Skip to content

Latest commit

 

History

History

Requirements

pip install -r requirements.txt

Make name.txt

name.txt 파일을 만들어서 class 이름들을 적는다.

Train

  1. Install Requirements

    cd yolov5\convert2yolo
    pip install -r requirements.txt
    
  2. Create Dataset

    cd yolov5\convert2yolo
    python example.py --datasets COCO --img_path /opt/ml/detection/dataset --label /opt/ml/detection/dataset/train.json --convert_output_path /opt/ml/detection/dataset --img_type ".jpg" --manifest_path /opt/ml/detection/dataset --cls_list_file /opt/ml/detection/dataset/name --cls_list_file /opt/ml/detection/dataset/name.txt
    
  3. Split Dataset

    • install requirements
      pip install -r requirements
      
    • Running
      $ python cocosplit.py --having-annotations -s 0.8 /path/to/your/coco_annotations.json train.json test.json
      
  4. Run train.py

    python train.py --img 1024 --batch 6 --epoch 100 --data custom.yaml --weights yolov5x6.pt --multi-scale
    

Inference

Run inference.ipynb

For pseudo labeling

python val.py --weights /path/to/weights/last.pt --data trash.yaml --img 1024 --iou-thres 0.7 --augment --task test --name experiment_name --save-json

Pseudo Labeling

Run pseudo.ipynb

Re-Train

train.json 대신 pseudo.ipynb를 통해 새롭게 나온 pseudo.json을 통해 다시 위와 같은 과정을 다시 한번 반복하여 학습을 완료한다.