument('--name', default='exp_age', help='model save at {SM_MODEL_DIR}/{name}')
# Container environment
parser.add_argument('--data_dir', type=str, default=os.environ.get('SM_CHANNEL_TRAIN', '/opt/ml/input/data/train/images'))
parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR', './model'))
args = parser.parse_args()
print(args)
wandb.init(project ="age_classification", entity="cv_3")
wandb.config.update(args)
data_dir = args.data_dir
model_dir = args.model_dir
train(data_dir, model_dir, args)